Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 6967, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39138177

RESUMEN

Revealing key factors that modulate the regioselectivity in heterogeneous hydroformylation requires identifying and monitoring the dynamic evolution of the truly active center under real reaction conditions. However, unambiguous in situ characterizations are still lacking. Herein, we elaborately construct a series of Rh-POPs catalysts for propylene hydroformylation which exhibited tunable regioselectivity. Multi-technique approaches reveal the unique microenvironment of the diverse HRh(CO)(PPh3-frame)2 sites with distinct P-Rh-P bite angles ranging from 90° to 120° and 158° to 168°, respectively. In situ time-resolved XAFS, FT-IR, and quasi-in situ Solid-state NMR experiments combined with DFT calculations explain the dynamic evolution of the electronic and coordinate state of the distinct active sites induced by hemilabile PPh3-frame ligands and further disclose the regulatory mechanism of regioselectivity. These state-of-the-art techniques and multiscale analysis advance the understanding of how hemilabile coordination influences regioselectivity and will provide a new thought to modulate the regioselectivity in future industrial processes.

2.
Angew Chem Int Ed Engl ; 62(30): e202304282, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37159106

RESUMEN

Sulfur poisoning and regeneration are global challenges for metal catalysts even at the ppm level. The sulfur poisoning of single-metal-site catalysts and their regeneration is worthy of further study. Herein, sulfur poisoning and self-recovery are first presented on an industrialized single-Rh-site catalyst (Rh1 /POPs). A decreased turnover frequency of Rh1 /POPs from 4317 h-1 to 318 h-1 was observed in a 1000 ppm H2 S co-feed for ethylene hydroformylation, but it self-recovered to 4527 h-1 after withdrawal of H2 S, whereas the rhodium nanoparticles demonstrated poor activity and self-recovery ability. H2 S reduced the charge density of the single Rh atom and lowered its Gibbs free energy with the formation of inactive (SH)Rh(CO)(PPh3 -frame)2 , which could be regenerated to active HRh(CO)(PPh3 -frame)2 after withdrawing H2 S. The mechanism and the sulfur-related structure-activity relationship were highlighted. This work provides an understanding of heterogeneous ethylene hydroformylation and sulfur-poisoned regeneration in the science of single-atom catalysts.

3.
Angew Chem Int Ed Engl ; 58(8): 2448-2453, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-30600893

RESUMEN

Heterogeneous, metal, single-site catalysts often exhibit higher catalytic performance than other catalysts because of their maximized atom efficiency of 100 %. Reported herein is a precoordination/solvothermal polymerization strategy to fabricate a stable mononuclear Pd-metalized porous organic polymer catalyst (Pd@POP). Pd@POP was easy to use in regioselective organic reactions because the internal structure of this Pd@POP can be easily modified. The catalyst was used to solve the intractable regioselectivity problems of Heck reactions. Pd@POP-9 can efficiently activate the ends of olefins, thereby leading to high selectivity for substitution at the external position. To understand the reason underlying the high selectivity and activity of the catalyst, the systemic characterization of Pd@POP-9 and density-functional theory calculations were conducted. This Heck reaction is the first to be catalyzed by a recyclable mononuclear metal catalyst with unprecedented catalytic activity and regioselectivity.

4.
Dalton Trans ; 47(37): 13135-13141, 2018 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-30168564

RESUMEN

A series of Mg-porphyrin complex doped divinylbenzene (DVB) based porous organic polymers (POPs) were systematically afforded through the method of free radical polymerization under solvothermal conditions. These POP catalysts have physical advantages of high surface areas, hierarchical pore structures, high thermal stability and spatially separated active Mg-porphyrin sites, which lead to very high efficiency in the conversion of CO2 to cyclic carbonates with the aid of tetra-n-butyl ammonium bromide (TBAB) as a nucleophile. The effect of the doping ratio (Mg-porphyrin complex to DVB) on catalytic efficiency was studied and discussed, and the detrimental embedding effect was found. The effects of reaction temperature and pressure on catalytic activity as well as other epoxide substrates were also examined fully. More importantly, under very mild conditions (30 °C, 0.1 MPa CO2), a considerable turnover number (TON) value of 1800 was obtained. The heterogeneous POP catalyst can be easily recovered and reused 10 times without loss of activity.

5.
Chem Commun (Camb) ; 54(61): 8446-8449, 2018 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-29878031

RESUMEN

A novel palladium nanoparticle (NP)-metalated porous organic ligand (Pd NPs/POL-xantphos) has been prepared for the chemoselective decarbonylation of aldehydes. This heterogenous catalyst not only has excellent catalytic activity and chemoselectivity, but also holds high activity after 10 runs of reuse. The effective usage of this method is demonstrated through the synthesis of biofuels such as furfuryl alcohol (FFA) via the highly chemoselective decarbonylation of biomass-derived 5-hydroxy-methylfurfural (HMF) with a TON up to 1540. More importantly, 9-fluorenone could be obtained in one step through the decarbonylation of 2-bromobenzaldehyde by using this heterogeneous catalyst.

6.
Org Lett ; 19(17): 4432-4435, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28809502

RESUMEN

Thiophenes containing an adjacent C≡C group as ligands for PdII-promoted organic reactions are reported for the first time. These ligands were utilized as catalytic sites and integrated into the skeleton of conjugated microporous polymers. By employing these CMP materials as selective regulators, oxidative Heck reactions between arylboronic esters and electronically unbiased alkenes provide highly selective linear products.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA