Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Nanoscale ; 16(13): 6548-6560, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38494916

The molecular weight of polymers can influence the material properties, but the molecular weight at the experiment level sometimes can be a huge burden for property prediction with full-atomic simulations. The traditional bottom-up coarse grain (CG) simulation can reduce the computation cost. However, the dynamic properties predicted by the CG simulation can deviate from the full-atomic simulation result. Usually, in CG simulations, the diffusion is faster and the viscosity and modulus are much lower. The fast dynamics in CG are usually solved by a posteriori scaling on time, temperature, or potential modifications, which usually have poor transferability to other non-fitted physical properties because of a lack of fundamental physics. In this work, a priori scaling factors were calculated by the loss of degrees of freedom and implemented in the iterative Boltzmann inversion. According to the simulation results on 3 different CG levels at different temperatures and loading rates, such a priori scaling factors can help in reproducing some dynamic properties of polycaprolactone in CG simulation more accurately, such as heat capacity, Young's modulus, and viscosity, while maintaining the accuracy in the structural distribution prediction. The transferability of entropy-enthalpy compensation and a dissipative particle dynamics thermostat is also presented for comparison. The proposed method reveals the huge potential for developing customized CG thermostats and offers a simple way to rebuild multiphysics CG models for polymers with good transferability.

2.
Angew Chem Int Ed Engl ; 63(16): e202401265, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38390752

It remains challenging to synthesize all-(meth)acrylic triblock thermoplastic elastomers (TPEs), due to the drastically different reactivities between the acrylates and methacrylates and inevitable occurrence of side reactions during polymerization of acrylates. By taking advantage of the easy structural modulation features of N-heterocyclic olefins (NHOs), we design and synthesize strong nucleophilic tetraphenylethylene-based NHOs varying in the number (i.e. mono-, dual- and tetra-) of initiating functional groups. Its combination with bulky organoaluminum [iBuAl(BHT)2] (BHT=bis(2,6-di-tBu-4-methylphenoxy)) constructs Lewis pair (LP) to realize the living polymerization of both acrylates and methacrylates, furnishing polyacrylates with ultrahigh molecular weight (Mn up to 2174 kg ⋅ mol-1) within 4 min. Moreover, these NHO-based LPs enable us to not only realize the control over the polymers' topology (i.e. linear and star), but also achieve triblock star copolymers in one-step manner. Mechanical studies reveal that the star triblock TPEs exhibit better mechanical properties (elongation at break up to 1863 % and tensile strength up to 19.1 MPa) in comparison with the linear analogs. Moreover, the presence of tetraphenylethylene group in the NHOs entitled the triblock TPEs with excellent AIE properties in both solution and solid state.

3.
BMC Cancer ; 24(1): 270, 2024 Feb 26.
Article En | MEDLINE | ID: mdl-38408977

BACKGROUND: Previous studies have observed a link between immunophenotypes and lung cancer, both of which are closely associated with genetic factors. However, the causal relationship between them remains unclear. METHODS: Bidirectional Mendelian randomization (MR) was performed on publicly available genome-wide association study (GWAS) summary statistics to analyze the causal relationships between 731 immunophenotypes and lung cancer. Sensitivity analyses were conducted to verify the robustness, heterogeneity, and potential horizontal pleiotropy of our findings. RESULTS: Following Bonferroni adjustment, CD14- CD16+ monocyte (OR = 0.930, 95%CI 0.900-0.960, P = 8.648 × 10- 6, PBonferroni = 0.006) and CD27 on CD24+ CD27+ B cells (OR = 1.036, 95%CI 1.020-1.053, P = 1.595 × 10 - 5, PBonferroni = 0.012) were identified as having a causal role in lung cancer via the inverse variance weighted (IVW) method. At a more relaxed threshold, CD27 on IgD+ CD24+ B cell (OR = 1.035, 95%CI 1.017-1.053, P = 8.666 × 10- 5, PBonferroni = 0.063) and CD27 on switched memory B cell (OR = 1.037, 95%CI 1.018-1.056, P = 1.154 × 10- 4, PBonferroni = 0.084) were further identified. No statistically significant effects of lung cancer on immunophenotypes were found. CONCLUSIONS: The elevated level of CD14- CD16+ monocytes was a protective factor against lung cancer. Conversely, CD27 on CD24+ CD27+ B cell was a risk factor. CD27 on class-switched memory B cells and IgD+ CD24+ B cells were potential risk factors for lung cancer. This research enhanced our comprehension of the interplay between immune responses and lung cancer risk. Additionally, these findings offer valuable perspectives for the development of immunologically oriented therapeutic strategies.


Lung Neoplasms , Humans , Lung Neoplasms/epidemiology , Lung Neoplasms/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Causality , Risk Factors
4.
J Virol ; 98(2): e0168223, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38289117

Porcine deltacoronavirus (PDCoV) has caused enormous economic losses to the global pig industry. However, the immune escape mechanism of PDCoV remains to be fully clarified. Transcriptomic analysis revealed a high abundance of interferon (IFN)-induced protein with tetratricopeptide repeats 3 (IFIT3) transcripts after PDCoV infection, which initially implied a correlation between IFIT3 and PDCoV. Further studies showed that PDCoV nsp5 could antagonize the host type I interferon signaling pathway by cleaving IFIT3. We demonstrated that PDCoV nsp5 cleaved porcine IFIT3 (pIFIT3) at Gln-406. Similar cleavage of endogenous IFIT3 has also been observed in PDCoV-infected cells. The pIFIT3-Q406A mutant was resistant to nsp5-mediated cleavage and exhibited a greater ability to inhibit PDCoV infection than wild-type pIFIT3. Furthermore, we found that cleavage of IFIT3 is a common characteristic of nsp5 proteins of human coronaviruses, albeit not alphacoronavirus. This finding suggests that the cleavage of IFIT3 is an important mechanism by which PDCoV nsp5 antagonizes IFN signaling. Our study provides new insights into the mechanisms by which PDCoV antagonizes the host innate immune response.IMPORTANCEPorcine deltacoronavirus (PDCoV) is a potential emerging zoonotic pathogen, and studies on the prevalence and pathogenesis of PDCoV are ongoing. The main protease (nsp5) of PDCoV provides an excellent target for antivirals due to its essential and conserved function in the viral replication cycle. Previous studies have revealed that nsp5 of PDCoV antagonizes type I interferon (IFN) production by targeting the interferon-stimulated genes. Here, we provide the first demonstration that nsp5 of PDCoV antagonizes IFN signaling by cleaving IFIT3, which affects the IFN response after PDCoV infection. Our findings reveal that PDCoV nsp5 is an important interferon antagonist and enhance the understanding of immune evasion by deltacoronaviruses.


Coronavirus 3C Proteases , Coronavirus Infections , Deltacoronavirus , Interferon Type I , Intracellular Signaling Peptides and Proteins , Swine Diseases , Swine , Animals , Humans , Coronavirus 3C Proteases/metabolism , Coronavirus Infections/immunology , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Deltacoronavirus/enzymology , Deltacoronavirus/metabolism , Deltacoronavirus/pathogenicity , Immunity, Innate , Interferon Type I/antagonists & inhibitors , Interferon Type I/biosynthesis , Interferon Type I/immunology , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Proteolysis , Signal Transduction/immunology , Swine/immunology , Swine/virology , Swine Diseases/immunology , Swine Diseases/metabolism , Swine Diseases/virology , Transcription Factors/metabolism , Viral Zoonoses/immunology , Viral Zoonoses/virology , Virus Replication
5.
Braz J Microbiol ; 54(3): 2437-2443, 2023 Sep.
Article En | MEDLINE | ID: mdl-37578737

Sus scrofa papillomatosis (SsP) is a tumour caused by Sus scrofa papillomaviruses (SsPVs). To investigate the presence of SsPVs in China, 354 domestic pig skin samples collected from Guangxi Province were examined for SsPV DNA by PCR. Three SsPV1s (GX12, GX14, and GX18) were identified with a prevalence of 0.847% (3/354). Sequence analysis showed that L1 of SsPV1/GX12 and SsPV1/GX14 had 99.7% and 99.6% nucleotide identify with the reference SsPV1a, respectively. Phylogenetic and evolutionary analyses showed that SsPV1/GX12 and SsPV1/14 clustered into SsPV1a and that SsPV1/GX18 clustered into SsPV1b. Compared with other SsPV L1 and L2 proteins, we found that the SsPV1/GX18 and SsPV1b strains shared the same unique substitutions, and SsPV1/GX12, SsPV1/GX14, and SsPV1a shared almost identical amino acid sequences. This study reports the first detection of SsPV DNA in China based on whole genome information and provides a scientific basis for the development of SsPV pathogenic biology, epidemiology, and prevention, as well as control technology research.


Papillomaviridae , Sus scrofa , Animals , Swine , Phylogeny , Sequence Analysis, DNA , China/epidemiology , Polymerase Chain Reaction , Papillomaviridae/genetics
6.
Nanoscale ; 14(38): 14082-14096, 2022 Oct 06.
Article En | MEDLINE | ID: mdl-36056646

Evaluating the mechanical properties of biodegradable implants can be challenging for in situ experiments and time-consuming for materials with a slow degradation rate, such as polycaprolactone (PCL). In this work, the effects of chain scission and water erosion on the mechanical properties of degraded PCL are investigated by molecular dynamics simulation. The decrease of the mechanical performance is correlated with the increase of the nonaffine displacement during the degradation. The nonaffine squared displacements (NSD) during the tensile deformation are calculated by subtracting the affine squared displacements from the mean squared displacements. After chain scission, short polymer chains increase the NSD of the system and weaken the modulus of the polymer matrix. The effect of the NSD is also observed in a water erosion model. When the bond break ratio is less than 5%, PCL still maintains a well-entangled network, which constrains the diffusion of the water molecules, resulting in a higher modulus of the erosion model than the chain scission model at a low degradation rate. The effect of NSD is also found in the PCL/graphene composites. For the degraded polymer chains, the diffusion of PCL is constrained by the graphene network, and such an effect increases during the degradation. As a result, the addition of graphene nanosheets slows down the decreasing trend of Young's modulus. Such findings can also explain the size effect of the graphene reinforcement on the mechanical properties of the polymer composites. This work provides atomistic insights into the mechanical property evolution during polymer degradation, revealing the possibility of tuning the mechanical performance by controlling the diffusion, which could be beneficial for the design and lifetime prediction of degradable implants.

7.
Angew Chem Int Ed Engl ; 61(24): e202202448, 2022 Jun 13.
Article En | MEDLINE | ID: mdl-35349218

Lewis pair polymerization has demonstrated its unique advantages and powerful capability in polymer synthesis. Here we employ strong nucleophilic N-heterocyclic olefin (NHO) and bulky organoaluminum to construct a frustrated Lewis pair, which can realize the compounded sequence control (CSC) copolymerization and self-assembly the mixture of dimethylaminoethyl acrylate and fluoride-functionalized methacrylate into diblock copolymers (di-BCPs) nano-assemblies through polymerization-induced self-assembly in one-pot, single-step manner within minutes. These di-BCPs were characterized by 1 H and 13 C NMR, GPC, DSC, and TEM. By utilizing appropriate solvophilic block and solvophobic block, such Lewis pair polymerization-induced self-assembly strategy enables the expeditious, room-temperature synthesis of di-BCP nanoparticles with different morphologies, including spheres, worms, vesicles, and even fibers, thus suggesting the great application potential of such method in the future.

8.
Angew Chem Int Ed Engl ; 60(45): 24306-24311, 2021 Nov 02.
Article En | MEDLINE | ID: mdl-34510679

In this contribution, Lewis pairs (LPs) composed of N-heterocyclic olefins (NHOs) with different steric hindrance and nucleophilicity as Lewis bases (LBs) and Al-based compounds with comparable acidity but different steric hindrance as Lewis acids (LAs) were applied for 1,4-selective polymerization of (E,E)-methyl sorbate (MS) and (E,E)-ethyl sorbate (ES). The effects of steric hindrance, electron-donating ability, and acidity of LPs on MS and ES polymerization were systematically investigated. High catalytic activity and high initiation efficiency can be achieved, leading to the formation of PMS with 100 % 1,4-selectivity, tunable molecular weight (Mw up to 333 kg mol-1 ), and narrow molecular weight distribution (MWD). Block copolymerization of ES and methyl methacrylate (MMA) was also realized. Meanwhile, this system can be applied to other homologous conjugated diene substrates. Furthermore, simple chemical reactions can efficiently convert PMS to different polymers with strict (AB)n sequence structures, such as poly(sorbic acid), poly(propylene-alt-methyl acrylate), poly(propylene-alt-acrylic acid), poly(propylene-alt-allyl alcohol), and poly(ethylene-alt-2-butylene).

9.
Chem Commun (Camb) ; 55(83): 12563-12566, 2019 Oct 15.
Article En | MEDLINE | ID: mdl-31577293

With a catalyst loading as low as 0.005%, high to excellent yields of isocyanurates could be achieved from N-heterocyclic olefin mediated organocatalytic cyclotrimerization of a wide range of isocyanates under bulk conditions. Experimental details coupled with structural characterization of the key intermediates led to comprehensive mechanistic studies of cyclotrimerization.

10.
Article En | MEDLINE | ID: mdl-30127260

Postpartum depression (PPD) is one of the most common examples of postnatal morbidity, but the subsequent risks of autoimmune diseases in patients with PPD have yet to be fully investigated. This nationwide population-based study utilized data of the National Health Insurance Research Database of Taiwan for the period from 1996 to 2013. In total, 45,451 women with primiparity were identified. Among them, 542 patients with PPD were enrolled as a study group while 2165 matched patients without PPD were enrolled as a control group. The demographic characteristics and comorbidities of the patients were analyzed, and Cox regression analysis was applied to calculate the hazard ratios for the risk of autoimmune diseases. Of the 2707 women enrolled in this study, 469 (17.3%) patients with newly diagnosed autoimmune diseases were identified, including 123 (22.7%) in the PPD group and 346 (16%) in the non-PPD group. After adjusting for confounding factors, it was determined that the patients with PPD had a significantly higher risk of subsequent autoimmune diseases (adjusted hazard ratio (aHR): 1.61, 95% confidence interval (CI): 1.30⁻1.99; p < 0.001). Specifically, increased risks of pernicious anemia (aHR: 3.85, 95% CI: 2.06⁻7.22), rheumatoid arthritis (aHR: 2.62, 95% CI: 1.28⁻5.39), and Graves' disease (aHR: 1.57, 95% CI: 1.05⁻2.33) were observed in the PPD group. This study demonstrated that patients with PPD have higher risks of subsequent autoimmune diseases, especially pernicious anemia, rheumatoid arthritis, and Graves' disease. This useful information provides physicians with clues regarding the associations between autoimmune diseases and PPD.


Autoimmune Diseases/epidemiology , Autoimmune Diseases/etiology , Depression, Postpartum/complications , Depression, Postpartum/epidemiology , Adult , Comorbidity , Databases, Factual , Female , Humans , Middle Aged , Proportional Hazards Models , Regression Analysis , Retrospective Studies , Risk Factors , Taiwan
11.
Medicine (Baltimore) ; 96(34): e7736, 2017 Aug.
Article En | MEDLINE | ID: mdl-28834878

Open reduction and internal fixation with Kirschner (K) wires has been reported as an efficient and convenient technique for pediatric lateral condyle distal humeral fractures. However, no single study has been large enough to definitively determine whether the K-wires should be buried or unburied. Therefore, we performed a meta-analysis pooling the results from several clinical trials to compare the outcome of using buried versus unburied K-wires. Potential academic articles were identified from the Cochrane Library, Medline (1966-2017.3), PubMed (1966-2017.3), Embase (1980-2017.3), ScienceDirect (1985-2017.3), and other databases. Gray studies were identified from the references of included literature reports. RevMan 5.1 was used to analyze the pooling of data. Nonrandomized controlled trials were included in this meta-analysis. There was a significant difference in the duration of wires in situ (MD = -13.28, 95% confidence interval: -16.42 to -10.14, P < .00001). No significant differences were found regarding infection, superficial infection, total complications, delayed union, or reoperation. Unburied K-wire fixation for treatment of lateral condyle distal humeral fractures in children does not increase the total infection rate, superficial infection, reoperation rate, or complications. However, unburied K-wire fixation is of benefit for early extraction and impartial cost savings.


Bone Wires , Fracture Fixation, Internal/methods , Humeral Fractures/surgery , Open Fracture Reduction/methods , Child , Humans , Postoperative Complications/epidemiology
...