Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mar Drugs ; 20(10)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36286458

RESUMEN

Harmful algal blooms are an increasing worldwide threat to the seafood industry and human health as a consequence of the natural production of biotoxins that can accumulate in shellfish. In the Argentine Sea, this has been identified as an issue for the offshore fisheries of Patagonian scallops (Zygochlamys patagonica), leading to potentially harmful effects on consumers. Here we assess spatial and temporal patterns in marine biotoxin concentrations in Patagonian scallops harvested in Argentinian waters between 2012-2017, based on analyses for paralytic shellfish toxins, lipophilic toxins, and amnesic shellfish toxins. There was no evidence for concentrations of lipophilic or amnesic toxins above regulatory acceptance thresholds, with trace concentrations of pectenotoxin 2, azaspiracid 2 and okadaic acid group toxins confirmed. Conversely, paralytic shellfish toxins were quantified in some scallops. Gonyautoxins 1 and 2 dominated the unusual toxin profiles (91%) in terms of saxitoxin equivalents with maximum concentrations reaching 3985 µg STX eq/kg and with changes in profiles linked in part to seasonal changes. Total toxin concentrations were compared between samples of the adductor muscle and whole tissue, with results showing the absence of toxins in the adductor muscle confirming toxin accumulation in the digestive tracts of the scallops and the absence of a human health threat following the processing of scallop adductor meat. These findings highlight that paralytic shellfish toxins with an unusual toxin profile can occur in relatively high concentrations in whole Patagonian scallops in specific regions and during particular time periods, also showing that the processing of scallops on board factory ships to obtain frozen adductor muscle is an effective management process that minimizes the risk of poisonings from final products destined for human consumption.


Asunto(s)
Toxinas Marinas , Pectinidae , Animales , Humanos , Toxinas Marinas/análisis , Ácido Ocadaico/análisis , Saxitoxina/análisis , Alimentos Marinos/análisis
2.
Harmful Algae ; 99: 101910, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33218436

RESUMEN

Paralytic Shellfish Poisoning is a potentially fatal syndrome, resulting from the filter-feeding activities of marine molluscs accumulating harmful neurotoxins naturally occurring in microalgae. Outbreaks are well recognised throughout most regions of the world, but with the highest levels of toxicity to date recorded in mussels from Argentina. Whilst toxicity has been documented for selected outbreaks over the years, testing has been conducted using a mouse bioassay. Consequently there is a need to establish baseline data utilising modern chemical detection methods, which also facilitate the quantification of individual toxin analogues, giving useful data on toxin profiles as well as total sample toxicity. In this study, 151 shellfish samples harvested from the marine waters of Argentina between 1980 and 2012 were subjected to analysis by liquid chromatography with fluorescence detection, since Jan 2019 the European Union reference method for PSP determination. Total PST concentrations were found to vary enormously throughout the coastline of Argentina, with higher levels of toxins found in the central regions of Rio Negro and Chubut. Toxin profiles in terms of molar percentage of total concentrations were dominated by the gonyautoxins GTX1&4 and GTX2&3, followed by C1&2, STX and dcGTX2&3, with minor levels of other analogues previously not reported in the country. Profiles were found to vary significantly, with statistical clusters of profile types associated with a wide range of factors, including species, spatial and temporal differences, as well as likely source microalgae species and potential toxin transformation pathways. Overall application of the chemical detection method has confirmed both the significant risk to shellfish consumers in Argentina with periodic outbreaks of extremely high toxin levels and a large variability in toxin profiles relating in part to previously reported variabilities in microalgal toxin content. The study has demonstrated the potential for the method to systematically study the relationships between toxicity, toxin profile, source phytoplankton and other environmental factors.


Asunto(s)
Bivalvos , Intoxicación por Mariscos , Animales , Argentina , Toxinas Marinas , Mariscos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA