Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Alzheimers Dement (Amst) ; 16(2): e12612, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38912304

RESUMEN

INTRODUCTION: Vascular pathology is known to contribute to dementia and vascular endothelial growth factor (VEGF) is a well-established biomarker associated with vascular alterations. Nonetheless, research findings on VEGF in Alzheimer's disease (AD) and vascular dementia (VaD) are inconsistent across various studies. METHODS: We conducted a meta-analysis to elucidate relationships between VEGF and AD/VaD. RESULTS: Twenty-four studies were included. Pooled data showed that both blood and cerebrospinal fluid (CSF) VEGF levels were higher in VaD patients, whereas no significant difference was found between AD patients and healthy controls. However, the correlation between blood VEGF and AD was found among studies with AD pathology verification. And blood VEGF levels were higher in AD patients than controls in "age difference < 5 years" subgroup and CSF samples for European cohorts. DISCUSSION: This study highlights that VEGF is more effective for the diagnosis of VaD and vascular factors are also an important contributor in AD. Highlights: Vascular endothelial growth factor (VEGF) levels were higher in the vascular dementia group, but not in the overall Alzheimer's disease (AD) group.Correlation between VEGF and AD was found among studies with clear AD pathological verification.Elevated VEGF in the cerebrospinal fluid might be a diagnostic marker for AD in European populations.

2.
CNS Neurosci Ther ; 29(7): 1805-1816, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36852442

RESUMEN

AIMS: This study investigated the relationship between plasma Wnt2b levels and Alzheimer's disease (AD), and explored the effect of Wnt2b on mitochondrial dysfunction in AD. METHODS: Healthy and AD subjects, AD transgenic mice, and in vitro models were used to investigate the roles of Wnt2b in abnormalities in canonical Wnt signaling and mitochondria in AD. RT-qPCR, immunoblotting, and immunofluorescence analysis were performed to assay canonical Wnt signaling. Mitochondrial structure was analyzed by electron microscopy. Flow cytometry was used to examine the intracellular calcium and neuronal apoptosis. RESULTS: Plasma Wnt2b levels were lower in AD patients and positively correlated with cognitive performance. Similarly, Wnt2b was reduced in the hippocampus of AD mice and in vitro models. Next, Wnt2b overexpression and recombinant Wnt2b were used to endogenously and exogenously upregulate Wnt2b levels. Upregulation of Wnt2b could effectively prevent downregulation of canonical Wnt signaling, mitochondrial dysfunction in in vitro AD models. Subsequently, intracellular calcium overload and neuronal damage were ameliorated. CONCLUSIONS: Our study highlights that Wnt2b decline is associated with cognitive impairment in AD, and upregulation of Wnt2b can exert neuroprotective effects in AD, particularly in ameliorating mitochondrial dysfunction.


Asunto(s)
Enfermedad de Alzheimer , Mitocondrias , Fármacos Neuroprotectores , Animales , Ratones , Péptidos beta-Amiloides/metabolismo , Calcio , Modelos Animales de Enfermedad , Ratones Transgénicos , Mitocondrias/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Regulación hacia Arriba , Humanos
3.
J Alzheimers Dis ; 91(2): 877-893, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36502323

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is the most common form of neurodegenerative dementia among the elderly. Excitotoxicity has been implicated as playing a dominant role in AD, especially related to the hyperactivation of excitatory neurons. Death-associated protein kinase 1 (DAPK1) is a calcium/calmodulin-dependent kinase and involved in the pathogenesis of AD, but the roles and mechanisms of DAPK1 in excitotoxicity in AD are still uncertain. OBJECTIVE: We mainly explored the underlying mechanisms of DAPK1 involved in the excitotoxicity of AD and its clinical relevance. METHODS: Differentiated SH-SY5Y human neuroblastoma cells, PS1 V97 L transgenic mice, and human plasma samples were used. Protein expression was assayed by immunoblotting, and intracellular calcium and neuronal damage were analyzed by flow cytometry. Plasma DAPK1 was measured by ELISA. RESULTS: We found that DAPK1 was activated after amyloid-ß oligomers (AßOs) exposure in differentiated SH-SY5Y cells. Besides, we found the phosphorylation of GluN2B subunit at Ser1303 was increased, which contributing to excitotoxicity and Ca2+ overload in SH-SY5Y cells. Inhibiting DAPK1 activity, knockdown of DAPK1 expression, and antagonizing GluN2B subunits could effectively prevent AßOs-induced activation of GluN2B subunit, Ca2+ overload, and neuronal apoptosis. Additionally, we found that DAPK1 was elevated in the brain of AD transgenic mouse and in the plasma of AD patients. CONCLUSION: Our finding will help to understand the mechanism of DAPK1 in the excitotoxicity in AD and provide a reference for the diagnosis and therapy of AD.


Asunto(s)
Enfermedad de Alzheimer , Neuroblastoma , Anciano , Animales , Humanos , Ratones , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Calcio/metabolismo , Proteínas Quinasas Asociadas a Muerte Celular/genética , Ratones Transgénicos , Receptores de N-Metil-D-Aspartato/metabolismo
4.
Mol Neurobiol ; 59(6): 3370-3381, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35305243

RESUMEN

Alzheimer's disease (AD) is the most common form of neurodegenerative disease and most anti-AD drugs have failed in clinical trials; hence, it is urgent to find potentially effective drugs against AD. DL-3-n-butylphthalide (NBP) is a compound extracted from celery seed and is a multiple-target drug. Several studies have demonstrated the neuroprotective effects of NBP on cognitive impairment, but the mechanisms of NBP remains relatively unexplored. In this study, we found that NBP could alleviated the increase of intracellular Ca2+ and reversed down-regulation of Ca2+/calmodulin-dependent protein kinase alpha (CaMKIIα) signaling and rescued neuronal apoptosis in SH-SY5Y cells treated by Aß oligomers. However, these neuroprotective effects of NBP on neuronal damage and CaMKIIα signaling were abolished when CaMKIIα expression was knocked down or its activity was inhibited. Thus, our findings suggested that CaMKIIα signaling was required for the neuroprotective effects of NBP in AD and provided an improved basis for elucidating the mechanism and treatment of NBP in AD.


Asunto(s)
Enfermedad de Alzheimer , Benzofuranos , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Enfermedad de Alzheimer/metabolismo , Benzofuranos/farmacología , Benzofuranos/uso terapéutico , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
5.
J Alzheimers Dis ; 82(3): 1357-1367, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34151815

RESUMEN

BACKGROUND: Alterations in levels of peripheral insulin-like growth factor-1 (IGF-1) in Alzheimer's disease (AD) have been reported in several studies, and results are inconsistent. OBJECTIVE: We conducted a meta-analysis to investigate the relationship between peripheral and cerebrospinal fluid IGF-1 levels and AD or mild cognitive impairment (MCI). METHODS: A systematic search in PubMed, Medline, Web of Science, Embase, and Cochrane Library was conducted and 18 studies were included. RESULTS: Results of random-effects meta-analysis showed that there was no significant difference between AD patients and healthy control (17 studies; standard mean difference [SMD], -0.01; 95%CI, -0.35 to 0.32) and between MCI patients and healthy control (6 studies; SMD, -0.20; 95%CI, -0.52 to 0.13) in peripheral IGF-1 levels. Meta-regression analyses identified age difference might explain the heterogeneity (p = 0.017). However, peripheral IGF-1 levels were significantly decreased in AD subjects (9 studies; SMD, -0.44; 95%CI, -0.81 to -0.07) and MCI subjects exhibited a decreasing trend (4 studies; SMD, -0.31; 95%CI, -0.72 to 0.11) in studies with sample size≥80. Cerebrospinal fluid IGF-1 levels also significantly decreased in AD subjects (3 studies; SMD, -2.40; 95%CI, -4.36 to -0.43). CONCLUSION: These findings suggest that decreased peripheral and cerebrospinal fluid IGF-1 levels might be a potential marker for the cognitive decline and progression of AD.


Asunto(s)
Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/diagnóstico , Factor I del Crecimiento Similar a la Insulina/líquido cefalorraquídeo , Enfermedad de Alzheimer/epidemiología , Biomarcadores/líquido cefalorraquídeo , Humanos
6.
Mol Neurobiol ; 56(4): 2838-2844, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30062675

RESUMEN

Alzheimer's disease (AD) is the most common neurodegenerative disease and seriously damages the health of elderly population. Clinical drug research targeting at classic pathology hallmarks, such as amyloid-ß (Aß) and tau protein, failed to achieve effective cognitive improvement, suggesting that the pathogenesis of AD is much complicated, and there are still other unknown and undetermined important factors. Death-associated protein kinase 1 (DAPK1) is a calcium/calmodulin-dependent serine/threonine kinase that plays an important role in various neuronal injury models. Mounting evidence has demonstrated that DAPK1 variants are associated with AD risk. The activation of DAPK1 is also involved in AD-related neurodegeneration in the brain. Exploring the roles of DAPK1 in AD might help us understand the pathogenic mechanisms and find a novel promising therapeutic target in AD. Therefore, in this review, we comprehensively summary the main progress of DAPK1 in the AD studies from genetic risk, neuropathological process, and clinical potential implications.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Enfermedad de Alzheimer/patología , Proteínas Quinasas Asociadas a Muerte Celular/antagonistas & inhibidores , Terapia Molecular Dirigida , Animales , Biomarcadores/metabolismo , Proteínas Quinasas Asociadas a Muerte Celular/química , Predisposición Genética a la Enfermedad , Humanos , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA