Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 82
1.
Cardiovasc Res ; 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38832923

AIMS: ßII spectrin is a cytoskeletal protein known to be tightly linked to heart development and cardiovascular electrophysiology. However, the roles of ßII spectrin in cardiac contractile function and pathological post-myocardial infarction remodeling remain unclear. Here, we investigated whether and how ßII spectrin, the most common isoform of non-erythrocytic spectrin in cardiomyocytes, is involved in cardiac contractile function and ischemia/reperfusion (I/R) injury. METHODS AND RESULTS: We observed that the levels of serum ßII spectrin breakdown products (ßII SBDPs) were significantly increased in patients with acute myocardial infarction (AMI). Concordantly, ßII spectrin was degraded into ßII SBDPs by calpain in mouse hearts after I/R injury. Using tamoxifen-inducible cardiac-specific ßII spectrin knockout mice, we found that deletion of ßII spectrin in the adult heart resulted in spontaneous development of cardiac contractile dysfunction, cardiac hypertrophy and fibrosis at 5 weeks after tamoxifen treatment. Moreover, at 1 week after tamoxifen treatment, although spontaneous cardiac dysfunction in cardiac-specific ßII spectrin knockout mice had not developed, deletion of ßII spectrin in the heart exacerbated I/R-induced cardiomyocyte death and heart failure. Furthermore, restoration of ßII spectrin expression via adenoviral small activating RNA (saRNA) delivery into the heart reduced I/R injury. Immunoprecipitation coupled with mass spectrometry (IP-LC-MS/MS) analyses and functional studies revealed that ßII spectrin is indispensable for mitochondrial complex I activity and respiratory function. Mechanistically, ßII spectrin promotes translocation of NADH:ubiquinone oxidoreductase 75 kDa Fe-S protein 1 (NDUFS1) from the cytosol to mitochondria by crosslinking with actin filaments (F-actin) to maintain F-actin stability. CONCLUSION: ßII spectrin is an essential cytoskeletal element for preserving mitochondrial homeostasis and cardiac function. Defects in ßII spectrin exacerbate cardiac I/R injury.

2.
Circulation ; 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38686562

BACKGROUND: Myocardial mitochondrial dysfunction underpins the pathogenesis of heart failure (HF), yet therapeutic options to restore myocardial mitochondrial function are scarce. Epigenetic modifications of mitochondrial DNA (mtDNA), such as methylation, play a pivotal role in modulating mitochondrial homeostasis. However, their involvement in HF remains unclear. METHODS: Experimental HF models were established through continuous angiotensin II and phenylephrine (AngII/PE) infusion or prolonged myocardial ischemia/reperfusion injury. The landscape of N6-methyladenine (6mA) methylation within failing cardiomyocyte mtDNA was characterized using high-resolution mass spectrometry and methylated DNA immunoprecipitation sequencing. A tamoxifen-inducible cardiomyocyte-specific Mettl4 knockout mouse model and adeno-associated virus vectors designed for cardiomyocyte-targeted manipulation of METTL4 (methyltransferase-like protein 4) expression were used to ascertain the role of mtDNA 6mA and its methyltransferase METTL4 in HF. RESULTS: METTL4 was predominantly localized within adult cardiomyocyte mitochondria. 6mA modifications were significantly more abundant in mtDNA than in nuclear DNA. Postnatal cardiomyocyte maturation presented with a reduction in 6mA levels within mtDNA, coinciding with a decrease in METTL4 expression. However, an increase in both mtDNA 6mA level and METTL4 expression was observed in failing adult cardiomyocytes, suggesting a shift toward a neonatal-like state. METTL4 preferentially targeted mtDNA promoter regions, which resulted in interference with transcription initiation complex assembly, mtDNA transcriptional stalling, and ultimately mitochondrial dysfunction. Amplifying cardiomyocyte mtDNA 6mA through METTL4 overexpression led to spontaneous mitochondrial dysfunction and HF phenotypes. The transcription factor p53 was identified as a direct regulator of METTL4 transcription in response to HF-provoking stress, thereby revealing a stress-responsive mechanism that controls METTL4 expression and mtDNA 6mA. Cardiomyocyte-specific deletion of the Mettl4 gene eliminated mtDNA 6mA excess, preserved mitochondrial function, and mitigated the development of HF upon continuous infusion of AngII/PE. In addition, specific silencing of METTL4 in cardiomyocytes restored mitochondrial function and offered therapeutic relief in mice with preexisting HF, irrespective of whether the condition was induced by AngII/PE infusion or myocardial ischemia/reperfusion injury. CONCLUSIONS: Our findings identify a pivotal role of cardiomyocyte mtDNA 6mA and the corresponding methyltransferase, METTL4, in the pathogenesis of mitochondrial dysfunction and HF. Targeted suppression of METTL4 to rectify mtDNA 6mA excess emerges as a promising strategy for developing mitochondria-focused HF interventions.

3.
Cell Death Differ ; 31(3): 292-308, 2024 03.
Article En | MEDLINE | ID: mdl-38017147

Lipid droplet (LD) accumulation is a notable feature of obesity-induced cardiomyopathy, while underlying mechanism remains poorly understood. Here we show that mice fed with high-fat diet (HFD) exhibited significantly increase in cardiac LD and RTN3 expression, accompanied by cardiac function impairment. Multiple loss- and gain-of function experiments indicate that RTN3 is critical to HFD-induced cardiac LD accumulation. Mechanistically, RTN3 directly bonds with fatty acid binding protein 5 (FABP5) to facilitate the directed transport of fatty acids to endoplasmic reticulum, thereby promoting LD biogenesis in a diacylglycerol acyltransferase 2 dependent way. Moreover, lipid overload-induced RTN3 upregulation is due to increased expression of CCAAT/enhancer binding protein α (C/EBPα), which positively regulates RTN3 transcription by binding to its promoter region. Notably, above findings were verified in the myocardium of obese patients. Our findings suggest that manipulating LD biogenesis by modulating RTN3 may be a potential strategy for treating cardiac dysfunction in obese patients.


Cardiomyopathies , Lipid Droplets , Animals , Mice , Carrier Proteins/metabolism , Diet, High-Fat , Fatty Acid-Binding Proteins/metabolism , Heart , Lipid Droplets/metabolism , Lipids , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , Nerve Tissue Proteins/metabolism , Obesity/metabolism
4.
Mil Med Res ; 10(1): 63, 2023 Dec 11.
Article En | MEDLINE | ID: mdl-38072993

BACKGROUND: Diabetic cardiomyopathy (DCM) causes the myocardium to rely on fatty acid ß-oxidation for energy. The accumulation of intracellular lipids and fatty acids in the myocardium usually results in lipotoxicity, which impairs myocardial function. Adipsin may play an important protective role in the pathogenesis of DCM. The aim of this study is to investigate the regulatory effect of Adipsin on DCM lipotoxicity and its molecular mechanism. METHODS: A high-fat diet (HFD)-induced type 2 diabetes mellitus model was constructed in mice with adipose tissue-specific overexpression of Adipsin (Adipsin-Tg). Liquid chromatography-tandem mass spectrometry (LC-MS/MS), glutathione-S-transferase (GST) pull-down technique, Co-immunoprecipitation (Co-IP) and immunofluorescence colocalization analyses were used to investigate the molecules which can directly interact with Adipsin. The immunocolloidal gold method was also used to detect the interaction between Adipsin and its downstream modulator. RESULTS: The expression of Adipsin was significantly downregulated in the HFD-induced DCM model (P < 0.05). Adipose tissue-specific overexpression of Adipsin significantly improved cardiac function and alleviated cardiac remodeling in DCM (P < 0.05). Adipsin overexpression also alleviated mitochondrial oxidative phosphorylation function in diabetic stress (P < 0.05). LC-MS/MS analysis, GST pull-down technique and Co-IP studies revealed that interleukin-1 receptor-associated kinase-like 2 (Irak2) was a downstream regulator of Adipsin. Immunofluorescence analysis also revealed that Adipsin was co-localized with Irak2 in cardiomyocytes. Immunocolloidal gold electron microscopy and Western blotting analysis indicated that Adipsin inhibited the mitochondrial translocation of Irak2 in DCM, thus dampening the interaction between Irak2 and prohibitin (Phb)-optic atrophy protein 1 (Opa1) on mitochondria and improving the structural integrity and function of mitochondria (P < 0.05). Interestingly, in the presence of Irak2 knockdown, Adipsin overexpression did not further alleviate myocardial mitochondrial destruction and cardiac dysfunction, suggesting a downstream role of Irak2 in Adipsin-induced responses (P < 0.05). Consistent with these findings, overexpression of Adipsin after Irak2 knockdown did not further reduce the accumulation of lipids and their metabolites in the cardiac myocardium, nor did it enhance the oxidation capacity of cardiomyocytes expose to palmitate (PA) (P < 0.05). These results indicated that Irak2 may be a downstream regulator of Adipsin. CONCLUSIONS: Adipsin improves fatty acid ß-oxidation and alleviates mitochondrial injury in DCM. The mechanism is related to Irak2 interaction and inhibition of Irak2 mitochondrial translocation.


Diabetes Mellitus, Type 2 , Diabetic Cardiomyopathies , Animals , Mice , Chromatography, Liquid , Complement Factor D/metabolism , Complement Factor D/pharmacology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Fatty Acids/adverse effects , Fatty Acids/metabolism , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1 Receptor-Associated Kinases/pharmacology , Lipids , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Tandem Mass Spectrometry
5.
Clin Transl Med ; 13(9): e1406, 2023 09.
Article En | MEDLINE | ID: mdl-37743632

BACKGROUND: As the main pathological basis for various cardiovascular and cerebrovascular diseases, atherosclerosis has become one of the leading causes of death and disability worldwide. Emerging evidence has suggested that Rho GTPase Rnd3 plays an indisputable role in cardiovascular diseases, although its function in atherosclerosis remains unclear. Here, we found a significant correlation between Rnd3 and pyroptosis of aortic endothelial cells (ECs). METHODS: ApoeKO mice were utilized as a model for atherosclerosis. Endothelium-specific transgenic mice were employed to disrupt the expression level of Rnd3 in vivo. Mechanistic investigation of the impact of Rnd3 on endothelial cell pyroptosis was carried out using liquid chromatography tandem mass spectrometry (LC-MS/MS), co-immunoprecipitation (Co-IP) assays, and molecular docking. RESULTS: Evidence from gain-of-function and loss-of-function studies denoted a protective role for Rnd3 against ECs pyroptosis. Downregulation of Rnd3 sensitized ECs to pyroptosis under oxidized low density lipoprotein (oxLDL) challenge and exacerbated atherosclerosis, while overexpression of Rnd3 effectively prevented these effects. LC-MS/MS, Co-IP assay, and molecular docking revealed that Rnd3 negatively regulated pyroptosis signaling by direct interaction with the ring finger domain of tumor necrosis factor receptor-associated factor 6 (TRAF6). This leads to the suppression of K63-linked TRAF6 ubiquitination and the promotion of K48-linked TRAF6 ubiquitination, inhibiting the activation of NF-κB and promoting the degradation of TRAF6. Moreover, TRAF6 knockdown countered Rnd3 knockout-evoked exacerbation of EC pyroptosis in vivo and vitro. CONCLUSIONS: These findings establish a critical functional connection between Rnd3 and the TRAF6/NF-κB/NLRP3 signaling pathway in ECs, indicating the essential role of Rnd3 in preventing pyroptosis of ECs.


Atherosclerosis , Endothelial Cells , Pyroptosis , TNF Receptor-Associated Factor 6 , rho GTP-Binding Proteins , Animals , Mice , Atherosclerosis/genetics , Chromatography, Liquid , Molecular Docking Simulation , NF-kappa B , Pyroptosis/genetics , rho GTP-Binding Proteins/genetics , Tandem Mass Spectrometry , TNF Receptor-Associated Factor 6/genetics
6.
BMC Med ; 21(1): 197, 2023 05 26.
Article En | MEDLINE | ID: mdl-37237266

BACKGROUND: Microvascular complications are associated with an overtly increased risk of adverse outcomes in patients with diabetes including coronary microvascular injury which manifested as disruption of adherens junctions between cardiac microvascular endothelial cells (CMECs). However, particular mechanism leading to diabetic coronary microvascular hyperpermeability remains elusive. METHODS: Experimental diabetes was induced in mice with adipose tissue-specific Adipsin overexpression (AdipsinLSL/LSL-Cre) and their respective control (AdipsinLSL/LSL). In addition, cultured CMECs were subjected to high glucose/palmitic acid (HG + PA) treatment to simulate diabetes for a mechanistic approach. RESULTS: The results showed that Adipsin overexpression significantly reduced cardiac microvascular permeability, preserved coronary microvascular integrity, and increased coronary microvascular density. Adipsin overexpression also attenuated cardiac dysfunction in diabetic mice. E/A ratio, an indicator of cardiac diastolic function, was improved by Adipsin. Adipsin overexpression retarded left ventricular adverse remodeling, enhanced LVEF, and improved cardiac systolic function. Adipsin-enriched exosomes were taken up by CMECs, inhibited CMECs apoptosis, and increased CMECs proliferation under HG + PA treatment. Adipsin-enriched exosomes also accelerated wound healing, rescued cell migration defects, and promoted tube formation in response to HG + PA challenge. Furthermore, Adipsin-enriched exosomes maintained adherens junctions at endothelial cell borders and reversed endothelial hyperpermeability disrupted by HG + PA insult. Mechanistically, Adipsin blocked HG + PA-induced Src phosphorylation (Tyr416), VE-cadherin phosphorylation (Tyr685 and Tyr731), and VE-cadherin internalization, thus maintaining CMECs adherens junctions integrity. LC-MS/MS analysis and co-immunoprecipitation analysis (Co-IP) unveiled Csk as a direct downstream regulator of Adipsin. Csk knockdown increased Src phosphorylation (Tyr416) and VE-cadherin phosphorylation (Tyr685 and Tyr731), while abolishing Adipsin-induced inhibition of VE-cadherin internalization. Furthermore, Csk knockdown counteracted Adipsin-induced protective effects on endothelial hyperpermeability in vitro and endothelial barrier integrity of coronary microvessels in vivo. CONCLUSIONS: Together, these findings favor the vital role of Adipsin in the regulation of CMECs adherens junctions integrity, revealing its promises as a treatment target against diabetic coronary microvascular dysfunction. Graphical abstract depicting the mechanisms of action behind Adipsin-induced regulation of diabetic coronary microvascular dysfunction.


Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Mice , Animals , Diabetic Cardiomyopathies/genetics , Diabetes Mellitus, Experimental/complications , Endothelial Cells , Complement Factor D/pharmacology , Chromatography, Liquid , Tandem Mass Spectrometry , Cells, Cultured
7.
Theranostics ; 13(6): 1759-1773, 2023.
Article En | MEDLINE | ID: mdl-37064880

Aims: The invasive intramyocardial injection of mesenchymal stromal cells (MSCs) allows for limited repeat injections and shows poor therapeutic efficacy against ischemic heart failure. Intravenous injection is an alternative method because this route allows for repeated, noninvasive, and easy delivery. However, the lack of targeting of MSCs hinders the ability of these cells to accumulate in the ischemic area after intravenous injections. We investigated whether and how the overexpression of colony-stimulating factor 2 receptor beta subunit (CSF2RB) may regulate the cardiac homing of MSCs and their cardioprotective effects against ischemic heart failure. Methods and Results: Adult mice were subjected to myocardial ischemia/reperfusion (MI/R) or sham operations. We observed significantly higher CSF2 protein expression and secretion by the ischemic heart from 1 day to 2 weeks after MI/R. Mouse adipose tissue-derived MSCs (ADSCs) were infected with adenovirus harboring CSF2RB or control adenovirus. Enhanced green fluorescent protein (EGFP)-labeled ADSCs were intravenously injected into MI/R mice every three days for a total of 7 times. Compared with ADSCs infected with control adenovirus, intravenously delivered ADSCs overexpressing CSF2RB exhibited markedly increased cardiac homing. Histological analysis revealed that CSF2RB overexpression significantly enhanced the ADSC-mediated proangiogenic, antiapoptotic, and antifibrotic effects. More importantly, ADSCs overexpressing CSF2RB significantly increased the left ventricular ejection fraction and cardiac contractility/relaxation in MI/R mice. In vitro experiments demonstrated that CSF2RB overexpression increases the migratory capacity and reduces the hypoxia/reoxygenation-induced apoptosis of ADSCs. We identified STAT5 phosphorylation as the key mechanism underlying the effects of CSF2RB on promoting ADSC migration and inhibiting ADSC apoptosis. RNA sequencing followed by cause-effect analysis revealed that CSF2RB overexpression increases the expression of the ubiquitin ligase RNF4. Coimmunoprecipitation and coimmunostaining experiments showed that RNF4 binds to phosphorylated STAT5. RNF4 knockdown reduced STAT5 phosphorylation as well as the antiapoptotic and promigratory actions of ADSCs overexpressing CSF2RB. Conclusions: We demonstrate for the first time that CSF2RB overexpression optimizes the efficacy of intravenously delivered MSCs in the treatment of ischemic heart injury by increasing the response of the MSCs to a CSF2 gradient and CSF2RB-dependent STAT5/RNF4 activation.


Cytokine Receptor Common beta Subunit , Heart Failure , Mesenchymal Stem Cell Transplantation , Myocardial Ischemia , Animals , Mice , Heart Failure/therapy , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Myocardial Ischemia/therapy , STAT5 Transcription Factor/metabolism , Stroke Volume , Ventricular Function, Left , Cytokine Receptor Common beta Subunit/metabolism
8.
Redox Biol ; 62: 102696, 2023 06.
Article En | MEDLINE | ID: mdl-37058999

As the essential amino acids, branched-chain amino acid (BCAA) from diets is indispensable for health. BCAA supplementation is often recommended for patients with consumptive diseases or healthy people who exercise regularly. Latest studies and ours reported that elevated BCAA level was positively correlated with metabolic syndrome, diabetes, thrombosis and heart failure. However, the adverse effect of BCAA in atherosclerosis (AS) and its underlying mechanism remain unknown. Here, we found elevated plasma BCAA level was an independent risk factor for CHD patients by a human cohort study. By employing the HCD-fed ApoE-/- mice of AS model, ingestion of BCAA significantly increased plaque volume, instability and inflammation in AS. Elevated BCAA due to high dietary BCAA intake or BCAA catabolic defects promoted AS progression. Furthermore, BCAA catabolic defects were found in the monocytes of patients with CHD and abdominal macrophages in AS mice. Improvement of BCAA catabolism in macrophages alleviated AS burden in mice. The protein screening assay revealed HMGB1 as a potential molecular target of BCAA in activating proinflammatory macrophages. Excessive BCAA induced the formation and secretion of disulfide HMGB1 as well as subsequent inflammatory cascade of macrophages in a mitochondrial-nuclear H2O2 dependent manner. Scavenging nuclear H2O2 by overexpression of nucleus-targeting catalase (nCAT) effectively inhibited BCAA-induced inflammation in macrophages. All of the results above illustrate that elevated BCAA promotes AS progression by inducing redox-regulated HMGB1 translocation and further proinflammatory macrophage activation. Our findings provide novel insights into the role of animo acids as the daily dietary nutrients in AS development, and also suggest that restricting excessive dietary BCAA consuming and promoting BCAA catabolism may serve as promising strategies to alleviate and prevent AS and its subsequent CHD.


Atherosclerosis , HMGB1 Protein , Animals , Humans , Mice , Amino Acids, Branched-Chain/metabolism , Amino Acids, Branched-Chain/pharmacology , Atherosclerosis/etiology , Cohort Studies , Hydrogen Peroxide , Inflammation/chemically induced , Macrophages/metabolism
9.
Front Cardiovasc Med ; 10: 1018422, 2023.
Article En | MEDLINE | ID: mdl-36937929

Background: Early diagnosis of septic cardiomyopathy is essential to reduce the mortality rate of sepsis. Previous studies indicated that iron metabolism plays a vital role in sepsis-induced cardiomyopathy. Here, we aimed to identify shared iron metabolism-related genes (IMRGs) in the myocardium and blood monocytes of patients with sepsis and to determine their prognostic signature. Methods: First, an applied bioinformatics-based analysis was conducted to identify shared IMRGs differentially expressed in the myocardium and peripheral blood monocytes of patients with sepsis. Second, Cytoscape was used to construct a protein-protein interaction network, and immune infiltration of the septic myocardium was assessed using single-sample gene set enrichment analysis. In addition, a prognostic prediction model for IMRGs was established by Cox regression analysis. Finally, the expression of key mRNAs in the myocardium of mice with sepsis was verified using quantitative polymerase chain reaction analysis. Results: We screened common differentially expressed genes in septic myocardium and blood monocytes and identified 14 that were related to iron metabolism. We found that HBB, SLC25A37, SLC11A1, and HMOX1 strongly correlated with monocytes and neutrophils, whereas HMOX1 and SLC11A1 strongly correlated with macrophages. We then established a prognostic model (HIF1A and SLC25A37) using the common differentially expressed IMRGs. The prognostic model we established was expected to better aid in diagnosing septic cardiomyopathy. Moreover, we verified these genes using datasets and experiments and found a significant difference between the sepsis and control groups. Conclusion: Common differential expression of IMRGs was identified in blood monocytes and myocardium between sepsis and control groups, among which HIF1A and SLC25A37 might predict prognosis in septic cardiomyopathy. The study may help us deeply understand the molecular mechanisms of iron metabolism and aid in the diagnosis and treatment of septic cardiomyopathy.

10.
Adv Sci (Weinh) ; 10(13): e2206439, 2023 05.
Article En | MEDLINE | ID: mdl-36808838

Mesenchymal stromal cell (MSC) implantation is a promising option for liver repair, but their poor retention in the injured liver milieu critically blunts therapeutic effects. The aim is to clarify the mechanisms underlying massive MSC loss post-implantation and establish corresponding improvement strategies. MSC loss primarily occurs within the initial hours after implantation into the injured liver milieu or under reactive oxygen species (ROS) stress. Surprisingly, ferroptosis is identified as the culprit for rapid depletion. In ferroptosis- or ROS-provoking MSCs, branched-chain amino acid transaminase-1 (BCAT1) is dramatically decreased, and its downregulation renders MSC susceptible to ferroptosis via suppressing the transcription of glutathione peroxidase-4 (GPX4), a vital ferroptosis defensing enzyme. BCAT1 downregulation impedes GPX4 transcription via a rapid-responsive metabolism-epigenetics coordinating mechanism, involving α-ketoglutarate accumulation, histone 3 lysine 9 trimethylation loss, and early growth response protein-1 upregulation. Approaches to suppress ferroptosis (e.g., incorporating ferroptosis inhibitors in injection solvent and overexpressing BCAT1) significantly improve MSC retention and liver-protective effects post-implantation. This study provides the first evidence indicating that excessive MSC ferroptosis is the nonnegligible culprit for their rapid depletion and insufficient therapeutic efficacy after implantation into the injured liver milieu. Strategies suppressing MSC ferroptosis are conducive to optimizing MSC-based therapy.


Ferroptosis , Mesenchymal Stem Cells , Ferroptosis/genetics , Reactive Oxygen Species/metabolism , Wound Healing , Liver/metabolism , Mesenchymal Stem Cells/metabolism
11.
Theranostics ; 12(17): 7250-7266, 2022.
Article En | MEDLINE | ID: mdl-36438502

Rationale: Extracellular matrix (ECM) remodeling, a key pathological feature in diabetic cardiomyopathy (DCM), is triggered by oxidative stress, inflammation, and various metabolic disorders in the heart. Cardiac fibroblasts (CFs) are the primary source of ECM proteins and the ultimate effector cells in ECM remodeling. CFs are turned on and differentiated into myofibroblasts in response to profibrotic signaling. Rnd3 is a small Rho-GTPase involved in the regulation of cell-cycle distribution, cell migration, and cell morphogenesis. Emerging evidence suggests a link between Rnd3 expression and onset of cardiovascular diseases. However, the role of Rnd3 in DCM remains unknown. Methods: Flow cytometry was employed to separate different types of cardiac cells. Type 2 diabetes mellitus was established in Rnd3 fibroblast-specific knockout and transgenic mice. RNA sequencing and chromatin immunoprecipitation assay were used to discern signaling pathways involved. Results: Rnd3 expression was reduced in cardiac tissues of diabetic mice, with CFs being the primary cell type. Fibroblast-specific upregulation of Rnd3 in vivo was protective against DCM, whereas Rnd3 downregulation in fibroblasts accentuated cardiac oxidative stress, fibrosis, ventricular remodeling, and dysfunction. Moreover, in vitro Rnd3 overexpression significantly attenuated reactive oxygen species production, CF migration and proliferation under high levels of glucose (35 mmol/L) and palmitic acid (500 µmol/L) challenge. Furthermore, RNA sequencing indicated that Notch and TGF-ß signaling were significantly suppressed upon Rnd3 overexpression. Mechanistically, Rnd3 regulated Notch and TGF-ß signaling by interacting with NICD and ROCK1, respectively. Specifically, glucotoxicity and lipotoxicity control Rnd3 expression by regulating the binding of Nr1H2 and Rnd3 promoter. Conclusions: Our findings provide compelling evidence in that fibroblast-specific activation of Rnd3 protects against cardiac remodeling in DCM, indicating promises of targeting Rnd3 in the treatment of DCM.


Diabetes Mellitus, Type 2 , Diabetic Cardiomyopathies , Myofibroblasts , Ventricular Remodeling , Animals , Mice , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , Mice, Transgenic , rho GTP-Binding Proteins/genetics , rho GTP-Binding Proteins/metabolism , Transforming Growth Factor beta/metabolism , Ventricular Remodeling/genetics , Ventricular Remodeling/physiology , Myofibroblasts/metabolism , Myofibroblasts/pathology
12.
Biol Direct ; 17(1): 35, 2022 11 29.
Article En | MEDLINE | ID: mdl-36447296

BACKGROUND: Acute lung injury (ALI) is a major cause of respiratory failure in critically ill patients that results in significant morbidity and mortality. Recent studies indicate that cell-based therapies may be beneficial in the treatment of ALI. We recently demonstrated that Nrf2-overexpressing human amniotic mesenchymal stem cells (hAMSCs) reduce lung injury, fibrosis and inflammation in lipopolysaccharide (LPS)-challenged mice. Here we tested whether small extracellular vesicles (sEVs) derived from Nrf2-overexpressing hAMSCs (Nrf2-sEVs) could protect against ALI. sEVs were isolated from hAMSCs that overexpressed (Nrf2-sEVs) or silenced (siNrf2-sEVs) Nrf2. We examined the effects of sEVs treatment on lung inflammation in a mouse model of ALI, where LPS was administered intratracheally to mice, and lung tissues and bronchoalveolar lavage fluid (BALF) were analyzed 24 h later. METHODS: Histological analysis, immunofluorescence microscopy, western blotting, RT-PCR and ELISA were used to measure the inflammatory response in the lungs and BALF. RESULTS: We found that sEVs from hAMSCs are protective in ALI and that Nrf2 overexpression promotes protection against lung disease. Nrf2-sEVs significantly reduced lung injury in LPS-challenged mice, which was associated with decreased apoptosis, reduced infiltration of neutrophils and macrophages, and inhibition of pro-inflammatory cytokine expression. We further show that Nrf2-sEVs act by inhibiting the activation of the NLRP3 inflammasome and promoting the polarization of M2 macrophages. CONCLUSION: Our data show that overexpression of Nrf2 protects against LPS-induced lung injury, and indicate that a novel therapeutic strategy using Nrf2-sEVs may be beneficial against ALI.


Acute Lung Injury , Extracellular Vesicles , Mesenchymal Stem Cells , Humans , Mice , Animals , Lipopolysaccharides/toxicity , NF-E2-Related Factor 2 , NLR Family, Pyrin Domain-Containing 3 Protein , Acute Lung Injury/chemically induced , Acute Lung Injury/therapy
13.
Front Cardiovasc Med ; 9: 1003282, 2022.
Article En | MEDLINE | ID: mdl-36172581

As a vital adipokine, Adipsin is closely associated with cardiovascular risks. Nevertheless, its role in the onset and development of cardiovascular diseases remains elusive. This study was designed to examine the effect of Adipsin on survival, cardiac dysfunction and adverse remodeling in the face of myocardial infarction (MI) injury. In vitro experiments were conducted to evaluate the effects of Adipsin on cardiomyocyte function in the face of hypoxic challenge and the mechanisms involved. Our results showed that Adipsin dramatically altered expression of proteins associated with iron metabolism and ferroptosis. In vivo results demonstrated that Adipsin upregulated levels of Ferritin Heavy Chain (FTH) while downregulating that of Transferrin Receptor (TFRC) in peri-infarct regions 1 month following MI. Adipsin also relieved post-MI-associated lipid oxidative stress as evidenced by decreased expression of COX2 and increased GPX4 level. Co-immunoprecipitation and immunofluorescence imaging prove a direct interaction between Adipsin and IRP2. As expected, cardioprotection provided by Adipsin depends on the key molecule of IRP2. These findings revealed that Adipsin could be efficiently delivered to the heart by exosomes derived from pericardial adipose tissues. In addition, Adipsin interacted with IRP2 to protect cardiomyocytes against ferroptosis and maintain iron homeostasis. Therefore, Adipsin-overexpressed exosomes derived from pericardial adipose tissues may be a promising therapeutic strategy to prevent adverse cardiac remodeling following ischemic heart injury.

14.
Theranostics ; 12(13): 5824-5835, 2022.
Article En | MEDLINE | ID: mdl-35966575

Rationale: The transformation of fibroblasts into activated myofibroblasts is a critical step that results in cardiac fibrosis upon myocardial infarction (MI). Leucine-rich repeat-containing protein-8A (LRRC8A) is a multi-functional protein involved in cell survival, growth, and proliferation, whereas its role in regulating myofibroblast phenotypes and myocardial fibrosis remains unknown. Methods: Conditional myofibroblast-specific Lrrc8a knockout mouse models were established by crossing the Lrrc8aflox/flox mice with the tamoxifen-inducible periostin-Cre transgenic mice. The involvement of LRRC8A in regulating cardiac fibrosis post-MI and myofibroblast phenotypes induced by transforming growth factor-ß1 (TGF-ß1) was comprehensively evaluated. The mechanisms underlying LRRC8A regulation of myofibroblast phenotypes were determined by RNA sequencing-driven analysis followed by cause-effect experiments. Results: LRRC8A expression was significantly elevated in the fibrotic tissues and the fibroblasts isolated from the post-MI hearts. Compared with the wild-type (WT) littermates, the specific knockout of LRRC8A in myofibroblasts greatly attenuated myofibroblast transformation, fibrotic remodeling, and ventricular dysfunction after MI. Silencing of LRRC8A expression suppressed, whereas overexpression of LRRC8A enhanced, the pro-fibrotic myofibroblast phenotypes in isolated cardiac fibroblasts upon stimulation with TGF-ß1. LRRC8A participated in TGF-ß1-induced myofibroblast transformation via activating JAK2-STAT3 signaling. Furthermore, LRRC8A activated the JAK2-STAT3 pathway via its C-terminal leucine-rich repeat-domain (LRRD), directly interacting with growth factor receptor-bound protein 2 (GRB2), an adaptor protein associated with and necessary for tyrosine-phosphorylated JAK2. Conclusions: LRRC8A regulates myofibroblast transformation and cardiac fibrosis following MI. LRRC8A inhibition might be a promising strategy for cardiac fibrosis and heart failure.


Myocardial Infarction , Myofibroblasts , Animals , Carrier Proteins/metabolism , Fibrosis , Leucine/genetics , Leucine/metabolism , Membrane Proteins/metabolism , Mice , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myofibroblasts/metabolism , Phenotype , Transforming Growth Factor beta1/metabolism
15.
Adv Sci (Weinh) ; 9(24): e2200431, 2022 08.
Article En | MEDLINE | ID: mdl-35780502

Bile acid metabolites have been increasingly recognized as pleiotropic signaling molecules that regulate cardiovascular functions, but their role in mesenchymal stromal cells (MSC)-based therapy has never been investigated. It is found that overexpression of farnesoid X receptor (FXR), a main receptor for bile acids, improves the retention and cardioprotection of adipose tissue-derived MSC (ADSC) administered by intramyocardial injection in mice with myocardial infarction (MI), which shows enhanced antiapoptotic, proangiogenic, and antifibrotic effects. RNA sequencing, LC-MS/MS, and loss-of-function studies reveal that FXR overexpression promotes ADSC paracrine angiogenesis via Angptl4. FXR overexpression improves ADSC survival in vivo but fails in vitro. By performing bile acid-targeted metabolomics using ischemic heart tissue, 19 bile acids are identified. Among them, cholic acid and deoxycholic acid significantly increase Angptl4 secretion from ADSC overexpressing FXR and further improve their proangiogenic capability. Moreover, ADSC overexpressing FXR shows significantly lower apoptosis by upregulating Nqo-1 expression only in the presence of FXR ligands. Retinoid X receptor α is identified as a coactivator of FXR. It is first demonstrated that there is a bile acid pool in the myocardial microenvironment. Targeting the bile acid-FXR axis may be a novel strategy for improving the curative effect of MSC-based therapy for MI.


Heart Injuries , Ischemia , Mesenchymal Stem Cells , Receptors, Cytoplasmic and Nuclear , Animals , Bile Acids and Salts , Chromatography, Liquid , Heart Injuries/prevention & control , Ischemia/prevention & control , Mice , Receptors, Cytoplasmic and Nuclear/genetics , Retinoid X Receptor alpha , Tandem Mass Spectrometry
16.
Metabolism ; 134: 155239, 2022 09.
Article En | MEDLINE | ID: mdl-35680100

OBJECTIVE: Mitochondria are essential for myocardial ischemia/reperfusion (I/R) injury. TBC domain family member 15 (TBC1D15) participates in the regulation of mitochondrial homeostasis although its role remains elusive in I/R injury. METHODS AND MATERIALS: This study examined the role of TBC1D15 in mitochondrial homeostasis under myocardial I/R injury using inducible cardiac-specific TBC1D15 knockin (TBC1D15CKI) and knockout (TBC1D15CKO) mice. RESULTS: TBC1D15 mRNA/protein levels were downregulated in human ischemic cardiomyopathy samples, mouse I/R hearts and neonatal mouse cardiomyocytes with H/R injury, consistent with scRNA sequencing finding from patients with coronary heart disease. Cardiac-specific knockin of TBC1D15 attenuated whereas cardiac-specific knockout of TBC1D15 overtly aggravated I/R-induced cardiomyocyte apoptosis and cardiac dysfunction. TBC1D15CKI mice exhibited reduced mitochondrial damage and mitochondrial fragmentation following myocardial I/R injury, while TBC1D15CKO mice displayed opposite results. TBC1D15 preserved mitochondrial function evidenced by safeguarding MMP and oxygen consumption capacity, antagonizing ROS accumulation and cytochrome C release, which were nullified by TBC1D15 knockdown. Time-lapse confocal microscopy revealed that TBC1D15 activated asymmetrical mitochondrial fission through promoting mitochondria-lysosome contacts untethering in NMCMs under H/R injury, whereas overexpression of TBC1D15 mutants (R400K and ∆231-240) failed to regulate asymmetrical fission and knockdown of TBC1D15 slowed down asymmetrical fission. Moreover, TBC1D15-offered benefits were mitigated by knockdown of Fis1 and Drp1. Mechanistically, TBC1D15 recruited Drp1 to mitochondria-lysosome contact sites via direct interaction with Drp1 through its C terminus (574-624) domain. Interfering with interaction between TBC1D15 and Drp1 abrogated asymmetrical mitochondrial fission and mitochondrial function. Cardiac phenotypes of TBC1D15CKO mice upon I/R injury were rescued by adenovirus-mediated overexpression of wild-type but not mutants (R400K, ∆231-240 and ∆574-624) TBC1D15. CONCLUSIONS: TBC1D15 ameliorated I/R injury through a novel modality to preserve mitochondrial homeostasis where mitochondria-lysosome contacts (through the TBC1D15/Fis1/RAB7 cascade) regulate asymmetrical mitochondrial fission (TBC1D15/Drp1 interaction), suggesting promises of targeting TBC1D15 in the management of myocardial I/R injury.


Myocardial Reperfusion Injury , Animals , Dynamins/genetics , Dynamins/metabolism , GTPase-Activating Proteins , Homeostasis , Humans , Mice , Mitochondria , Mitochondrial Dynamics/genetics , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac/metabolism
17.
Signal Transduct Target Ther ; 7(1): 171, 2022 06 03.
Article En | MEDLINE | ID: mdl-35654769

Mesenchymal stem cells (MSCs) delivered into the post-ischemic heart milieu have a low survival and retention rate, thus restricting the cardioreparative efficacy of MSC-based therapy. Chronic ischemia results in metabolic reprogramming in the heart, but little is known about how these metabolic changes influence implanted MSCs. Here, we found that excessive branched-chain amino acid (BCAA) accumulation, a metabolic signature seen in the post-ischemic heart, was disadvantageous to the retention and cardioprotection of intramyocardially injected MSCs. Discovery-driven experiments revealed that BCAA at pathological levels sensitized MSCs to stress-induced cell death and premature senescence via accelerating the loss of histone 3 lysine 9 trimethylation (H3K9me3). A novel mTORC1/DUX4/KDM4E axis was identified as the cause of BCAA-induced H3K9me3 loss and adverse phenotype acquisition. Enhancing BCAA catabolic capability in MSCs via genetic/pharmacological approaches greatly improved their adaptation to the high BCAA milieu and strengthened their cardioprotective efficacy. We conclude that aberrant BCAA accumulation is detrimental to implanted MSCs via a previously unknown metabolite-signaling-epigenetic mechanism, emphasizing that the metabolic changes of the post-ischemic heart crucially influence the fate of implanted MSCs and their therapeutic benefits.


Graft vs Host Disease , Mesenchymal Stem Cells , Myocardial Infarction , Amino Acids, Branched-Chain , Heart , Humans , Myocardial Infarction/genetics , Myocardial Infarction/therapy
18.
Circ Res ; 130(10): 1490-1506, 2022 05 13.
Article En | MEDLINE | ID: mdl-35387487

RATIONALE: Long-term exercise provides reliable cardioprotection via mechanisms still incompletely understood. Although traditionally considered a thermogenic tissue, brown adipose tissue (BAT) communicates with remote organs (eg, the heart) through its endocrine function. BAT expands in response to exercise, but its involvement in exercise cardioprotection remains undefined. OBJECTIVE: This study investigated whether small extracellular vesicles (sEVs) secreted by BAT and their contained microRNAs (miRNAs) regulate cardiomyocyte survival and participate in exercise cardioprotection in the context of myocardial ischemia/reperfusion (MI/R) injury. METHODS AND RESULTS: Four weeks of exercise resulted in a significant BAT expansion in mice. Surgical BAT ablation before MI/R weakened the salutary effects of exercise. Adeno-associated virus 9 vectors carrying short hairpin RNA targeting Rab27a (a GTPase required for sEV secretion) or control viruses were injected in situ into the interscapular BAT. Exercise-mediated protection against MI/R injury was greatly attenuated in mice whose BAT sEV secretion was suppressed by Rab27a silencing. Intramyocardial injection of the BAT sEVs ameliorated MI/R injury, revealing the cardioprotective potential of BAT sEVs. Discovery-driven experiments identified miR-125b-5p, miR-128-3p, and miR-30d-5p (referred to as the BAT miRNAs) as essential BAT sEV components for mediating cardioprotection. BAT-specific inhibition of the BAT miRNAs prevented their upregulation in plasma sEVs and hearts of exercised mice and attenuated exercise cardioprotection. Mechanistically, the BAT miRNAs cooperatively suppressed the proapoptotic MAPK (mitogen-associated protein kinase) pathway by targeting a series of molecules (eg, Map3k5, Map2k7, and Map2k4) in the signaling cascade. Delivery of BAT sEVs into hearts or cardiomyocytes suppressed MI/R-related MAPK pathway activation, an effect that disappeared with the combined use of the BAT miRNA inhibitors. CONCLUSIONS: The sEVs secreted by BAT participate in exercise cardioprotection via delivering the cardioprotective miRNAs into the heart. These results provide novel insights into the mechanisms underlying the BAT-cardiomyocyte interaction and highlight BAT sEVs and their contained miRNAs as alternative candidates for exercise cardioprotection.


Extracellular Vesicles , MicroRNAs , Myocardial Reperfusion Injury , Adipose Tissue, Brown/metabolism , Animals , Extracellular Vesicles/metabolism , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac/metabolism , Physical Conditioning, Animal
19.
Adv Sci (Weinh) ; 9(7): e2103697, 2022 03.
Article En | MEDLINE | ID: mdl-35038246

Few intravenously administered mesenchymal stromal cells (MSCs) engraft to the injured myocardium, thereby limiting their therapeutic efficacy for the treatment of ischemic heart injury. Here, it is found that irisin pretreatment increases the cardiac homing of adipose tissue-derived MSCs (ADSCs) administered by single and multiple intravenous injections to mice with MI/R by more than fivefold, which subsequently increases their antiapoptotic, proangiogenic, and antifibrotic effects in rats and mice that underwent MI/R. RNA sequencing, Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway analysis, and loss-of-function studies identified CSF2RB as a cytokine receptor that facilitates the chemotaxis of irisin-treated ADSCs in the presence of CSF2, a chemokine that is significantly upregulated in the ischemic heart. Cardiac-specific CSF2 knockdown blocked the cardiac homing and cardioprotection abilities of intravenously injected irisin-treated ADSCs in mice subjected to MI/R. Moreover, irisin pretreatment reduced the apoptosis of hydrogen peroxide-induced ADSCs and increased the paracrine proangiogenic effect of ADSCs. ERK1/2-SOD2, and ERK1/2-ANGPTL4 are responsible for the antiapoptotic and paracrine angiogenic effects of irisin-treated ADSCs, respectively. Integrin αV/ß5 is identified as the irisin receptor in ADSCs. These results provide compelling evidence that irisin pretreatment can be an effective means to optimize intravenously delivered MSCs as therapy for ischemic heart injury.


Heart Injuries , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Myocardial Infarction , Animals , Heart Injuries/metabolism , Mesenchymal Stem Cell Transplantation/methods , Mice , Mice, Inbred C57BL , Myocardial Infarction/prevention & control , Rats
20.
J Mol Cell Cardiol ; 160: 27-41, 2021 11.
Article En | MEDLINE | ID: mdl-34224725

Irisin, the cleaved form of the fibronectin type III domain containing 5 (FNDC5) protein, is involved in metabolism and inflammation. Recent findings indicated that irisin participated in cardiovascular physiology and pathology. In this study, we investigated the effects of FNDC5/irisin on diabetic cardiomyopathy (DCM) in type 2 diabetic db/db mice. Downregulation of myocardial FNDC5/irisin protein expression and plasma irisin levels was observed in db/db mice compared to db/+ controls. Moreover, echocardiography revealed that db/db mice exhibited normal cardiac systolic function and impaired diastolic function. Adverse structural remodeling, including cardiomyocyte apoptosis, myocardial fibrosis, and cardiac hypertrophy were observed in the hearts of db/db mice. Sixteen-week-old db/db mice were intramyocardially injected with adenovirus encoding FNDC5 or treated with recombinant human irisin via a peritoneal implant osmotic pump for 4 weeks. Both overexpression of myocardial FNDC5 and exogenous irisin administration attenuated diastolic dysfunction and cardiac structural remodeling in db/db mice. Results from in vitro studies revealed that FNDC5/irisin protein expression was decreased in high glucose (HG)/high fat (HF)-treated cardiomyocytes. Increased levels of inducible nitric oxide synthase (iNOS), NADPH oxidase 2 (NOX2), 3-nitrotyrosine (3-NT), reactive oxygen species (ROS), and peroxynitrite (ONOO-) in HG/HF-treated H9C2 cells provided evidence of oxidative/nitrosative stress, which was alleviated by treatment with FNDC5/irisin. Moreover, the mitochondria membrane potential (ΔΨm) was decreased and cytochrome C was released from mitochondria with increased levels of cleaved caspase-3 in HG/HF-treated H9C2 cells, indicating the presence of mitochondria-dependent apoptosis, which was partially reversed by FNDC5/irisin treatment. Mechanistic studies showed that activation of integrin αVß5-AKT signaling and attenuation of oxidative/nitrosative stress were responsible for the cardioprotective effects of FNDC5/irisin. Therefore, FNDC5/irisin mediates cardioprotection in DCM by inhibiting myocardial apoptosis, myocardial fibrosis, and cardiac hypertrophy. These findings implicate that FNDC5/irisin as a potential therapeutic intervention for DCM, especially in type 2 diabetes mellitus (T2DM).


Cardiotonic Agents/administration & dosage , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Diabetic Cardiomyopathies/blood , Diabetic Cardiomyopathies/drug therapy , Fibronectins/administration & dosage , Nitrosative Stress/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Vitronectin/metabolism , Signal Transduction/drug effects , Animals , Apoptosis/drug effects , Cardiomegaly/prevention & control , Cardiotonic Agents/blood , Disease Models, Animal , Fibronectins/blood , Fibronectins/genetics , Male , Mice , Mitochondria/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Recombinant Proteins/administration & dosage , Treatment Outcome , Ventricular Remodeling/drug effects
...