Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Molecules ; 29(5)2024 Feb 23.
Article En | MEDLINE | ID: mdl-38474497

This study evaluates the corrosion inhibition capabilities of two novel hydrazone derivatives, (E)-2-(5-methoxy-2-methyl-1H-indol-3-yl)-N'-(4-methylbenzylidene)acetohydrazide (MeHDZ) and (E)-N'-benzylidene-2-(5-methoxy-2-methyl-1H-indol-3-yl)acetohydrazide (HHDZ), on carbon steel in a 15 wt.% HCl solution. A comprehensive suite of analytical techniques, including gravimetric analysis, potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM), demonstrates their significant inhibition efficiency. At an optimal concentration of 5 × 10-3 mol/L, MeHDZ and HHDZ achieve remarkable inhibition efficiencies of 98% and 94%, respectively. EIS measurements reveal a dramatic reduction in effective double-layer capacitance (from 236.2 to 52.8 and 75.3 µF/cm2), strongly suggesting inhibitor adsorption on the steel surface. This effect is further corroborated by an increase in polarization resistance and a significant decrease in corrosion current density at optimal concentrations. Moreover, these inhibitors demonstrate sustained corrosion mitigation over extended exposure durations and maintain effectiveness even under elevated temperatures, highlighting their potential for diverse operational conditions. The adsorption process of these inhibitors aligns well with the Langmuir adsorption isotherm, implying physicochemical interactions at the carbon steel surface. Density functional tight-binding (DFTB) calculations and molecular dynamics simulations provide insights into the inhibitor-surface interaction mechanism, further elucidating the potential of these hydrazone derivatives as highly effective corrosion inhibitors in acidic environments.

2.
J Adv Res ; 58: 211-228, 2024 Apr.
Article En | MEDLINE | ID: mdl-37634628

INTRODUCTION: Corrosion-induced deterioration of infrastructure is a growing global concern. The development and application of corrosion inhibitors are one of the most effective approaches to protect steel rebar from corrosion. Hence, this study focuses on a novel hydrazone derivative, (E)-N'-(4-(dimethylamino)benzylidene)-2-(5-methoxy-2-methyl-1H-indol-3-yl)aceto-hydrazide (HIND), and its potential application to mitigate corrosion in steel rebar exposed to chloride-contaminated concrete pore solutions (ClSCPS). OBJECTIVES: The research aims to evaluate the anti-corrosion capabilities of HIND on steel rebar within a simulated corrosive environment, focusing on the mechanisms of its inhibitory effect. METHODS: The corrosion of steel rebar exposed to the ClSCPS was studied through weight loss and electrochemical methods. The surface morphology of steel rebar surface was characterized by FE-SEM-EDS, AFM; oxidation states of the steel rebar and crystal structures were examined using X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) methods. Further, experimental findings were complemented by theoretical studies using self-consistent-charge density-functional tight-binding (SCC-DFTB) simulations. The performance of HIND was monitored at an optimal concentration over a period of 30 days. RESULTS: The results indicated a significant reduction in steel rebar corrosion upon introducing HIND. The inhibitor molecules adhered to the steel surface, preventing further deterioration and achieving an inhibition efficiency of 88.4% at 0.5 mmol/L concentration. The surface morphology analysis confirmed the positive effect of HIND on the rebar surface, showing a decrease in the surface roughness of the steel rebar from 183.5 in uninhibited to 50 nm in inhibited solutions. Furthermore, SCC-DFTB simulations revealed the presence of coordination between iron atoms and HIND active sites. CONCLUSION: The findings demonstrate the potential of HIND as an effective anti-corrosion agent in chloride-contaminated environments. Its primary adsorption mechanism involves charge transfer from the inhibitor molecules to iron atoms. Therefore, applying HIND could be an effective strategy to address corrosion-related challenges in reinforced infrastructure.

3.
Environ Sci Pollut Res Int ; 30(49): 107772-107789, 2023 Oct.
Article En | MEDLINE | ID: mdl-37740156

Nitrates level in water is a worldwide problem that represents a risk to the environment and people's health; efforts are currently devoted to the development and implementation of new biomaterials for their removal. In this study, chitosan (Ch) from shrimp waste and the related epichlorohydrin-modified crossover chitosan (Ch-EPI) were used to remove nitrates from aqueous solutions. The mechanism of selective nitrate removal was elucidated and validated by theoretical calculations. The physicochemical performance of Ch and Ch-EPI was investigated through the main parameters pH, adsorption capacity, contact time, initial nitrate concentration, coexisting anions, and temperature. The experimental data were fitted to widely used adsorption kinetic models and adsorption isotherms. The maximum percentage of nitrate adsorption was reached at an equilibrium pH of 4.0 at an adsorbent dose of 2.0 g/L after a contact time of 50 min. Competing anion experiments show that chloride and sulfate ions have minimal and maximal effects on nitrate adsorption by Ch-EPI. Experimental adsorption data are best fitted to pseudo-second-order kinetic and isothermal Langmuir models. The maximum adsorption capacities of Ch and Ch-EPI for nitrate removal were 12.0 mg/g and 38 mg/g, respectively.


Chitosan , Water Pollutants, Chemical , Humans , Nitrates , Epichlorohydrin , Anions , Water , Adsorption , Kinetics , Models, Theoretical , Hydrogen-Ion Concentration
4.
Materials (Basel) ; 16(18)2023 Sep 11.
Article En | MEDLINE | ID: mdl-37763437

The corrosion of materials remains a critical challenge with significant economic and infrastructural impacts. A comprehensive understanding of adsorption characteristics of phytochemicals can facilitate the effective design of high-performing environmentally friendly inhibitors. This study conducted a computational exploration of hydroxytyrosol (HTR) and tyrosol (TRS) (potent phenolic compounds found in olive leaf extracts), focusing on their adsorption and reactivity on iron surfaces. Utilizing self-consistent-charge density-functional tight-binding (SCC-DFTB) simulations, molecular dynamics (MD) simulations, and quantum chemical calculations (QCCs), we investigated the molecules' structural and electronic attributes and interactions with iron surfaces. The SCC-DFTB results highlighted that HTR and TRS coordinated with iron atoms when adsorbed individually, but only HTR maintained bonding when adsorbed alongside TRS. At their individual adsorption, HTR and TRS had interaction energies of -1.874 and -1.598 eV, which became more negative when put together (-1.976 eV). The MD simulations revealed parallel adsorption under aqueous and vacuum conditions, with HTR demonstrating higher adsorption energy. The analysis of quantum chemical parameters, including global and local reactivity descriptors, offered crucial insights into molecular reactivity, stability, and interaction-prone atomic sites. QCCs revealed that the fraction of transferred electron ∆N aligned with SCC-DFTB results, while other parameters of purely isolated molecules failed to predict the same. These findings pave the way for potential advancements in anticorrosion strategies leveraging phenolic compounds.

5.
Molecules ; 28(8)2023 Apr 18.
Article En | MEDLINE | ID: mdl-37110779

The development of corrosion inhibitors with outstanding performance is a never-ending and complex process engaged in by researchers, engineers and practitioners. The computational assessment of organic corrosion inhibitors' performance is a crucial step towards the design of new task-specific materials. Herein, the electronic features, adsorption characteristics and bonding mechanisms of two pyridine oximes, namely 2-pyridylaldoxime (2POH) and 3-pyridylaldoxime (3POH), with the iron surface were investigated using molecular dynamics (MD), and self-consistent-charge density-functional tight-binding (SCC-DFTB) simulations. SCC-DFTB simulations revealed that the 3POH molecule can form covalent bonds with iron atoms in its neutral and protonated states, while the 2POH molecule can only bond with iron through its protonated form, resulting in interaction energies of -2.534, -2.007, -1.897, and -0.007 eV for 3POH, 3POH+, 2POH+, and 2POH, respectively. Projected density of states (PDOSs) analysis of pyridines-Fe(110) interactions indicated that pyridine molecules were chemically adsorbed on the iron surface. Quantum chemical calculations (QCCs) revealed that the energy gap and Hard and Soft Acids and Bases (HSAB) principles were efficient in predicting the bonding trend of the molecules investigated with an iron surface. 3POH had the lowest energy gap of 1.706 eV, followed by 3POH+ (2.806 eV), 2POH+ (3.121 eV), and 2POH (3.431 eV). In the presence of a simulated solution, MD simulation showed that the neutral and protonated forms of molecules exhibited a parallel adsorption mode on an iron surface. The excellent adsorption properties and corrosion inhibition performance of 3POH may be attributed to its low stability compared to 2POH molecules.

6.
ACS Omega ; 8(11): 10051-10061, 2023 Mar 21.
Article En | MEDLINE | ID: mdl-36969446

This work synthesized a novel chitosan-loaded MgAl-LDH (LDH = layered double hyroxide) nanocomposite, which was physicochemically characterized, and its performance in As(V) removal and antimicrobial activity was evaluated. Chitosan-loaded MgAl-LDH nanocomposite (CsC@MgAl-LDH) was prepared using cross-linked natural chitosan from shrimp waste and modified by Mg-Al. The main mechanisms predominating the separation of As(V) were elucidated. The characteristic changes confirming MgAl-LDH modification with chitosan were analyzed through Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis-differential thermal analysis, and Brunauer-Emmett-Teller measurements. Porosity and the increased surface area play an important role in arsenic adsorption and microbial activity. Adsorption kinetics follows the general order statistically confirmed by Bayesian Information Criterion differences. To understand the adsorption process, Langmuir, Freundlich, and Liu isotherms were studied at three different temperatures. It was found that Liu's isotherm model was the best-fitted model. CsC@MgAl-LDH showed the maximum adsorption capacity of 69.29 mg g-1 toward arsenic at 60 °C. It was observed that the adsorption capacity of the material rose with the increase in temperature. The spontaneous behavior and endothermic nature of adsorption was confirmed by the thermodynamic parameters study. Minimal change in percentage removal was observed with coexisting ions. The regeneration of material and adsorption-desorption cycles revealed that the adsorbent is economically efficient. The nanocomposite was very effective against Staphylococcus aureus and Bacillus subtilus.

7.
Langmuir ; 38(51): 15937-15949, 2022 12 27.
Article En | MEDLINE | ID: mdl-36512730

The acid treatment process of production wells is one of the most acid-induced corrosive processes. Corrosion inhibitors are an effective tool to inhibit the acids employed in acidizing treatments. Herein, new eco-friendly hydrazone-based compounds, namely, 2-(4-isobutylphenyl)-N-((1E,2E)-3-phenylallylidene) propanehydrazide (IPP) and N'-cyclohexylidene-2-[4-(2-methylpropyl)phenyl] propanehydrazide (CIP), were prepared through the functionalization of ibuprofen (IBF) and applied for corrosion mitigation of N80 steel in 15 wt % HCl (referred to hereafter as blank). The anticorrosion performance of selected compounds was investigated by employing weight loss (WL), potentiodynamic polarization curves (PPCs), and electrochemical impedance spectroscopy (EIS), complemented by scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses. In addition, density functional theory-based tight-binding (DFTB) modeling was conducted to get molecular-level insights into inhibitor-metal bonding. Experimental results revealed excellent long-term corrosion inhibition efficiency at very low concentrations of inhibitors and a mixed-type inhibition process. Numerically, N80 steel polarization resistance increased from 5.51 Ω cm2 in blank to 608.4 and 396 Ω cm2 in blank inhibited with 5 × 10-3 mol/L of IPP and CIP, respectively, equivalent to 99% and 98% inhibition efficiency based on EIS experiments. Besides, SEM and AFM images showed that, after addition to 15 wt % HCl, inhibitors could effectively prevent the acid attack on the N80 steel surface. The fitting of experimental data to adsorption isotherms indicated that inhibitors' adsorption followed the Langmuir isotherm model and mixed physicochemical adsorption on the metal surface. The DFTB simulation revealed that inhibitor molecules can create covalent and physical interactions with iron atoms, which is further confirmed by partial density of states (PDOSs) analysis.


Hydrazones , Steel , Steel/chemistry , Corrosion , Oil and Gas Fields , Acids
8.
J Mol Model ; 28(9): 254, 2022 Aug 11.
Article En | MEDLINE | ID: mdl-35951104

Pyrimidine compounds have proven to be effective and efficient additives capable of protecting mild steel in acidic media. This class of organic compounds often functions as adsorption-type inhibitors of corrosion by forming a protective layer on the metallic substrate. The present study reports a computational study of forty pyrimidine compounds that have been investigated as sustainable inhibitors of mild steel corrosion in molar HCl solution. Quantitative structure property relationship was conducted using linear (multiple linear regression) and nonlinear (artificial neural network) models. Standardization method was employed in variable selection yielding five top chemical descriptors utilized for model development along with the inhibitor concentration. Multiple linear regression model yielded a fair predictive model. Artificial neural network model developed using k-fold cross-validation method provided a comprehensive insight into the corrosion protection mechanism of studied pyrimidine-based corrosion inhibitors. Using a multilayer perceptron with Levenberg-Marquardt algorithm, the study obtained the optimal model having a MSE of 8.479, RMSE of 2.912, MAD of 1.791, and MAPE of 2.648. The optimal neural network model was further utilized to forecast the protection capacities of nine non-synthesized pyrimidine derivatives. The predicted inhibition efficiencies ranged from 89 to 98%, revealing the significance of the considered chemical descriptors, the predictive capacity of the developed model, and the potency of the theoretical inhibitors.


Quantitative Structure-Activity Relationship , Steel , Corrosion , Neural Networks, Computer , Pyrimidines , Steel/chemistry
9.
Phys Chem Chem Phys ; 23(36): 19987-20027, 2021 Sep 22.
Article En | MEDLINE | ID: mdl-34254097

Molecular modelling of organic compounds using computational software has emerged as a powerful approach for theoretical determination of the corrosion inhibition potential of organic compounds. Some of the common techniques involved in the theoretical studies of corrosion inhibition potential and mechanisms include density functional theory (DFT), molecular dynamics (MD) and Monte Carlo (MC) simulations, and artificial neural network (ANN) and quantitative structure-activity relationship (QSAR) modeling. Using computational modelling, the chemical reactivity and corrosion inhibition activities of organic compounds can be explained. The modelling can be regarded as a time-saving and eco-friendly approach for screening organic compounds for corrosion inhibition potential before their wet laboratory synthesis would be carried out. Another advantage of computational modelling is that molecular sites responsible for interactions with metallic surfaces (active sites or adsorption sites) and the orientation of organic compounds can be easily predicted. Using different theoretical descriptors/parameters, the inhibition effectiveness and nature of the metal-inhibitor interactions can also be predicted. The present review article is a collection of major advancements in the field of computational modelling for the design and testing of the corrosion inhibition effectiveness of organic corrosion inhibitors.

10.
ACS Omega ; 5(23): 13503-13520, 2020 Jun 16.
Article En | MEDLINE | ID: mdl-32566815

In the present study, comparative analyses of corrosion inhibition property of few thiadiazole-derived bis-Schiff bases for mild steel in 1 M HCl were done. Various electrochemical experiments (electrochemical impedance spectroscopy and potentiodynamic polarization), as well as weight loss experiments, were employed to study the anticorrosion activity of bis-Schiff bases as inhibitors. The highest inhibition efficiency was obtained at an optimum concentration of 125 ppm for all inhibitors. Potentiodynamic polarization studies explain the mixed type but predominantly the cathodic nature of all inhibitors. The Langmuir adsorption isotherm was used to describe the mechanism of adsorption. The change in the value of activation energy on the addition of inhibitors reflects the mixed mode of interaction between the inhibitor and metallic surface. Scanning electron microscopy with energy-dispersive spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy analyses confirmed the adsorption of bis-Schiff bases on the metal surface and thereby shielding from corrosion. Besides, the relevance between inhibition efficiency and the molecular structure of an inhibitor was theoretically examined via quantum chemical calculations and molecular dynamics simulations. All the results show consistent agreement with each other.

11.
Materials (Basel) ; 12(1)2018 Dec 21.
Article En | MEDLINE | ID: mdl-30577577

Benzimidazole derivatives were synthesized, characterized, and tested as a corrosion inhibitor for J55 steel in a 3.5 wt % NaCl solution saturated with carbon dioxide. The experimental results revealed that inhibitors are effective for steel protection, with an inhibition efficiency of 94% in the presence of 400 mg/L of inhibitor. The adsorption of the benzimidazole derivatives on J55 steel was found to obey Langmuir's adsorption isotherm. The addition of inhibitors decreases the cathodic as well anodic current densities and significantly strengthens impedance parameters. X-ray photoelectron spectroscopy (XPS) was used for steel surface characterization. Density functional theory (DFT) and molecular dynamic simulation (MD) were applied for theoretical studies.

12.
Sci Rep ; 8(1): 3690, 2018 02 27.
Article En | MEDLINE | ID: mdl-29487360

The inhibitory behaviour of non-ionic sugar based N,N'-didodecyl-N,N'-digluconamideethylenediamine gemini surfactant, designated as Glu(12)-2-Glu(12) on mild steel (MS) corrosion in 3.5% NaCl at 30-60 °C was explored using weight loss, PDP, EIS and SEM/EDAX/AFM techniques. The compound inhibited the corrosion of mild steel in 3.5% NaCl and the extent of inhibition was dependent on concentration and temperature. The inhibiting action of Glu(12)-2-Glu(12) is synergistically enhanced on addition of potassium iodide (KI) at all concentrations and temperatures. The inhibiting formulation comprising of 2.5 × 10-3 mM of Glu(12)-2-Glu(12) and 10 mM of KI exhibits an inhibition efficiency of 96.9% at 60 °C. Quantum chemical calculations and MD simulation were applied to analyze the experimental data and elucidate the adsorption behaviour and inhibition mechanism of inhibitors. MD simulation showed a nearly parallel or flat disposition for Glu(12)-2-Glu(12) molecules on the MS surface providing larger blocking area to prevent the metal surface from corrosion.

13.
ACS Omega ; 3(5): 5654-5668, 2018 May 31.
Article En | MEDLINE | ID: mdl-31458765

Environmentally friendly three chitosan Schiff bases (CSBs) were first time synthesized under microwave irradiation by the reaction of chitosan and aldehydes [benzaldehyde (CSB-1), 4-(dimethylamino)benzaldehyde (CSB-2), and 4-hydroxy-3-methoxybenzaldehyde (CSB-3)] and characterized by IR and NMR spectroscopy. The corrosion inhibition performance of the synthesized inhibitors was studied by the electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PDP). The results show that all the Schiff bases (CSBs) act as effective corrosion inhibitors for mild steel in 1 M HCl solution. Among the synthesized Schiff bases, CSB-3 exhibited the maximum inhibition efficiency of 90.65% at a very low concentration of 50 ppm. The EIS results showed that the CSBs inhibit corrosion by the adsorption mechanism. The PDP results show that all the three Schiff bases are mixed-type inhibitors. The formation of inhibitor films on the mild steel surface was supported by scanning electron microscopy/energy dispersive X-ray analysis and Fourier-transform infrared spectroscopy methods. The adsorption of CSBs on the mild steel surface obeys the Langmuir adsorption isotherm. The theoretical studies via density functional theory and molecular dynamics simulation corroborated the experimental results.

...