Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Food Chem Toxicol ; : 114875, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39033872

RESUMEN

Our previous study identified that nuclear factor-erythroid-2 p45-related factor 2 (NRF2) was activated in arsenite-induced tumorigenesis. However, the underlying mechanisms of NRF2 mediating apoptosis in arsenic-induced skin carcinogenesis remain unknown. This study explored the dynamic changes in apoptosis rate and the expression of apoptosis proteins in immortalized human keratinocytes (HaCaT) malignant transformation caused by 1.0 µM NaAsO2 at passages 0, 1, 7, 14, 21, 28, and 35. The result showed that the apoptosis rate decreased. The apoptosis-related proteins cleaved-caspase-3/caspase-3 ratio decreased in the later stages (passages 21, 28, and 35). Moreover, the expression of intrinsic ER stress pathway-related CHOP, ATF4, ATF6, and the intrinsic mitochondrial pathway-related Bax protein decreased in the later stages, while Bcl-2 and Mcl-1 increased, and NRF2 protein levels also increased. The apoptosis rate increased by silencing NRF2 expression in arsenite-transformed HaCaT (T-HaCaT) cells. Meanwhile, the expression of pro-apoptotic proteins (cleaved-caspase-3/caspase-3, CHOP, Bax) and ATF4, ATF6 increased. On the contrary, antiapoptotic protein levels (Bcl-2 and Mcl-1) decreased. The ability of colony formation and migration of T-HaCaT cells decreased. In conclusion, arsenite activated NRF2 in the later stages, decreasing apoptosis characterized by inhibiting endoplasmic reticulum stress-depended and mitochondria-depended apoptosis pathway, and further promoting NaAsO2-induced HaCaT cellular malignant transformation.

2.
mSphere ; : e0005924, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980075

RESUMEN

Osseointegrated dental implants replace missing teeth and create an artificial surface for biofilms of complex microbial communities to grow. These biofilms on implants and dental surfaces can trigger infection and inflammation in the surrounding tissue. This study investigated the microbial characteristics of peri-implant mucositis (PM) and explored the correlation between microbial ecological imbalance, community function, and disease severity by comparing the submucosal microflora from PM with those of healthy inter-subject implants and intra-subject gingivitis (G) within a group of 32 individuals. We analyzed submucosal plaques from PM, healthy implant (HI), and G sites using metagenome shotgun sequencing. The bacterial diversity of HIs was higher than that of PM, according to the Simpson index. Beta diversity revealed differences in taxonomic and functional compositions across the groups. Linear discriminant analysis of the effect size identified 15 genera and 37 species as biomarkers that distinguished PM from HIs. Pathways involving cell motility and protein processing in the endoplasmic reticulum were upregulated in PM, while pathways related to the metabolism of cofactors and vitamins were downregulated. Microbial dysbiosis correlated positively with the severity of clinical inflammation measured by the sulcus bleeding index (SBI) in PM. Prevotella and protein processing in the endoplasmic reticulum also correlated positively with the SBI. Our study revealed PM's microbiological and functional traits and suggested the importance of certain functions in disease severity.IMPORTANCEPeri-implant mucositis is an early stage in the progression of peri-implantitis. The high prevalence of it has been a threat to the widespread use of implant prosthodontics. The link between the submucosal microbiome and peri-implant mucositis was demonstrated previously. Nevertheless, the taxonomic and functional composition of the peri-implant mucositis microbiome remains controversial. In this study, we comprehensively characterize the microbial signature of peri-implant mucositis and for the first time, we investigate the correlations between microbial dysbiosis, functional potential, and disease severity. With the help of metagenomic sequencing, we find the positive correlations between microbial dysbiosis, genus Prevotella, pathway of protein processing in the endoplasmic reticulum, and more severe mucosal bleeding in the peri-implant mucositis. Our studies offer insight into the pathogenesis of peri-implant mucositis by providing information on the relationships between community function and disease severity.

3.
Plants (Basel) ; 13(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38475444

RESUMEN

The fall armyworm, Spodoptera frugiperda Smith (Lepidoptera: Noctuidae), a common agricultural pest known for its extensive migration and wide host ranges, causes considerable harm to maize (Zea mays L.). In this study, we utilized two molecular marker genes, COI and Tpi, to compare the genetic characteristics of the collected original samples. Additionally, through an interactive study between S. frugiperda larvae and six maize varieties aiming to understand the insect's adaptability and resistance mechanisms, our analysis revealed that both the COI and Tpi genes identified S. frugiperda as the corn strain. Further examination of the larvae showed significant differences in nutritional indices, digestive, and detoxification enzyme activities. Special maize varieties were found to offer higher efficiency in nutrient conversion and assimilation compared with common varieties. This study revealed adaptations in S. frugiperda's digestive and detoxification processes in response to the different maize varieties. For instance, larvae reared on common maize exhibited elevated amylase and lipase activities. Interestingly, detoxification enzyme activities exhibited different patterns of variation in different maize varieties. The Pearson correlation analysis between nutritional indices, enzyme activities, and the nutritional content and secondary metabolites of maize leaves provided deeper insights into the pest's adaptability. The results highlighted significant relationships between specific nutritional components in maize and the physiological responses of S. frugiperda. Overall, our findings contribute substantially to the understanding of S. frugiperda's host plant adaptability, offering critical insights for the development of sustainable pest management strategies.

4.
Plant Dis ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38537145

RESUMEN

Fusarium head blight (FHB) is a devastating disease that occurs in warm and humid environments. The German wheat Centrum has displayed moderate to high levels of FHB resistance in the field for many years. In this study, an F6:8 recombinant inbred line (RIL) population derived from cross Centrum × Xinong 979 was evaluated for FHB response following point inoculation in five environments. The population and parents were genotyped using the GenoBaits Wheat 16 K Panel. Stable quantitative trait loci (QTL) associated with FHB resistance in Centrum were mapped on chromosome arms 2DS and 5BS. The most effective QTL, located in 2DS, was identified as a new chromosome region represented by a 1.4 Mb interval containing 17 candidate genes. Another novel QTL was mapped in chromosome arm 5BS of a 5BS-7BS translocation chromosome. In addition, two environmentally-sensitive QTL were mapped on chromosome arms 2BL from Centrum and 5AS from Xinong 979. Polymorphisms of flanking allele-specifc quantitative PCR (AQP) markers AQP-6 for QFhb.nwafu-2DS and 16K-13073 for QFhb.nwafu-5BS were validated in a panel of 217 cultivars and breeding lines. These markers could be useful for marker-assisted selection of FHB resistance and also provide a starting point for fine mapping and marker-based cloning of the resistance genes.

5.
ACS Appl Mater Interfaces ; 15(47): 54280-54293, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37973614

RESUMEN

Loading nanoparticles into hydrogels has been a conventional approach to augment the printability of ink and the physicochemical characteristics of scaffolds in three-dimensional (3D) printing. However, the efficacy of this enhancement has often proven to be limited. We amalgamate electrospun nanofibers with 3D printing techniques to fabricate a composite scaffold reminiscent of a "reinforced concrete" structure, aimed at addressing bone defects. These supple silica nanofibers are synthesized through a dual-step process involving high-speed homogenization and low-temperature ball milling technology. The nanofibers are homogeneously blended with sodium alginate to create the printing ink. The resultant ink was extruded seamlessly, displaying commendable molding properties, thereby yielding scaffolds with favorable macroscopic morphology. In contrast to nanoparticle-reinforced scaffolds, composite scaffolds containing nanofibers exhibit superior mechanical attributes and bioactivity. These nanofiber composite scaffolds demonstrate enhanced osteoinductive properties in both in vitro and in vivo evaluations. To conclude, this research introduces a novel 3D printing approach where the fabricated nanofiber-infused 3D-printed scaffolds hold the potential to revolutionize the realm of 3D printing in the domain of bone tissue engineering.


Asunto(s)
Nanofibras , Ingeniería de Tejidos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Nanofibras/química , Impresión Tridimensional
6.
Artículo en Inglés | MEDLINE | ID: mdl-37931274

RESUMEN

In this study, (La0.2Nd0.2Sm0.2Ho0.2Y0.2)(Nb1-xVx)O4 (0.1 ≤ x ≤ 0.4) ceramics were prepared using a high-entropy strategy via the solid-phase method. The crystal structure, microstructure, vibration modes, and phase transition were studied by X-ray diffraction, scanning electron microscopy/transmission electron microscopy (SEM/TEM), and Raman spectroscopy techniques. The phase of ceramics was confirmed to be a monoclinic fergusonite in the range of x ≤ 0.28, a tetragonal scheelite was in the range of 0.3 ≤ x ≤ 0.32, a complex phase of tetragonal scheelite, and zircon was observed in the ceramics when x ≥ 0.35. A zircon phase was also detected by TEM at x = 0.4. The ceramic at x = 0.25 exhibited outstanding temperature stabilization with εr = 18.06, Q × f = 56,300 GHz, and τf = -1.52 ppm/°C, while the x = 0.2 ceramic exhibited a low dielectric loss with εr = 18.14, Q × f = 65,200 GHz, and τf = -7.96 ppm/°C. Moreover, the permittivity, quality factor, and the temperature coefficient of resonance frequency were related to the polarizability, packing fraction, density, and the temperature coefficient of permittivity caused by phase transition. This is an effective method to regulate near-zero τf by the synergism of the high-entropy strategy and substituting Nb with V in LnNbO4 ceramics.

7.
Ind Eng Chem Res ; 62(42): 17168-17181, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37900302

RESUMEN

This work investigates three types of biochar (bamboo charcoal, wood pellet, and coconut shell) for postcombustion carbon capture. Each biochar is structurally modified through physical (H2O, CO2) and chemical (ZnCl2, KOH, H3PO4) activation to improve carbon capture performance. Three methods (CO2 adsorption isotherms, CO2 fixed-bed adsorption, and thermogravimetric analysis) are used to determine the CO2 adsorption capacity. The results show that a more than 2.35 mmol·g-1 (1 bar, 298 K) CO2 capture capacity was achieved using the activated biochar samples. It is also demonstrated that the CO2 capture performance by biochar depends on multiple surface and textural properties. A high surface area and pore volume of biochar resulted in an enhanced CO2 capture capacity. Furthermore, the O*/C ratio and pore width show a negative correlation with the CO2 capture capacity of biochars.

8.
Front Microbiol ; 14: 1182346, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37655344

RESUMEN

Objective: Gut microbiota plays an important role in colorectal cancer (CRC) pathogenesis through microbes and their metabolites, while oral pathogens are the major components of CRC-associated microbes. Multiple studies have identified gut and fecal microbiome-derived biomarkers for precursors lesions of CRC detection. However, few studies have used salivary samples to predict colorectal polyps. Therefore, in order to find new noninvasive colorectal polyp biomarkers, we searched into the differences in fecal and salivary microbiota between patients with colorectal polyps and healthy controls. Methods: In this case-control study, we collected salivary and fecal samples from 33 patients with colorectal polyps (CP) and 22 healthy controls (HC) between May 2021 and November 2022. All samples were sequenced using full-length 16S rRNA sequencing and compared with the Nucleotide Sequence Database. The salivary and fecal microbiota signature of colorectal polyps was established by alpha and beta diversity, Linear discriminant analysis Effect Size (LEfSe) and random forest model analysis. In addition, the possibility of microbiota in identifying colorectal polyps was assessed by Receiver Operating Characteristic Curve (ROC). Results: In comparison to the HC group, the CP group's microbial diversity increased in saliva and decreased in feces (p < 0.05), but there was no significantly difference in microbiota richness (p > 0.05). The principal coordinate analysis revealed significant differences in ß-diversity of salivary and fecal microbiota between the CP and HC groups. Moreover, LEfSe analysis at the species level identified Porphyromonas gingivalis, Fusobacterium nucleatum, Leptotrichia wadei, Prevotella intermedia, and Megasphaera micronuciformis as the major contributors to the salivary microbiota, and Ruminococcus gnavus, Bacteroides ovatus, Parabacteroides distasonis, Citrobacter freundii, and Clostridium symbiosum to the fecal microbiota of patients with polyps. Salivary and fecal bacterial biomarkers showed Area Under ROC Curve of 0.8167 and 0.8051, respectively, which determined the potential of diagnostic markers in distinguishing patients with colorectal polyps from controls, and it increased to 0.8217 when salivary and fecal biomarkers were combined. Conclusion: The composition and diversity of the salivary and fecal microbiota were significantly different in colorectal polyp patients compared to healthy controls, with an increased abundance of harmful bacteria and a decreased abundance of beneficial bacteria. A promising non-invasive tool for the detection of colorectal polyps can be provided by potential biomarkers based on the microbiota of the saliva and feces.

9.
Adv Mater ; 35(44): e2306521, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37643739

RESUMEN

Compressibility is a fundamental property of all materials. For fluids, that is, gases and liquids, compressibility forms the basis of technologies such as pneumatics and hydraulics and determines basic phenomena such as the propagation of sound and shock waves. In contrast to gases, liquids are almost incompressible. If the compressibility of liquids could be increased and controlled, new applications in hydraulics and shock absorption could result. Here, it is shown that dispersing hydrophobic porous particles into water gives aqueous suspensions with much greater compressibilities than any normal liquids such as water (specifically, up to 20 times greater over certain pressure ranges). The increased compressibility results from water molecules being forced into the hydrophobic pores of the particles under applied pressure. The degree of compression can be controlled by varying the amount of porous particles added. Also, the pressure range of compression can be reduced by adding methanol or increased by adding salt. In all cases, the liquids expand back to their original volume when the applied pressure is released. The approach shown here is simple and economical and could potentially be scaled up to give large amounts of highly compressible liquids.

10.
Acc Chem Res ; 56(15): 2072-2083, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37436068

RESUMEN

ConspectusWhen the size of materials is reduced, their volume decreases much faster than their surface area, which in the most extreme case leads to 2D nanomaterials which are "all surface". Since atoms at the surface have free energies, electronic states, and mobility which are very different from bulk atoms, nanomaterials that have large surface-to-volume ratios can display remarkable new properties compared to their bulk counterparts. More generally, the surface is where nanomaterials interact with their environment, which in turn places surface chemistry at the heart of catalysis, nanotechnology, and sensing applications. Understanding and utilizing nanosurfaces are not possible without appropriate spectroscopic and microscopic characterization techniques. An emerging technique in this area is surface-enhanced Raman spectroscopy (SERS), which utilizes the interaction between plasmonic nanoparticles and light to enhance the Raman signals of molecules near the nanoparticles' surfaces. SERS has the great advantage that it can provide detailed in situ information on surface orientation and binding between molecules and the nanosurface. A long-standing dilemma that has limited the applications of SERS in surface chemistry studies is the choice between surface-accessibility and plasmonic activity. More specifically, the synthesis of metal nanomaterials with strong plasmonic and SERS-enhancing properties typically involves the use of strongly adsorbing modifier molecules, but these modifiers also passivate the surface of the product material, which prevents the general application of SERS in the analysis of weaker molecule-metal interactions.In this Account, we discuss our efforts in the development of modifier-free synthetic approaches to synthesize surface-accessible, plasmonic nanomaterials for SERS. We start by discussing the definition of "modifiers" and "surface-accessibility", especially in the context of surface chemistry studies in SERS. As a general rule of thumb, the chemical ligands on surface-accessible nanomaterials should be easily displaceable by a wide range of target molecules relevant to potential applications. We then introduce modifier-free approaches for the bottom-up synthesis of colloidal nanoparticles, which are the basic building blocks for nanotechnology. Following this, we introduce modifier-free interfacial self-assembly approaches developed by our group that allow the creation of multidimensional plasmonic nanoparticle arrays from different types of nanoparticle-building blocks. These multidimensional arrays can be further combined with different types of functional materials to form surface-accessible multifunctional hybrid plasmonic materials. Finally, we demonstrate applications for surface-accessible nanomaterials as plasmonic substrates for SERS studies of surface chemistry. Importantly, our studies revealed that the removal of modifiers led to not only significantly enhanced properties but also the observation of new surface chemistry phenomena that had been previously overlooked or misunderstood in the literature. Realizing the current limitations of modifier-based approaches provides new perspectives in manipulating molecule-metal interactions in nanotechnology and can have significant implications in the design and synthesis of the next generation of nanomaterials.

11.
Nat Protoc ; 18(9): 2717-2744, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37495750

RESUMEN

The interactions between molecules and noble metal nanosurfaces play a central role in many areas of nanotechnology. The surface chemistry of noble metal surfaces under ideal, clean conditions has been extensively studied; however, clean conditions are seldom met in real-world applications. We developed a sensitive and robust characterization technique for probing the surface chemistry of nanomaterials in the complex environments that are directly relevant to their applications. Surface-enhanced Raman spectroscopy (SERS) can be used to probe the interaction of plasmonic nanoparticles with light to enhance the Raman signals of molecules near the surface of nanoparticles. Here, we explain how to couple SERS with surface-accessible plasmonic-enhancing substrates, which are capped with weakly adsorbing capping ligands such as citrate and chloride ions, to allow molecule-metal interactions to be probed in situ and in real time, thus providing information on the surface orientation and the formation and breaking of chemical bonds. The procedure covers the synthesis and characterization of surface-accessible colloids, the preliminary SERS screening with agglomerated colloids, the synthesis and characterization of interfacial nanoparticle assemblies, termed metal liquid-like films, and the in situ biphasic SERS analysis with metal liquid-like films. The applications of the approach are illustrated using two examples: the probing of π-metal interactions and that of target/ligand-particle interactions on hollow bimetallic nanostars. This protocol, from the initial synthesis of the surface-accessible plasmonic nanoparticles to the final in situ biphasic SERS analysis, requires ~14 h and is ideally suited to users with basic knowledge in performing Raman spectroscopy and wet synthesis of metal nanoparticles.


Asunto(s)
Oro , Nanopartículas del Metal , Oro/química , Espectrometría Raman/métodos , Coloides/química , Nanotecnología , Nanopartículas del Metal/química
12.
ACS Nano ; 17(12): 11655-11664, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37272604

RESUMEN

Incorporation of plasmonic metal nanomaterials can significantly enhance the visible light response of semiconductor photocatalysts via localized surface plasmon resonance (LSPR) mechanisms. However, the surfaces of plasmonic metal nanomaterials are often covered with surfactant molecules, which is undesired when the nanomaterials are used for photocatalytic hydrogen evolution, since surfactant molecules could significantly compromise the nanomaterials' cocatalyst functionalities by blocking the active sites and/or by inhibiting the surface charge transfer process. Herein, we demonstrate a method that assembles Au nanoparticles (NPs) into Au colloidosomes (AuCSs) without modifying their surfaces with surfactants. The resulting AuCSs were then coupled with CdS for the formation of Au-CdS composite photocatalysts through an in situ deposition method. The assembly of Au NPs induced a broader and stronger LSPR response for AuCSs, while the absence of surfactants allowed them to act efficiently as cocatalysts. This essentially enhanced the electron-hole pair generation rate and further their utilization efficiency, leading to an extremely high hydrogen evolution rate of 235.8 mmol·g-1·h-1 under simulated sunlight excitation.

13.
Insects ; 14(5)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37233041

RESUMEN

Host plants play an important role in the growth, development, and reproduction of insects. However, only a few studies have reported the effects of maize varieties on the growth and reproduction of S. frugiperda. In this study, a free-choice test was used to evaluate the oviposition preferences of female adults on ten common maize varieties and ten special maize varieties. The population fitness of S. frugiperda on six different maize varieties was also examined using the age-stage, two-sex life table method. The results showed that S. frugiperda oviposited and completed its life cycle across all maize cultivars. Moreover, the S. frugiperda females exhibited a significantly higher oviposition preference on the special maize varieties than on the common maize varieties. The highest number of eggs and egg masses occurred on Baitiannuo and the lowest on Zhengdan 958. The egg + larval stage, preadult, pupal stage, adult, APOP, TPOP, and total longevity of S. frugiperda were significantly shorter on the special maize varieties than on the common maize varieties. The fecundity, oviposition days, pupal weight, and hatching rate of S. frugiperda were significantly higher on the special maize varieties than on the common maize varieties. Specifically, S. frugiperda had the highest fecundity, female, and male pupal weight on Baitiannuo. Moreover, the net reproductive rate (R0), intrinsic rate of increase (r), and finite rate of increase (λ) of S. frugiperda were the greatest on Baitiannuo, whereas the shortest mean generation time (T) occurred on Zaocuiwang. The lowest R0, r, and λ, and longest T occurred on Zhengdan 958, suggesting that Zhengdan 958 is a non-preferred host plant compared to the other tested maize varieties. The findings of this study can provide a reference for the rational planting of maize and provide basic scientific information for the management of S. frugiperda.

14.
Waste Manag ; 166: 141-151, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37172515

RESUMEN

The investigation of the pyrolysis behaviour of real-world waste plastics (RWWP) and using them as the feedstock to produce carbon nanotubes (CNTs) could serve as an effective solution to address the global waste plastics catastrophe. This research aimed to characterize the pyrolysis behaviour of RWWP via thermogravimetric analysis (TG) and fast pyrolysis-TG/mass spectrometry (Py-TG/MS) analyses. Activation energies (131.04 kJ mol-1 -171.04 kJ mol-1) for RWWP pyrolysis were calculated by three methods: Flynn-Wall-Ozawa (FWO) method, Kissinger-Akahira-Sunose (KAS) method, and Starink method. Py-TG/MS results indicated that the RWWP could be identified as polystyrene (RWWP-1), polyethylene (RWWP-2), polyethylene terephthalate (RWWP-3, 4), and polypropylene (RWWP-5, 6). In addition, RWWP-1, 2, 5, 6 outperform RWWP-3 and 4 as sources of carbon for producing CNTs. The results showed a high carbon yield of 32.21 wt% and a high degree of CNT purity at 93.04%.


Asunto(s)
Nanotubos de Carbono , Plásticos , Pirólisis , Cinética , Termogravimetría
15.
J Econ Entomol ; 116(2): 405-415, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36881678

RESUMEN

Tetranychus truncatus Ehara (Acari: Tetranychidae) has become one of the major phytophagous pests in China in recent years, and is found on a wide range of host plants. However, little information is available on the population performance of this arthropod pest on potatoes. In this study, we explored the population growth of T. truncatus on two drought-tolerant potato (Solanum tuberosum L.) cultivars under laboratory conditions using the age-stage, two-sex life table. Tetranychus truncatus completed its entire life history on both potato cultivars tested, Holland 15 and Longshu 10. There was no significant difference between two potato cultivars in developmental duration. Tetranychus truncatus had shorter adult longevity (20.61 days), adult female longevity (20.41 days), and total female longevity (33.66 days) on Longshu 10 than Holland 15 (21.16 days, 21.19 days, and 34.38 days, respectively). However, it exhibited a higher preadult survival rate, higher fecundity (F = 88.32 eggs per female), and relatively higher population parameters when reared on Longshu 10 than on Holland 15 (F = 75.70 eggs per female). Growth projection also showed that the population size of T. truncatus on Longshu 10 (expand 750-fold) was larger than that on Holland 15 (expand 273-fold) after 60 days. Our results demonstrate that the drought-sensitive potato variety, Holland 15, is relatively resistant to T. truncatus compared with the drought-tolerant variety, Longshu 10, and suggest that T. truncatus exhibited a trade-off between longevity and reproduction on both potato cultivars. Our findings provide information on population prediction, which may aid the management of this pest mite species of potatoes.


Asunto(s)
Solanum tuberosum , Tetranychidae , Animales , Crecimiento Demográfico , Sequías , Reproducción
16.
Nat Commun ; 14(1): 1392, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36914627

RESUMEN

Pickering emulsions represent an important class of functional materials with potential applications in sustainability and healthcare. Currently, the synthesis of Pickering emulsions relies heavily on the use of strongly adsorbing molecular modifiers to tune the surface chemistry of the nanoparticle constituents. This approach is inconvenient and potentially a dead-end for many applications since the adsorbed modifiers prevent interactions between the functional nanosurface and its surroundings. Here, we demonstrate a general modifier-free approach to construct Pickering emulsions by using a combination of stabilizer particles, which stabilize the emulsion droplet, and a second population of unmodified functional particles that sit alongside the stabilizers at the interface. Freeing Pickering emulsions from chemical modifiers unlocks their potential across a range of applications including plasmonic sensing and interfacial catalysis that have previously been challenging to achieve. More broadly, this strategy provides an approach to the development of surface-accessible nanomaterials with enhanced and/or additional properties from a wide range of nano-building blocks including organic nanocrystals, carbonaceous materials, metals and oxides.

17.
Insect Sci ; 30(6): 1534-1551, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36944595

RESUMEN

The Asian longhorn beetle (ALB) Anoplophora glabripennis is one of the most successful and most feared invasive insect species worldwide. This review covers recent research concerning the distribution of and damage caused by ALB, as well as major efforts to control and manage ALB in China. The distribution and destruction range of ALB have continued to expand over the past decade worldwide, and the number of interceptions has remained high. Detection and monitoring methods for the early discovery of ALB have diversified, with advances in semiochemical research and using satellite remote sensing in China. Ecological control of ALB in China involves planting mixtures of preferred and resistant tree species, and this practice can prevent outbreaks. In addition, strategies for chemical and biological control of ALB have achieved promising results during the last decade in China, especially the development of insecticides targeting different stages of ALB, and applying Dastarcus helophoroides and Dendrocopos major as biocontrol agents. Finally, we analyze recommendations for ALB prevention and management strategies based on native range and invasive area research. This information will hopefully help some invaded areas where the target is containment of ALB.


Asunto(s)
Escarabajos , Insecticidas , Animales , Madera , Árboles
18.
Clin Exp Optom ; 106(3): 303-310, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35021948

RESUMEN

CLINICAL RELEVANCE: Knowledge of interactions between genetic variants and near-work activities at the onset of myopia can facilitate health education regarding myopia. BACKGROUND: To investigate the interactions between genetic variants (PDE10A, AREG and GABRR1) and near-work activities in the onset of myopia in southeastern Chinese school children. METHODS: A total of 458 non-myopic, grade 1 children aged 6-7 years were included in a 4-year follow-up examination; 409 children were assessed further. Manifest (non-cycloplegic) refraction and axial length (AL) were measured every year, and questionnaires were administered annually to assess information regarding the demographic characteristics of children, near-work activities, outdoor exposure and parental myopia. Oral mucosa was collected in the last year of follow-up, and Sanger sequencing was used to genotype single nucleotide polymorphisms (SNPs) in DNA. RESULTS: The cumulative change in the spherical equivalent refraction (SER) over 4 years was -1.20 ± 1.00 D, and the proportion of children with incident myopia was 42.9%. Multivariate logistic regression analysis showed that an increased amount of time spent doing homework (>2 h/d) was an independent risk factor for incident myopia. The PDE10A rs12206610CT genotype and spending > 5 h/d on near-work activities showed an interaction for incident myopia (OR = 4.29, 95% CI: 1.27-14.53; Pinteraction = 0.02); moreover, the rs12206610CT genotype carriers who used electronic devices for > 1 h/d displayed an increased risk of incident myopia (OR = 3.43, 95% CI: 1.07-11.01; Pinteraction = 0.043). CONCLUSIONS: The rs2206610CT genotype carriers with near-work activities of >5 h/d were more likely to show incident myopia, especially those who used electronic devices >1 h/d. However, interactions between the rs12206610 SNP and near-work activities require further verification in animal models and larger sample cohorts.


Asunto(s)
Miopía , Humanos , Estudios Prospectivos , Estudios Longitudinales , Miopía/epidemiología , Miopía/genética , Refracción Ocular , Pruebas de Visión , Encuestas y Cuestionarios , Factores de Riesgo , Hidrolasas Diéster Fosfóricas
19.
Front Physiol ; 13: 1024136, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36505077

RESUMEN

Insect chitinases play a crucial part to digest chitin in the exoskeleton during the molting process. However, research on insect chitinase related to the environmental stress response is very limited. This study was the first conducted to expression analysis of chitinase- related genes in A. pisum under abiotic stresses. Here, we identified five chitinase-like proteins (ApIDGF, ApCht3, ApCht7, ApCht10 and ApENGase), and clustered them into five groups (group II, III, V, Ⅹ, and ENGase). Developmental expression analysis revealed that the five A. pisum chitinase-related genes were expressed at whole developmental stages with different relative expression patterns. When aphids were exposed to various abiotic stresses including temperature, insecticide and the stress 20-hydroxyecdysone (20E), all five chitinase genes were differentially expressed in A. pisum. The results showed that insecticide such as imidacloprid down-regulated the expression of these five Cht-related genes. Analysis of temperature stress of A. pisum chitinase suggested that ApCht7 expression was high at 10°C, which demonstrates its important role in pea aphids under low temperature. Conversely, ApCht10 was more active under high temperature stress, as it was significantly up-regulated at 30°C. Besides, 20E enhanced ApCht3 and ApCht10 expression in A. pisum, but reduced ApCht7 expression. These findings provide basic information and insights for the study of the role of these genes under abiotic stress, which advances our knowledge in the management of pea aphids under multiple stresses.

20.
Ren Fail ; 44(1): 1780-1790, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36285371

RESUMEN

PURPOSE: Glomerular mesangial cell (GMC) dysfunction plays a vital role in the pathogenesis of diabetic kidney disease (DKD). Transient receptor potential canonical 6 (TRPC6) has been demonstrated to be involved in the development of DKD. However, the underlying mechanism remains unclear. The present study investigated the role of TRPC6 in GMC dysfunction and the related mechanism. METHODS: Diabetic rats and cultured GMCs were used in the experiment. The diabetic rat model was created by intraperitoneal injection of streptozotocin. Protein and mRNA levels were assessed by Western blotting and quantitative RT-PCR, respectively. Histological changes in the kidneys were observed by immunochemistry and hematoxylin and eosin. TRPC6 knockdown was achieved by adenovirus-mediated TRPC6 shRNA delivery in vivo and TRPC6 siRNA transfection in vitro. RESULTS: TRPC6 expression was increased in diabetic rat kidneys. Knockdown of TRPC6 attenuated diabetes-induced kidney functional deterioration. In addition, the increases in extracellular matrix components, including collagen IV, collagen I, and fibronectin production, as well as NFAT2 expression were also suppressed. In cultured GMCs, high glucose (25 mM, HG) treatment increased the expression of TRPC6. Knockdown of TRPC6 alleviated HG-induced increases in collagen IV, fibronectin, and NFAT2 expression. Knockdown of NFAT2 also inhibited the upregulation of proteins, including collagen IV and fibronectin, in HG-treated GMCs. CONCLUSION: These results demonstrate that inhibition of TRPC6/NFAT2 signaling attenuates GMC dysfunction and the development of DKD and suggest that pharmacological targeting of TRPC6/NFAT2 in GMCs may provide beneficial effects for DKD.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Ratas , Animales , Células Mesangiales , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Fibronectinas/metabolismo , Canal Catiónico TRPC6/genética , Canal Catiónico TRPC6/metabolismo , ARN Interferente Pequeño/metabolismo , Diabetes Mellitus Experimental/metabolismo , Estreptozocina , Hematoxilina/metabolismo , Hematoxilina/farmacología , Eosina Amarillenta-(YS)/metabolismo , Eosina Amarillenta-(YS)/farmacología , Linfocitos T , Glucosa/metabolismo , ARN Mensajero/metabolismo , Colágeno/metabolismo , Células Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA