Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Sci Bull (Beijing) ; 68(3): 305-313, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36690576

RESUMEN

Enhanced silicate weathering induced by the uplift of the Himalayan-Tibetan Plateau (HTP) has been considered as the major cause of pCO2 decline and Cenozoic cooling. However, this hypothesis remains to be validated, largely due to the lack of a reliable reconstruction of the HTP weathering flux. Here, we present a 37-million-year record of the difference in the seawater radiogenic neodymium isotopic composition (ΔεNd) of Ocean Drilling Program (ODP) sites and Fe-Mn crusts between the northern and central Indian Ocean, which indicates the contribution of regional weathering input from the South Asian continent to the Indian Ocean. The results show a long-term increase in ΔεNd and thus provide the first critical evidence of enhanced South Asian weathering input since the late Eocene. The evolution coincided well with major pulses of surface uplift in the HTP and global climatic transitions. Our foraminiferal εNd record suggests that tectonic uplift and silicate weathering in South Asia, especially in the Himalayas, might have played a significant role in the late Cenozoic cooling.

3.
Sci Rep ; 8(1): 4229, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29523812

RESUMEN

Globally mud areas on continental shelves are conduits for the dispersal of fluvial-sourced sediment. We address fundamental issues in sediment dynamics focusing on how mud is retained on the seabed on shallow inner shelves and what are the sources of mud. Through a process-based comprehensive study that integrates dynamics, provenance, and sedimentology, here we show that the key mechanism to keep mud on the seabed is the water-column stratification that forms a dynamic barrier in the vertical that restricts the upward mixing of suspended sediment. We studied the 1000 km-long mud belt that extends from the mouth of the Changjiang (Yangtze) River along the coast of Zhejiang and Fujian Provinces of China and ends on the west coast of Taiwan. This mud belt system is dynamically attached to the fluvial sources, of which the Changjiang River is the primary source. Winter is the constructive phase when active deposition takes place of fine-grained sediment carried mainly by the Changjiang plume driven by Zhe-Min Coastal Currents southwestward along the coast.

4.
Mar Pollut Bull ; 124(1): 470-479, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-28693806

RESUMEN

Surface sediment samples collected from the South Yellow Sea and northern part of the East China Sea during spring and autumn, respectively, were analyzed for grain size, aluminum, and heavy metals (Cr, Ni, Cu, Zn, and Pb) to evaluate heavy metal levels and the contamination status. The results showed that all of the heavy metal concentrations met the standard criteria of the Chinese National Standard Criteria for Marine Sediment Quality. Both the EFs and a multivariate analysis (PCA) indicated that Cr, Ni, Cu, and Zn were mainly from natural contributions, while Pb was influenced by anthropogenic inputs, especially during autumn. The geoaccumulation index of Pb near the mouth of the Yangtze River suggested that the pollution degree in autumn was heavier than that in spring, which might be caused by the greater river discharge in summer and more heavy metal adsorption with finer grain sizes.


Asunto(s)
Sedimentos Geológicos/análisis , Metales Pesados/análisis , Contaminantes Químicos del Agua/análisis , China , Monitoreo del Ambiente/métodos , Plomo/análisis , Análisis Multivariante , Océanos y Mares , Ríos , Estaciones del Año
5.
Mar Pollut Bull ; 121(1-2): 367-371, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28619628

RESUMEN

Selected trace elements (As, Cr, Zn, Cu, Cd, Co, Pb and Ni) in 76 surface sediment samples collected from the rivers and the intertidal zone of Jiaozhou Bay (JZB) were evaluated to assess their environmental background values in the JZB catchment. Overall, the sediment quality in the area meets the China Marine Sediment Quality criteria. The background values (ranges) of the elements As, Cr, Zn, Cu, Cd, Co, Pb and Ni were, respectively, 8.28 (4.10-12.46), 67.96 (38.40-97.52), 56.80 (16.42-196.51), 19.13 (5.71-64.06), 0.10 (0.02-0.42), 6.51 (2.08-20.40), 17.97 (12.26-55.84) and 20.69 (10.43-30.95)mg/kg. The background values of most of the trace elements were lower than those in Chinese soil, the upper continental crust, global shales and global preindustrial sediments. The results may assist in defining future coastal and river management measures specifically targeted at monitoring trace element contamination in the JZB catchment.


Asunto(s)
Oligoelementos/análisis , Contaminantes Químicos del Agua/análisis , Bahías , China , Monitoreo del Ambiente , Sedimentos Geológicos , Metales Pesados , Ríos
6.
Mar Pollut Bull ; 104(1-2): 371-8, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26806660

RESUMEN

The major (Al) and trace metal (Cu, Pb, Zn, Cr, Cd, and As) concentrations in 29 surface sediment samples from the intertidal Jiaozhou Bay (JZB) are evaluated to assess the contamination level. The results show that the overall sediment quality in the area has been obviously impacted by trace metal contamination. The geoaccumulation index and the enrichment factor values indicate that no Cr or Cu contamination has occurred on the whole, only a few stations have been polluted by As, and some areas have been polluted by Cd, Pb, and Zn. Principal component analysis suggests that the Cu, Pb, Zn, and Cd are derived from anthropogenic inputs and that Cr, As, Cu, and Zn are influenced by natural weathering processes. Cu and Zn may originate from both natural and anthropogenic sources. The contamination in the northeastern JZB is higher than that in other areas of the bay.


Asunto(s)
Bahías/química , Monitoreo del Ambiente , Metales/análisis , Contaminantes Químicos del Agua/análisis , China , Sedimentos Geológicos/química
7.
Mar Pollut Bull ; 96(1-2): 434-40, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26002099

RESUMEN

Forty-three surface sediment samples and one gravity core obtained from the offshore area of the Changjiang River were analyzed for selected heavy metals (Cu, Pb, Zn, Cd, As, Hg) to evaluate the spatial distribution and potential ecological risk during the last century. The results indicated that the sediments are composed of silty sand, sandy silt and silt and were deposited in a relatively stable environment over the last century. The studied marine sediments are fine and easily adsorb heavy metals from aquatic systems. The heavy metal concentrations were found to be enriched in the sediments and were generally closely related to anthropogenic activities. However, the data analysis demonstrated that the levels of heavy metal contamination were below background values during the last century, indicating low ecological risk. Spatially, a higher concentration was found at the entrance to the Changjiang River, while it decreased to the northeast. The vertical distribution of contamination levels and ecological risk can be divided into four periods based on the downcore variation in heavy metals: pre-1940s, 1940s-1970s, 1970s-1990s and the late 1990s to the present. These conclusions form the basis for implementing appropriate policies to protect marine sediment quality.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos/análisis , Metales Pesados/análisis , Medición de Riesgo/tendencias , Ríos , Contaminantes Químicos del Agua/análisis , China , Ecología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...