Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 16(5)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38794314

RESUMEN

The need for chronic systemic immunosuppression, which is associated with unavoidable side-effects, greatly limits the applicability of allogeneic cell transplantation for regenerative medicine applications including pancreatic islet cell transplantation to restore insulin production in type 1 diabetes (T1D). Cell transplantation in confined sites enables the localized delivery of anti-inflammatory and immunomodulatory drugs to prevent graft loss by innate and adaptive immunity, providing an opportunity to achieve local effects while minimizing unwanted systemic side effects. Nanoparticles can provide the means to achieve the needed localized and sustained drug delivery either by graft targeting or co-implantation. Here, we evaluated the potential of our versatile platform of drug-integrating amphiphilic nanomaterial assemblies (DIANAs) for targeted drug delivery to an inflamed site model relevant for islet transplantation. We tested either passive targeting of intravenous administered spherical nanomicelles (nMIC; 20-25 nm diameter) or co-implantation of elongated nanofibrils (nFIB; 5 nm diameter and >1 µm length). To assess the ability of nMIC and nFIB to target an inflamed graft site, we used a lipophilic fluorescent cargo (DiD and DiR) and evaluated the in vivo biodistribution and cellular uptake in the graft site and other organs, including draining and non-draining lymph nodes, after systemic administration (nMIC) and/or graft co-transplantation (nFIB) in mice. Localized inflammation was generated either by using an LPS injection or by using biomaterial-coated islet-like bead implantation in the subcutaneous site. A cell transplant inflammation model was used as well to test nMIC- and nFIB-targeted biodistribution. We found that nMIC can reach the inflamed site after systemic administration, while nFIB remains localized for several days after co-implantation. We confirmed that DIANAs are taken up by different immune cell populations responsible for graft inflammation. Therefore, DIANA is a useful approach for targeted and/or localized delivery of immunomodulatory drugs to decrease innate and adaptive immune responses that cause graft loss after transplantation of therapeutic cells.

2.
Front Cell Dev Biol ; 9: 664305, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34235145

RESUMEN

Recent epidemiological studies have found an alarming trend of increased cancer incidence in adults younger than 50 years of age and projected a substantial rise in cancer incidence over the next 10 years in this age group. This trend was exemplified in the incidence of non-cardia gastric cancer and its disproportionate impact on non-Hispanic white females under the age of 50. The trend is concurrent with the increasing incidence of autoimmune diseases in industrialized countries, suggesting a causal link between the two. While autoimmunity has been suspected to be a risk factor for some cancers, the exact mechanisms underlying the connection between autoimmunity and cancer remain unclear and are often controversial. The link has been attributed to several mediators such as immune suppression, infection, diet, environment, or, perhaps most plausibly, chronic inflammation because of its well-recognized role in tumorigenesis. In that regard, autoimmune conditions are common causes of chronic inflammation and may trigger repetitive cycles of antigen-specific cell damage, tissue regeneration, and wound healing. Illustrating the connection between autoimmune diseases and cancer are patients who have an increased risk of cancer development associated with genetically predisposed insufficiency of cytotoxic T lymphocyte-associated protein 4 (CTLA4), a prototypical immune checkpoint against autoimmunity and one of the main targets of cancer immune therapy. The tumorigenic process triggered by CTLA4 insufficiency has been shown in a mouse model to be dependent on the type 2 cytokines interleukin-4 (IL4) and interleukin-13 (IL13). In this type 2 inflammatory milieu, crosstalk with type 2 immune cells may initiate epigenetic reprogramming of epithelial cells, leading to a metaplastic differentiation and eventually malignant transformation even in the absence of classical oncogenic mutations. Those findings complement a large body of evidence for type 1, type 3, or other inflammatory mediators in inflammatory tumorigenesis. This review addresses the potential of autoimmunity as a causal factor for tumorigenesis, the underlying inflammatory mechanisms that may vary depending on host-environment variations, and implications to cancer prevention and immunotherapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA