Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 13(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38994945

RESUMEN

Spermatogenesis in mammalian testes is essential for male fertility, ensuring a continuous supply of mature sperm. The testicular microenvironment finely tunes this process, with retinoic acid, an active metabolite of vitamin A, serving a pivotal role. Retinoic acid is critical for various stages, including the differentiation of spermatogonia, meiosis in spermatogenic cells, and the production of mature spermatozoa. Vitamin A deficiency halts spermatogenesis, leading to the degeneration of numerous germ cells, a condition reversible with retinoic acid supplementation. Although retinoic acid can restore fertility in some males with reproductive disorders, it does not work universally. Furthermore, high doses may adversely affect reproduction. The inconsistent outcomes of retinoid treatments in addressing infertility are linked to the incomplete understanding of the molecular mechanisms through which retinoid signaling governs spermatogenesis. In addition to the treatment of male reproductive disorders, the role of retinoic acid in spermatogenesis also provides new ideas for the development of male non-hormone contraceptives. This paper will explore three facets: the synthesis and breakdown of retinoic acid in the testes, its role in spermatogenesis, and its application in male reproduction. Our discussion aims to provide a comprehensive reference for studying the regulatory effects of retinoic acid signaling on spermatogenesis and offer insights into its use in treating male reproductive issues.


Asunto(s)
Espermatogénesis , Tretinoina , Masculino , Espermatogénesis/efectos de los fármacos , Tretinoina/metabolismo , Tretinoina/farmacología , Humanos , Animales , Reproducción/efectos de los fármacos , Testículo/metabolismo , Testículo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Infertilidad Masculina/metabolismo , Espermatozoides/metabolismo , Espermatozoides/efectos de los fármacos
2.
Heliyon ; 10(11): e32472, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38912507

RESUMEN

Unmanned aerial vehicles (UAVs) have garnered attention for their potential to improve wireless communication networks by establishing line-of-sight (LoS) connections. However, urban environments pose challenges such as tall buildings and trees, impacting communication pathways. Intelligent reflection surfaces (IRSs) offer a solution by creating virtual LoS routes through signal reflection, enhancing reliability and coverage. This paper presents a three-dimensional dynamic channel model for UAV-assisted communication systems with IRSs. Additionally, it proposes a novel channel-tracking approach using deep learning and artificial intelligence techniques, comprising preliminary estimation with a deep neural network and continuous monitoring with a Stacked Bidirectional Long and Short-Term Memory (Bi-LSTM) model. Simulation results demonstrate faster convergence and superior performance compared to benchmarks, highlighting the effectiveness of integrating IRSs into UAV-enabled communication for enhanced reliability and efficiency.

3.
Cancer Cell ; 42(7): 1286-1300.e8, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38942026

RESUMEN

KRAS G12D is the most frequently mutated oncogenic KRAS subtype in solid tumors and remains undruggable in clinical settings. Here, we developed a high affinity, selective, long-acting, and non-covalent KRAS G12D inhibitor, HRS-4642, with an affinity constant of 0.083 nM. HRS-4642 demonstrated robust efficacy against KRAS G12D-mutant cancers both in vitro and in vivo. Importantly, in a phase 1 clinical trial, HRS-4642 exhibited promising anti-tumor activity in the escalating dosing cohorts. Furthermore, the sensitization and resistance spectrum for HRS-4642 was deciphered through genome-wide CRISPR-Cas9 screening, which unveiled proteasome as a sensitization target. We further observed that the proteasome inhibitor, carfilzomib, improved the anti-tumor efficacy of HRS-4642. Additionally, HRS-4642, either as a single agent or in combination with carfilzomib, reshaped the tumor microenvironment toward an immune-permissive one. In summary, this study provides potential therapies for patients with KRAS G12D-mutant cancers, for whom effective treatments are currently lacking.


Asunto(s)
Mutación , Inhibidores de Proteasoma , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras)/genética , Ratones , Animales , Ensayos Antitumor por Modelo de Xenoinjerto , Oligopéptidos/farmacología , Línea Celular Tumoral , Femenino , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Microambiente Tumoral/efectos de los fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Ratones Desnudos
4.
J Am Chem Soc ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38848498

RESUMEN

Here we report on the strong magneto-chiral dichroism (MChD) detected through visible and near-infrared light absorption up to 5.0 T on {Er5Ni6} metal clusters obtained by reaction of enantiopure chiral ligands and NiII and ErIII precursors. Single-crystal diffraction analysis reveals that these compounds are 3d-4f heterometallic clusters, showing helical chirality. MChD spectroscopy reveals a high gMChD dissymmetry factor of ca. 0.24 T-1 (T = 4.0 K, B = 1.0 T) for the 4I13/2 ← 4I15/2 magnetic-dipole allowed electronic transition of the ErIII centers. This record value is 1 or 2 orders of magnitude higher than that of the d-d electronic transitions of the NiII ions and the others f-f electric-dipole induced transitions of the ErIII centers. These findings clearly show the key role that magnetic-dipole allowed transitions have in the rational design of chiral lanthanide systems showing strong MChD.

5.
Front Immunol ; 15: 1407649, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38812510

RESUMEN

Infection with human papillomavirus (HPV) typically leads to cervical cancer, skin related cancers and many other tumors. HPV is mainly responsible for evading immune tumor monitoring in HPV related cancers. Toll like receptors (TLRs) are particular pattern recognition molecules. When the body is facing immune danger, it can lead to innate and direct adaptive immunity. TLR plays an important role in initiating antiviral immune responses. HPV can affect the expression level of TLR and interfere with TLR related signaling pathways, resulting in sustained viral infection and even carcinogenesis. This paper introduces the HPV virus and HPV related cancers. We discussed the present comprehension of TLR, its expression and signaling, as well as its role in HPV infection. We also provided a detailed introduction to immunotherapy methods for HPV related diseases based on TLR agonists. This will provide insights into methods that support the therapeutic method of HPV related conditions with TLR agonists.


Asunto(s)
Papillomaviridae , Infecciones por Papillomavirus , Receptores Toll-Like , Humanos , Receptores Toll-Like/metabolismo , Receptores Toll-Like/agonistas , Receptores Toll-Like/inmunología , Infecciones por Papillomavirus/inmunología , Infecciones por Papillomavirus/terapia , Infecciones por Papillomavirus/virología , Papillomaviridae/fisiología , Papillomaviridae/inmunología , Transducción de Señal , Neoplasias/terapia , Neoplasias/inmunología , Animales , Inmunoterapia/métodos , Femenino , Neoplasias del Cuello Uterino/virología , Neoplasias del Cuello Uterino/terapia , Neoplasias del Cuello Uterino/inmunología , Interacciones Huésped-Patógeno/inmunología
6.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732033

RESUMEN

Extreme temperature during summer may lead to heat stress in cattle and compromise their productivity. It also poses detrimental impacts on the developmental capacity of bovine budding oocytes, which halt their fertility. To mitigate the adverse effects of heat stress, it is necessary to investigate the mechanisms through which it affects the developmental capacity of oocytes. The primary goal of this study was to investigate the impact of heat stress on the epigenetic modifications in bovine oocytes and embryos, as well as on oocyte developmental capacity, reactive oxygen species, mitochondrial membrane potential, apoptosis, transzonal projections, and gene expression levels. Our results showed that heat stress significantly reduced the expression levels of the epigenetic modifications from histone H1, histone H2A, histone H2B, histone H4, DNA methylation, and DNA hydroxymethylation at all stages of the oocyte and embryo. Similarly, heat stress significantly reduced cleavage rate, blastocyst rate, oocyte mitochondrial-membrane potential level, adenosine-triphosphate (ATP) level, mitochondrial DNA copy number, and transzonal projection level. It was also found that heat stress affected mitochondrial distribution in oocytes and significantly increased reactive oxygen species, apoptosis levels and mitochondrial autophagy levels. Our findings suggest that heat stress significantly impacts the expression levels of genes related to oocyte developmental ability, the cytoskeleton, mitochondrial function, and epigenetic modification, lowering their competence during the summer season.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Respuesta al Choque Térmico , Potencial de la Membrana Mitocondrial , Oocitos , Estrés Oxidativo , Especies Reactivas de Oxígeno , Animales , Bovinos , Oocitos/metabolismo , Respuesta al Choque Térmico/genética , Especies Reactivas de Oxígeno/metabolismo , Femenino , Histonas/metabolismo , Mitocondrias/metabolismo , Mitocondrias/genética , Apoptosis/genética , Desarrollo Embrionario/genética , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo
7.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38612721

RESUMEN

The improvement of in vitro embryo development is a gateway to enhance the output of assisted reproductive technologies. The Wnt and Hippo signaling pathways are crucial for the early development of bovine embryos. This study investigated the development of bovine embryos under the influence of a Hippo signaling agonist (LPA) and a Wnt signaling inhibitor (DKK1). In this current study, embryos produced in vitro were cultured in media supplemented with LPA and DKK1. We comprehensively analyzed the impact of LPA and DKK1 on various developmental parameters of the bovine embryo, such as blastocyst formation, differential cell counts, YAP fluorescence intensity and apoptosis rate. Furthermore, single-cell RNA sequencing (scRNA-seq) was employed to elucidate the in vitro embryonic development. Our results revealed that LPA and DKK1 improved the blastocyst developmental potential, total cells, trophectoderm (TE) cells and YAP fluorescence intensity and decreased the apoptosis rate of bovine embryos. A total of 1203 genes exhibited differential expression between the control and LPA/DKK1-treated (LD) groups, with 577 genes upregulated and 626 genes downregulated. KEGG pathway analysis revealed significant enrichment of differentially expressed genes (DEGs) associated with TGF-beta signaling, Wnt signaling, apoptosis, Hippo signaling and other critical developmental pathways. Our study shows the role of LPA and DKK1 in embryonic differentiation and embryo establishment of pregnancy. These findings should be helpful for further unraveling the precise contributions of the Hippo and Wnt pathways in bovine trophoblast formation, thus advancing our comprehension of early bovine embryo development.


Asunto(s)
Apoptosis , Embrión de Mamíferos , Femenino , Embarazo , Bovinos , Animales , Diferenciación Celular , Recuento de Células , Vías Clínicas
8.
J Med Virol ; 96(4): e29618, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38639293

RESUMEN

Human adenovirus (HAdV) is a significant viral pathogen causing severe acute respiratory infections (SARIs) in children. To improve the understanding of type distribution and viral genetic characterization of HAdV in severe cases, this study enrolled 3404 pediatric SARI cases from eight provinces of China spanning 2017-2021, resulting in the acquisition of 112 HAdV strains. HAdV-type identification, based on three target genes (penton base, hexon, and fiber), confirmed the diversity of HAdV types in SARI cases. Twelve types were identified, including species B (HAdV-3, 7, 55), species C (HAdV-1, 2, 6, 89, 108, P89H5F5, Px1/Ps3H1F1, Px1/Ps3H5F5), and E (HAdV-4). Among these, HAdV-3 exhibited the highest detection rate (44.6%), followed by HAdV-7 (19.6%), HAdV-1 (12.5%), and HAdV-108 (9.8%). All HAdV-3, 7, 55, 4 in this study belonged to dominant lineages circulating worldwide, and the sequences of the three genes demonstrated significant conservation and stability. Concerning HAdV-C, excluding the novel type Px1/Ps3H1F1 found in this study, the other seven types were detected both in China and abroad, with HAdV-1 and HAdV-108 considered the two main types of HAdV-C prevalent in China. Two recombinant strains, including P89H5F5 and Px1/Ps3H1F1, could cause SARI as a single pathogen, warranting close monitoring and investigation for potential public health implications. In conclusion, 5 years of SARI surveillance in China provided crucial insights into HAdV-associated respiratory infections among hospitalized pediatric patients.


Asunto(s)
Infecciones por Adenovirus Humanos , Adenovirus Humanos , Infecciones del Sistema Respiratorio , Niño , Humanos , Adenovirus Humanos/genética , Análisis de Secuencia de ADN/métodos , Filogenia , Adenoviridae/genética , China/epidemiología , Infecciones del Sistema Respiratorio/epidemiología
9.
J Med Case Rep ; 18(1): 140, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38566262

RESUMEN

BACKGROUND: Castleman's disease is a rare lymphoproliferative disorder that is often misdiagnosed because of its untypical clinical or imaging features except for a painless mass. Besides, it is also difficult to cure Castleman's disease due to its unclear pathogenesis. CASE PRESENTATION: We present a Castleman's disease case with diagnostic significance regarding a 54-year-old Chinese male who has a painless mass in his left parotid gland for 18 months with a 30-years history of autoimmune disease psoriasis. Computed tomography scan showed a high-density nodule with clear boundaries in the left parotid and multiple enlarged lymph nodes in the left submandibular and neck region. General checkup, the extremely elevated serum interleukin-6 and lymph node biopsy in the left submandibular region gave us an initial suspicion of Castleman's disease. Then the patient underwent a left superficial parotidectomy. Based on histopathologic analysis, we made a certain diagnosis of Castleman's disease and gave corresponding treatments. In 18 months of follow-up, the patient showed no evidence of recurrence, with the level of serum interleukin-6 decreased. CONCLUSIONS: Clinicians should be aware of the possibility of Castleman's disease when faced with masses or enlarged lymph nodes in the parotid gland to avoid misdiagnosis, especially in patients with autoimmune diseases and elevated serum interleukin-6.


Asunto(s)
Enfermedades Autoinmunes , Enfermedad de Castleman , Linfadenopatía , Masculino , Humanos , Persona de Mediana Edad , Enfermedad de Castleman/complicaciones , Enfermedad de Castleman/diagnóstico , Enfermedad de Castleman/cirugía , Glándula Parótida/diagnóstico por imagen , Glándula Parótida/patología , Interleucina-6 , Biopsia , Cuello/patología , Linfadenopatía/diagnóstico por imagen
10.
J Hazard Mater ; 471: 134299, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38631252

RESUMEN

Trichoderma can enhance the metabolism of organophosphate pesticides in plants, but the mechanism is unclear. Here, we performed high-throughput transcriptome sequencing of roots upon Trichoderma asperellum (TM) inoculation and phoxim (P) application in tomato (Solanum lycopersicum L.). A total of 4059 differentially expressed genes (DEGs) were obtained, including 2110 up-regulated and 1949 down-regulated DEGs in P vs TM+P. COG and KOG analysis indicated that DEGs were mainly enriched in signal transduction mechanisms. We then focused on the pesticide detoxification pathway and screened out cytochrome P450 CYP736A12 as a putative gene for functional analysis. We suppressed the expression of CYP736A12 in tomato plants by virus-induced gene silencing and analyzed tissue-specific phoxim residues, oxidative stress markers, glutathione pool, GST activity and related gene expression. Silencing CYP736A12 significantly increased phoxim residue and induced oxidative stress in tomato plants, by attenuating the TM-induced increased activity of antioxidant and detoxification enzymes, redox homeostasis and transcripts of detoxification genes including CYP724B2, GSH1, GSH2, GR, GPX, GST1, GST2, GST3, and ABC. The study revealed a critical mechanism by which TM promotes the metabolism of phoxim in tomato roots, which can be useful for further understanding the Trichoderma-induced xenobiotic detoxification and improving food safety.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Compuestos Organotiofosforados , Raíces de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/crecimiento & desarrollo , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Compuestos Organotiofosforados/toxicidad , Compuestos Organotiofosforados/metabolismo , Residuos de Plaguicidas/toxicidad , Residuos de Plaguicidas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Hypocreales/metabolismo , Hypocreales/genética
11.
Funct Integr Genomics ; 24(2): 60, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38499806

RESUMEN

BACKGROUND: Sirtuin 5 (SIRT5) is a promising therapeutic target involved in regulating multiple metabolic pathways in cells and organisms. The role of SIRT5 in cancer is currently unclear, and a comprehensive systematic pan-cancer analysis is required to explore its value in diagnosis, prognosis, and immune function. METHODS: We investigated the role of SIRT5 in tumorigenesis, diagnosis, prognosis, metabolic pathways, the immune microenvironment, and pan-cancer therapeutic response. Moreover, we explored chemicals affecting the expression of SIRT5 and computed the relationship between SIRT5 and drug sensitivity. Finally, the role of SIRT5 in melanoma was analyzed using a series of experiments in vitro and in vivo. RESULTS: We found that SIRT5 is differentially expressed and shows early diagnostic value in various tumors and that somatic cell copy number alterations and DNA methylation contribute to its aberrant expression. SIRT5 expression correlates with clinical features. Besides, it is negatively (positively) correlated with several metabolic pathways and positively (negatively) correlated with several important metastasis-related and immune-related pathways. High SIRT5 expression predicts poor (or good) prognosis in various tumors and can affect drug sensitivity. We also demonstrated that SIRT5 expression significantly correlates with immunomodulator-associated molecules, lymphocyte subpopulation infiltration, and immunotherapeutic response biomarkers. In addition, we showed that SIRT5 is differentially expressed in immunotherapy cohorts. In addition, we explored various chemicals that may affect SIRT5 expression. In conclusion, we demonstrated that SIRT5 is a key pathogenic gene that promotes melanoma progression. CONCLUSION: Our study provides a systematic analysis of SIRT5 and its regulatory genes. SIRT5 has excellent diagnostic and prognostic capabilities for many cancers. This may remodel the tumor microenvironment. The potential of SIRT5-based cancer therapies is emphasized and helps predict the response to immunotherapy.


Asunto(s)
Melanoma , Sirtuinas , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Inmunoterapia , Biomarcadores , Carcinogénesis , Metilación de ADN , Microambiente Tumoral , Sirtuinas/genética
12.
Cell Death Dis ; 15(3): 179, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429268

RESUMEN

Glioblastoma, IDH-Wild type (GBM, CNS WHO Grade 4) is a highly heterogeneous and aggressive primary malignant brain tumor with high morbidity, high mortality, and poor patient prognosis. The global burden of GBM is increasing notably due to limited treatment options, drug delivery problems, and the lack of characteristic molecular targets. OTU deubiquitinase 4 (OTUD4) is a potential predictive factor for several cancers such as breast cancer, liver cancer, and lung cancer. However, its function in GBM remains unknown. In this study, we found that high expression of OTUD4 is positively associated with poor prognosis in GBM patients. Moreover, we provided in vitro and in vivo evidence that OTUD4 promotes the proliferation and invasion of GBM cells. Mechanism studies showed that, on the one hand, OTUD4 directly interacts with cyclin-dependent kinase 1 (CDK1) and stabilizes CDK1 by removing its K11, K29, and K33-linked polyubiquitination. On the other hand, OTUD4 binds to fibroblast growth factor receptor 1 (FGFR1) and reduces FGFR1's K6 and K27-linked polyubiquitination, thereby indirectly stabilizing CDK1, ultimately influencing the activation of the downstream MAPK signaling pathway. Collectively, our results revealed that OTUD4 promotes GBM progression via OTUD4-CDK1-MAPK axis, and may be a prospective therapeutic target for GBM treatment.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Proteasas Ubiquitina-Específicas , Humanos , Neoplasias Encefálicas/patología , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Línea Celular Tumoral , Glioblastoma/patología , Sistema de Señalización de MAP Quinasas , Transducción de Señal , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo , Ubiquitinación
13.
J Phys Chem Lett ; 15(5): 1507-1514, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38299556

RESUMEN

Electron delocalization has an important impact on the physical properties of condensed materials. However, the L-electron delocalization in inorganic, especially nitrogen, compounds needs exploitation to improve the energy efficiency, safety, and environmental sustainability of high-energy-density materials (HEDMs). This Letter presents an intriguing N8 molecule, ingeniously utilizing nitrogen's L-electron delocalization. The molecule, exhibiting a unique lollipop-shaped conformation, can fold at various angles with very low energy barriers, self-assembling into environmentally stable, all-nitrogen crystals. These crystals demonstrate unparalleled stability, high energy density, low mechanical sensitivity, and optimal electronic thermal conductivity, outperforming existing HEDMs. The remarkable properties of these designed materials are attributed to two distinct delocalized systems within nitrogen's L-shell: π- and lone pair σ-electrons, which not only stabilize the molecular structure but also facilitate interconnected 3D networks of intermolecular nonbonding interactions. This work might pave the way to the experimental synthesis of environmentally stable all-nitrogen solids.

14.
J Colloid Interface Sci ; 659: 374-384, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38181701

RESUMEN

Lignin-derived carbon materials are widely used as electrode materials for supercapacitors. However, the electrochemical performance of these materials is limited by the surface chemistry and pore structure characteristics. Herein, a novel and sustainable strategy was proposed to prepare heteroatom-doped lignin-derived carbon material (Fe-NLC) with well-developed pore size distributions and enhanced graphitization structure via a facile lignin-Fe coordination method followed by carbonization. During carbonization, Fe3+ in lignin-metal complexes evolve into nanoparticles, which act as templates to introduce porous structures in carbon materials. Also, the lignin-Fe coordination structure endows the material with a higher graphitization during carbonization, thereby improving the structural properties of the carbon materials. Due to the removal of Fe3O4 template, the obtained Fe-NLC possessed reasonable pore distribution and nitrigen/oxygen (N/O) functional groups, which can improve the wettability of materials and introduce pseudocapacitance. Accordingly, Fe-NLC possesses a notable specific capacitance of 264 F/g at 0.5 A/g. Furthermore, a symmetric supercapacitor Fe-NLC//Fe-NLC with a high voltage window (1.8 V) was constructed. The symmetric supercapacitor exhibits a maximum energy density of 15.97 Wh/kg at 450 W/kg, demonstrating well application prospects. This paper proposes a novel approach for preparing carbon materials via lignin-metal coordination to provide an alternative way to explore sustainable and low-cost energy storage materials.

15.
Materials (Basel) ; 17(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38255564

RESUMEN

To manufacture dental restorations composed of lithium disilicate (LD) through the computer-aided design and manufacturing (CAD/CAM) process, thermal refinement is an essential process that can affect the optical and mechanical properties of ceramics. In this study, we aimed to evaluate the translucency and flexural strength of lithium disilicate glass-ceramic for CAD/CAM using different thermal refinement schedules and thicknesses by measuring the total transmission of light through the specimen and calculating the peak load of the specimen until fracture in a piston-on-three-ball test, respectively. The results showed that a lower translucency was exhibited in thicker specimens, and the flexural strength decreased in the order of 1.0, 0.5, and 2.0 mm (p < 0.05). The lithium disilicates thermally refined at a heat of 820 degrees were shown to have the highest biaxial flexural strength (p < 0.05). These findings suggest that it is possible to adjust transparency and strength according to the clinical situation by choosing an appropriate thickness and thermal refinement process.

16.
Glob Chang Biol ; 30(1): e17077, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273583

RESUMEN

Deforestation of tropical rainforests is a major land use change that alters terrestrial biogeochemical cycling at local to global scales. Deforestation and subsequent reforestation are likely to impact soil phosphorus (P) cycling, which in P-limited ecosystems such as the Amazon basin has implications for long-term productivity. We used a 100-year replicated observational chronosequence of primary forest conversion to pasture, as well as a 13-year-old secondary forest, to test land use change and duration effects on soil P dynamics in the Amazon basin. By combining sequential extraction and P K-edge X-ray absorption near edge structure (XANES) spectroscopy with soil phosphatase activity assays, we assessed pools and process rates of P cycling in surface soils (0-10 cm depth). Deforestation caused increases in total P (135-398 mg kg-1 ), total organic P (Po ) (19-168 mg kg-1 ), and total inorganic P (Pi ) (30-113 mg kg-1 ) fractions in surface soils with pasture age, with concomitant increases in Pi fractions corroborated by sequential fractionation and XANES spectroscopy. Soil non-labile Po (10-148 mg kg-1 ) increased disproportionately compared to labile Po (from 4-5 to 7-13 mg kg-1 ). Soil phosphomonoesterase and phosphodiesterase binding affinity (Km ) decreased while the specificity constant (Ka ) increased by 83%-159% in 39-100y pastures. Soil P pools and process rates reverted to magnitudes similar to primary forests within 13 years of pasture abandonment. However, the relatively short but representative pre-abandonment pasture duration of our secondary forest may not have entailed significant deforestation effects on soil P cycling, highlighting the need to consider both pasture duration and reforestation age in evaluations of Amazon land use legacies. Although the space-for-time substitution design can entail variation in the initial soil P pools due to atmospheric P deposition, soil properties, and/or primary forest growth, the trend of P pools and process rates with pasture age still provides valuable insights.


Asunto(s)
Bosque Lluvioso , Suelo , Suelo/química , Fósforo , Ecosistema , Conservación de los Recursos Naturales , Bosques
17.
Sci China Life Sci ; 67(3): 555-564, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37987939

RESUMEN

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated gene (Cas) system is continually optimized to achieve the most efficient gene editing effect. The Cas12iMax, a Cas12i variant, exhibits powerful DNA editing activity and enriches the gene editing toolbox. However, the application of Cas12iMax in large domestic animals has not yet been reported. To verify the efficiency and feasibility of multiple gene editing in large animals, we generated porcine fibroblasts with simultaneous knockouts of IGF2, ANPEP, CD163, and MSTN via Cas12iMax in one step. Phenotypically stable pigs were created through somatic cell nuclear transfer technology. They exhibited improved growth performance and muscle quality. Furthermore, we simultaneously edited three genes in bovine fibroblasts. A knockout of MSTN and PRNP was created and the amino acid Q-G in CD18 was precisely substituted. Meanwhile, no off-target phenomenon was observed by sum-type analysis or off-target detection. These results verified the effectiveness of Cas12iMax for gene editing in livestock animals and demonstrated the potential application of Cas12iMax in the field of animal trait improvement for agricultural production.


Asunto(s)
Sistemas CRISPR-Cas , Ganado , Animales , Bovinos , Porcinos , Ganado/genética , Edición Génica/métodos , Fenotipo , ADN
18.
Medicine (Baltimore) ; 102(51): e36615, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38134110

RESUMEN

This study aimed to explore key genes as potential biomarkers for colorectal cancer (CRC) diagnosis and prognosis in order to improve their clinical utility. To identify and screen candidate genes involved in CRC carcinogenesis and disease progression, we downloaded the microarray datasets GSE143939, GSE196006, and GSE200427 from the GEO database and applied the GEO2R tool to obtain differentially expressed genes (DEGs) between colorectal cancer tissue samples and normal tissue samples. Differentially expressed genes were analyzed using the DAVID online database for gene ontology and Kyoto encyclopedia of genes and genomes pathway enrichment analyses. Protein-protein interaction network was constructed and related module analysis was performed using STRING and Cytoscape. In total, 241 DEGs were identified, including 127 downregulated and 114 upregulated genes. DEGs enriched functions and pathways included cellular response to chemical stimulus, extracellular region, carbonate dehydratase activity, cell division, spindle, and cell division. The abundant functions and pathways of DEGs included cellular response to chemical stimulus, extracellular region, carbonate dehydratase activity, cell division, spindle, cell adhesion molecule binding, Aldosterone-regulated sodium reabsorption, and Cell cycle-related processes. Fifteen key genes were identified, and bioprocess analyses showed that these genes were mainly enriched in cell cycle, cell division, mitotic spindle, and tubulin binding processes. It was found that CDK1, CEP55, MKI67, and TOP2A may be involved in CRC cancer invasion and recurrence. The pivotal genes identified in this study contribute to our understanding of the molecular and pathogenic mechanisms of CRC carcinogenesis and progression, and provide possible biomarkers for the diagnosis and treatment of CRC.


Asunto(s)
Anhidrasas Carbónicas , Neoplasias Colorrectales , Humanos , Perfilación de la Expresión Génica , Biomarcadores , Biología Computacional , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Carcinogénesis
19.
J Am Chem Soc ; 145(40): 22176-22183, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37779382

RESUMEN

Single crystals with chiral shapes aroused the interest of chemists due to their fascinating polarization rotation properties. Although the formation of large-scale spiral structures is considered to be a potential factor in chiral crystals, the precise mechanism behind their formation remains elusive. Herein, we present a rare phenomenon involving the multitransfer and expression of chirality at micro-, meso-, and macroscopic levels, starting from chiral carbon atoms and extending to the double-helical secondary structure, ultimately resulting in the chiral geometry of crystals. The assembly of the chiral double helices is facilitated by the dual characteristics of amide groups derived from amino acids, which serve as both hydrogen bond donors and receptors, similar to the assembly pattern observed in DNA. Crystal face analysis and theoretical morphology reveal two critical factors for the mechanism of the chiral crystal: inherent intrinsically symmetrical distribution of crystal faces and their acquired growth. Importantly, the magnetic circular dichroism (MCD) study reveals the strong magneto-optical response of the hypersensitive f-f transition in the UV-vis-NIR region, which is much stronger than previously observed signals. Remarkably, an external magnetic field can reverse the CD signal. This research highlights the potential of lanthanide-based chiral helical structures as promising magneto-optical materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...