Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 87
1.
Environ Int ; 186: 108645, 2024 Apr.
Article En | MEDLINE | ID: mdl-38615541

Benzene is a broadly used industrial chemicals which causes various hematologic abnormalities in human. Altered DNA methylation has been proposed as epigenetic biomarkers in health risk evaluation of benzene exposure, yet the role of methylation at specific CpG sites in predicting hematological effects remains unclear. In this study, we recruited 120 low-level benzene-exposed and 101 control male workers from a petrochemical factory in Maoming City, Guangdong Province, China. Urinary S-phenylmercapturic acid (SPMA) in benzene-exposed workers was 3.40-fold higher than that in control workers (P < 0.001). Benzene-induced hematotoxicity was characterized by reduced white blood cells counts and nuclear division index (NDI), along with an increased DNA damage and urinary 8-hydroxy-2'-deoxyguanosine (all P < 0.05). Methylation levels of TRIM36, MGMT and RASSF1a genes in peripheral blood lymphocytes (PBLCs) were quantified by pyrosequencing. CpG site 6 of TRIM36, CpG site 2, 4, 6 of RASSF1a and CpG site 1, 3 of MGMT methylation were recognized as hot CpG sites due to a strong correlation with both internal exposure and hematological effects. Notably, integrating hot CpG sites methylation of multiple genes reveal a higher efficiency in prediction of integrative damage compared to individual genes at hot CpG sites. The negative dose-response relationship between the combined methylation of hot CpG sites in three genes and integrative damage enabled the classification of benzene-exposed individuals into high-risk or low-risk groups using the median cut-off value of the integrative index. Subsequently, a prediction model for integrative damage in benzene-exposed populations was built based on the methylation status of the identified hot CpG sites in the three genes. Taken together, these findings provide a novel insight into application prospect of specific CpG site methylation as epi-biomarkers for health risk assessment of environmental pollutants.


Acetylcysteine/analogs & derivatives , Benzene , CpG Islands , DNA Methylation , Occupational Exposure , Humans , DNA Methylation/drug effects , Male , Occupational Exposure/adverse effects , Benzene/toxicity , Adult , China , DNA Damage , Middle Aged , Biomarkers/urine , Acetylcysteine/urine , Tumor Suppressor Proteins/genetics , DNA Repair Enzymes/genetics
2.
Arch Toxicol ; 98(6): 1937-1951, 2024 Jun.
Article En | MEDLINE | ID: mdl-38563870

The high incidence of colorectal cancer (CRC) is closely associated with environmental pollutant exposure. To identify potential intestinal carcinogens, we developed a cell transformation assay (CTA) using mouse adult stem cell-derived intestinal organoids (mASC-IOs) and assessed the transformation potential on 14 representative chemicals, including Cd, iPb, Cr-VI, iAs-III, Zn, Cu, PFOS, BPA, MEHP, AOM, DMH, MNNG, aspirin, and metformin. We optimized the experimental protocol based on cytotoxicity, amplification, and colony formation of chemical-treated mASC-IOs. In addition, we assessed the accuracy of in vitro study and the human tumor relevance through characterizing interdependence between cell-cell and cell-matrix adhesions, tumorigenicity, pathological feature of subcutaneous tumors, and CRC-related molecular signatures. Remarkably, the results of cell transformation in 14 chemicals showed a strong concordance with epidemiological findings (8/10) and in vivo mouse studies (12/14). In addition, we found that the increase in anchorage-independent growth was positively correlated with the tumorigenicity of tested chemicals. Through analyzing the dose-response relationship of anchorage-independent growth by benchmark dose (BMD) modeling, the potent intestinal carcinogens were identified, with their carcinogenic potency ranked from high to low as AOM, Cd, MEHP, Cr-VI, iAs-III, and DMH. Importantly, the activity of chemical-transformed mASC-IOs was associated with the degree of cellular differentiation of subcutaneous tumors, altered transcription of oncogenic genes, and activated pathways related to CRC development, including Apc, Trp53, Kras, Pik3ca, Smad4 genes, as well as WNT and BMP signaling pathways. Taken together, we successfully developed a mASC-IO-based CTA, which might serve as a potential alternative for intestinal carcinogenicity screening of chemicals.


Carcinogenicity Tests , Cell Transformation, Neoplastic , Colorectal Neoplasms , Environmental Pollutants , Organoids , Animals , Cell Transformation, Neoplastic/chemically induced , Cell Transformation, Neoplastic/drug effects , Carcinogenicity Tests/methods , Organoids/drug effects , Organoids/pathology , Mice , Environmental Pollutants/toxicity , Colorectal Neoplasms/pathology , Colorectal Neoplasms/chemically induced , Humans , Carcinogens/toxicity , Intestines/drug effects , Intestines/pathology , Intestinal Neoplasms/chemically induced , Intestinal Neoplasms/pathology , Dose-Response Relationship, Drug
3.
Environ Pollut ; 346: 123564, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38367693

Histone modifications maintain genomic stability and orchestrate gene expression at the chromatin level. Benzo [a]pyrene (BaP) is the ubiquitous carcinogen widely spread in the environment, but the role and regulatory mechanism of histone modification in its toxic effects remain largely undefined. In this study, we found a dose-dependent reduction of histone H3 methylations at lysine4, lysine9, lysine27, lysine36 in HBE cells treated with BaP. We observed that inhibiting H3K27 and H3K36 methylation impaired cell proliferation, whereas the loss of H3K4, H3K9, H3K27, and H3K36 methylation led to increased genomic instability and delayed DNA repair. H3K36 mutation at both H3.1 and H3.3 exhibited the most significant impacts. In addition, we found that the expression of SET domain containing 2 (SETD2), the unique methyltransferase catalyzed H3K36me3, was downregulated by BaP dose-dependently in vitro and in vivo. Knockdown of SETD2 aggravated DNA damage of BaP exposure, which was consistent with the effects of H3K36 mutation. With the aid of chromatin immunoprecipitation (ChIP) -seq and RNA-seq, we found that H3K36me3 was responsible for transcriptional regulation of genes involved in pathways related to cell survival, lung cancer, metabolism and inflammation. The enhanced enrichment of H3K36me3 in genes (CYP1A1, ALDH1A3, ACOXL, WNT5A, WNT7A, RUNX2, IL1R2) was positively correlated with their expression levels, while the reduction of H3K36me3 distribution in genes (PPARGC1A, PDE4D, GAS1, RNF19A, KSR1) were in accordance with the downregulation of gene expression. Taken together, our findings emphasize the critical roles and mechanisms of histone lysine methylation in mediating cellular homeostasis during BaP exposure.


Benzo(a)pyrene , Histones , Humans , Histones/metabolism , Benzo(a)pyrene/toxicity , Methylation , Genomic Instability , Epithelial Cells/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
4.
Transl Cancer Res ; 12(10): 2582-2595, 2023 Oct 31.
Article En | MEDLINE | ID: mdl-37969391

Background: The aberrant expression of the classical tumor suppressor gene p16 is a frequent event in lung cancer mainly due to the hypermethylation of its 5'-cytosine-phosphate-guanine-3' island (Cgi). However, whether methylation happens in other regions and how p16 expression and function are affected are largely unknown. Methods: Clustered Regularly Interspaced Short Palindromic Repeats/dCas9 (CRISPR/dCas9) technology was used for methylation editing at specific site of p16. The effects of methylation editing were detected by 3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethoxyphenyl)-2-(4-sulfopheny)-2H-tetrazolium, inner salt (MTS), transwell migration and wound healing tests. Chromatin immnoprecipitation-quantitative polymerase chain reaction (CHIP-qPCR) was performed to explore the impact of Cgi shore methylation on the binding abilities of transcription factors (TFs) including YY1, SP1, ZNF148 and OTX2 to p16 gene. A rescue experiment was performed to verify the regulatory effect of OTX2 on p16. The negative relationship between p16 expression and the methylation level of Cgi shore in non-promoter region was further verified with datasets from The Cancer Genome Atlas (TCGA) program and lung adenocarcinoma (LUAD) patients' samples. Results: The suppressive effect of p16 Cgi shore methylation on its expression was demonstrated in both HEK293 and A549 cells using CRISPR/dCas9-mediated specific site methylation editing. Methylation of the Cgi shore in the p16 non-promoter region significantly decreased its expression and promoted cell growth and migration. The ability of OTX2 bound to p16 was significantly reduced by 19.35% after methylation modification. Over-expression of OTX2 in A549 cells partly reversed the inhibitory effect of methylation on p16 expression by 19.04%. The verification results with TCGA and LUAD patients' samples supported that the p16 Cgi shore is a key methylation regulatory region. Conclusions: Our findings suggested that methylation of the Cgi shore in the p16 non-promoter region can hamper the transcriptional activity of OTX2, leading to a reduction in the expression of p16, which might contribute to the development of lung cancer.

5.
Environ Int ; 178: 108113, 2023 08.
Article En | MEDLINE | ID: mdl-37506515

Recent population and animal studies have revealed a correlation between fat content and the severity of benzene-induced hematologic toxicity. However, the precise impact of lipid deposition on benzene-induced hematotoxicity and the underlying mechanisms remain unclear. In this study, we established a mouse model with moderate lipid accumulation by subjecting the mice to an 8-week high-fat diet (45% kcal from fat, HFD), followed by 28-day inhalation of benzene at doses of 0, 1, 10, and 100 ppm. The results showed that benzene exposure caused a dose-dependent reduction of peripheral white blood cell (WBC) counts in both diet groups. Notably, this reduction was less pronounced in the HFD-fed mice, suggesting that moderate lipid accumulation mitigates benzene-related hematotoxicity. To investigate the molecular basis for this effect, we performed bioinformatics analysis of high-throughput transcriptome sequencing data, which revealed that moderate lipid deposition alters mouse metabolism and stress tolerance towards xenobiotics. Consistently, the expression of key metabolic enzymes, such as Cyp2e1 and Gsta1, were upregulated in the HFD-fed mice upon benzene exposure. Furthermore, we utilized a real-time exhaled breath detection technique to monitor exhaled benzene metabolites, and the results indicated that moderate lipid deposition enhanced metabolic activation and increased the elimination of benzene metabolites. Collectively, these findings demonstrate that moderate lipid deposition confers reduced susceptibility to benzene-induced hematotoxicity in mice, at least in part, by accelerating benzene metabolism and clearance.


Benzene , Leukocytes , Mice , Animals , Benzene/toxicity , Acceleration , Lipids , Lipid Metabolism
6.
Environ Health Perspect ; 131(7): 77006, 2023 07.
Article En | MEDLINE | ID: mdl-37458712

BACKGROUND: Chronic lung injury and dysregulated cellular homeostasis in response to particulate matter (PM) exposure are closely associated with adverse health effects. However, an effective intervention for preventing the adverse health effects has not been developed. OBJECTIVES: This study aimed to evaluate the protective effects of nicotinamide mononucleotide (NMN) supplementation on lung injury and elucidate the mechanism by which NMN improved immune function following subchronic PM exposure. METHODS: Six-week-old male C57BL/6J mice were placed in a real-ambient PM exposure system or filtered air-equipped chambers (control) for 16 wk with or without NMN supplementation in drinking water (regarded as Con-H2O, Exp-H2O, Con-NMN and Exp-NMN groups, respectively) in Shijiazhuang City, China (n=20/group). The effects of NMN supplementation (500mg/kg) on PM-induced chronic pulmonary inflammation were assessed, and its mechanism was characterized using single-cell transcriptomic sequencing (scRNA-seq) analysis of whole lung cells. RESULTS: The NMN-treated mice exhibited higher NAD+ levels in multiple tissues. Following 16-wk PM exposure, slightly less pulmonary inflammation and less collagen deposition were noted in mice with NMN supplementation in response to real-ambient PM exposure (Exp-NMN group) compared with the Exp-H2O group (all p<0.05). Mouse lung tissue isolated from the Exp-NMN group was characterized by fewer neutrophils, monocyte-derived cells, fibroblasts, and myeloid-derived suppressor cells induced by subchronic PM exposure as detected by scRNA-seq transcriptomic analysis. The improved immune functions were further characterized by interleukin-17 signaling pathway inhibition and lower secretion of profibrotic cytokines in the Exp-NMN group compared with the Exp-H2O group. In addition, reduced proportions of differentiated myofibroblasts and profibrotic interstitial macrophages were identified in the NMN-supplemented mice in response to PM exposure. Furthermore, less immune function suppression and altered differentiation of pathological cell phenotypes NMN was related to intracellular lipid metabolism activation. DISCUSSION: Our novel findings suggest that NMN supplementation mitigated PM-induced lung injury by regulating immune functions and improving lipid metabolism in male mice, providing a putative intervention method for prevention of human health effects associated with PM exposure. https://doi.org/10.1289/EHP12259.


Lung Injury , Pneumonia , Mice , Male , Humans , Animals , Nicotinamide Mononucleotide/adverse effects , Nicotinamide Mononucleotide/metabolism , Particulate Matter/toxicity , Mice, Inbred C57BL , Pneumonia/chemically induced , Dietary Supplements
7.
Sci Total Environ ; 895: 165112, 2023 Oct 15.
Article En | MEDLINE | ID: mdl-37364843

Exposure to Fine particulate matter (PM2.5) has been associated with various neurological disorders. However, the underlying mechanisms of PM2.5-induced adverse effects on the brain are still not fully defined. Multi-omics analyses could offer novel insights into the mechanisms of PM2.5-induced brain dysfunction. In this study, a real-ambient PM2.5 exposure system was applied to male C57BL/6 mice for 16 weeks, and lipidomics and transcriptomics analysis were performed in four brain regions. The findings revealed that PM2.5 exposure led to 548, 283, 304, and 174 differentially expressed genes (DEGs), as well as 184, 89, 228, and 49 distinctive lipids in the hippocampus, striatum, cerebellum, and olfactory bulb, respectively. Additionally, in most brain regions, PM2.5-induced DEGs were mainly involved in neuroactive ligand-receptor interaction, cytokine-cytokine receptor interaction, and calcium signaling pathway, while PM2.5-altered lipidomic profile were primarily enriched in retrograde endocannabinoid signaling and biosynthesis of unsaturated fatty acids. Importantly, mRNA-lipid correlation networks revealed that PM2.5-altered lipids and DEGs were obviously enriched in pathways involving in bile acid biosynthesis, De novo fatty acid biosynthesis, and saturated fatty acids beta-oxidation in brain regions. Furthermore, multi-omics analyses revealed that the hippocampus was the most sensitive part to PM2.5 exposure. Specifically, dysregulation of Pla2g1b, Pla2g, Alox12, Alox15, and Gpx4 induced by PM2.5 were closely correlated to the disruption of alpha-linolenic acid, arachidonic acid and linoleic acid metabolism in the hippocampus. In summary, our findings highlight differential lipidomic and transcriptional signatures of various brain regions by real-ambient PM2.5 exposure, which will advance our understanding of potential mechanisms of PM2.5-induecd neurotoxicity.


Air Pollutants , Lipidomics , Mice , Male , Animals , Transcriptome , Mice, Inbred C57BL , Particulate Matter/toxicity , Brain , Lipids , Air Pollutants/toxicity
8.
Environ Pollut ; 330: 121808, 2023 Aug 01.
Article En | MEDLINE | ID: mdl-37182580

Micro/nano-plastics (MPs/NPs) are a newly discovered environmental pollutant that can be ingested by humans through food and drinking water. In this study we evaluated the impact of MPs/NPs on the intestinal barrier and its mechanism. Doses of MPs/NPs were used to treat Caco-2/HT29-MTX in-vitro model and in-vivo model. In in-vitro model, 20 nm polystyrene nanoplastics (PS-NPs) had higher cytotoxicity than larger particles (200 nm and 2000 nm), and led to the increase of the permeability along with the decreased expression of tight junction proteins. Intriguingly, 20 nm PS-NPs elevated the expression of MUC2 simultaneously. Further studies revealed that PS-NPs increased the expression of HO1 through ROS generation, and then activated p38 to elevate IL-10 secretion in Caco-2 cell. The IL-10 secreted by Caco-2 cell promoted the expression of MUC2 in HT29-MTX cell through STAT1/3. Elevated MUC2 expression alleviates the cytotoxicity of PS-NPs. Besides, increased intestinal permeability and up-regulation of MUC2 through Ho1/p38/IL-10 pathway was also observed in 20 nm PS-NPs treated mouse model. In conclusion, PS-NPs can induce the intestinal toxicity and result in the increased adaptive expression of MUC2 to resist this adverse effect. People with inadequate mucin expression need to pay more attention to the toxicity of PS-NPs. This study provided a valuable insight for clarifying the mechanism and potential risk of intestinal toxicity induced by nanoplastics.


Nanoparticles , Water Pollutants, Chemical , Animals , Mice , Humans , Caco-2 Cells , Microplastics/toxicity , Polystyrenes/toxicity , Interleukin-10 , Intestines , Nanoparticles/toxicity , Nanoparticles/metabolism , Water Pollutants, Chemical/toxicity
9.
Environ Pollut ; 331(Pt 2): 121887, 2023 Aug 15.
Article En | MEDLINE | ID: mdl-37236586

Cadmium is an environmental pollutant that has extensive deleterious effects. However, the mechanisms underlying the hepatotoxicity induced by long-term exposure to cadmium remained undefined. In the present study, we explored the role of m6A methylation in the development of cadmium-induced liver disease. We showed a dynamic change of RNA methylation in liver tissue from mice administrated with cadmium chloride (CdCl2) for 3, 6 and 9 months, respectively. Particularly, the METTL3 expression was declined in a time-dependent manner, associated with the degree of liver injury, indicating the involvement of METTL3 in hepatotoxicity induced by CdCl2. Moreover, we established a mouse model with liver-specific over-expression of Mettl3 and administrated these mice with CdCl2 for 6 months. Notably, METTL3 highly expressed in hepatocytes attenuated CdCl2-induced steatosis and liver fibrosis in mice. In vitro assay also showed METTL3 overexpression ameliorated the CdCl2-induced cytotoxicity and activation of primary hepatic stellate cells. Furthermore, transcriptome analysis identified 268 differentially expressed genes both in mice liver tissue treated with CdCl2 for 3 months and 9 months. Among them, 115 genes were predicted to be regulated by METTL3 determined by m6A2Target database. Further analysis revealed the perturbation of metabolic pathway, glycerophospholipid metabolism, ErbB signaling pathway, Hippo signaling pathway, and choline metabolism in cancer, and circadian rhythm, led to hepatotoxicity induced by CdCl2. Collectively, our findings reveal new insight into the crucial role of epigenetic modifications in hepatic diseases caused by long-term exposure to cadmium.


Cadmium , Chemical and Drug Induced Liver Injury, Chronic , Methyltransferases , Animals , Mice , Cadmium/toxicity , Chemical and Drug Induced Liver Injury, Chronic/genetics , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Hepatocytes , Methyltransferases/genetics , Methyltransferases/metabolism , RNA, Messenger/metabolism
10.
Environ Sci Technol ; 57(17): 6854-6864, 2023 05 02.
Article En | MEDLINE | ID: mdl-37071573

Fine particulate matter (PM2.5) exposure causes DNA mutations and abnormal gene expression leading to lung cancer, but the detailed mechanisms remain unknown. Here, analysis of genomic and transcriptomic changes upon a PM2.5 exposure-induced human bronchial epithelial cell-based malignant transformed cell model in vitro showed that PM2.5 exposure led to APOBEC mutational signatures and transcriptional activation of APOBEC3B along with other potential oncogenes. Moreover, by analyzing mutational profiles of 1117 non-small cell lung cancers (NSCLCs) from patients across four different geographic regions, we observed a significantly higher prevalence of APOBEC mutational signatures in non-smoking NSCLCs than smoking in the Chinese cohorts, but this difference was not observed in TCGA or Singapore cohorts. We further validated this association by showing that the PM2.5 exposure-induced transcriptional pattern was significantly enriched in Chinese NSCLC patients compared with other geographic regions. Finally, our results showed that PM2.5 exposure activated the DNA damage repair pathway. Overall, here we report a previously uncharacterized association between PM2.5 and APOBEC activation, revealing a potential molecular mechanism of PM2.5 exposure and lung cancer.


Lung Neoplasms , Humans , Lung Neoplasms/pathology , Mutation , Epithelial Cells , Particulate Matter/adverse effects , Genomics , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , Minor Histocompatibility Antigens/adverse effects , Minor Histocompatibility Antigens/metabolism
11.
Part Fibre Toxicol ; 20(1): 10, 2023 04 17.
Article En | MEDLINE | ID: mdl-37069663

BACKGROUND: Pre-existing metabolic diseases may predispose individuals to particulate matter (PM)-induced adverse health effects. However, the differences in susceptibility of various metabolic diseases to PM-induced lung injury and their underlying mechanisms have yet to be fully elucidated. RESULTS: Type 1 diabetes (T1D) murine models were constructed by streptozotocin injection, while diet-induced obesity (DIO) models were generated by feeding 45% high-fat diet 6 weeks prior to and throughout the experiment. Mice were subjected to real-ambient PM exposure in Shijiazhuang City, China for 4 weeks at a mean PM2.5 concentration of 95.77 µg/m3. Lung and systemic injury were assessed, and the underlying mechanisms were explored through transcriptomics analysis. Compared with normal diet (ND)-fed mice, T1D mice exhibited severe hyperglycemia with a blood glucose of 350 mg/dL, while DIO mice displayed moderate obesity and marked dyslipidemia with a slightly elevated blood glucose of 180 mg/dL. T1D and DIO mice were susceptible to PM-induced lung injury, manifested by inflammatory changes such as interstitial neutrophil infiltration and alveolar septal thickening. Notably, the acute lung injury scores of T1D and DIO mice were higher by 79.57% and 48.47%, respectively, than that of ND-fed mice. Lung transcriptome analysis revealed that increased susceptibility to PM exposure was associated with perturbations in multiple pathways including glucose and lipid metabolism, inflammatory responses, oxidative stress, cellular senescence, and tissue remodeling. Functional experiments confirmed that changes in biomarkers of macrophage (F4/80), lipid peroxidation (4-HNE), cellular senescence (SA-ß-gal), and airway repair (CCSP) were most pronounced in the lungs of PM-exposed T1D mice. Furthermore, pathways associated with xenobiotic metabolism showed metabolic state- and tissue-specific perturbation patterns. Upon PM exposure, activation of nuclear receptor (NR) pathways and inhibition of the glutathione (GSH)-mediated detoxification pathway were evident in the lungs of T1D mice, and a significant upregulation of NR pathways was present in the livers of T1D mice. CONCLUSIONS: These differences might contribute to differential susceptibility to PM exposure between T1D and DIO mice. These findings provide new insights into the health risk assessment of PM exposure in populations with metabolic diseases.


Diabetes Mellitus, Type 1 , Lung Injury , Mice , Animals , Particulate Matter/toxicity , Diabetes Mellitus, Type 1/chemically induced , Lung Injury/chemically induced , Mice, Inbred C57BL , Blood Glucose , Obesity/chemically induced , Diet, High-Fat/adverse effects
12.
Front Genet ; 14: 1144903, 2023.
Article En | MEDLINE | ID: mdl-37113990

Cytochrome P450 (CYP450) can mediate fine particulate matter (PM2.5) exposure leading to lung injury. Nuclear factor E2-related factor 2 (Nrf2) can regulate CYP450 expression; however, the mechanism by which Nrf2-/- (KO) regulates CYP450 expression via methylation of its promoter after PM2.5 exposure remains unclear. Here, Nrf2-/- (KO) mice and wild-type (WT) were placed in a PM2.5 exposure chamber (PM) or a filtered air chamber (FA) for 12 weeks using the real-ambient exposure system. The CYP2E1 expression trends were opposite between the WT and KO mice following PM2.5 exposure. After exposure to PM2.5, CYP2E1 mRNA and protein levels were increased in WT mice but decreased in KO mice, and CYP1A1 expression was increased after exposure to PM2.5 in both WT and KO mice. CYP2S1 expression decreased after exposure to PM2.5 in both the WT and KO groups. We studied the effect of PM2.5 exposure on CYP450 promoter methylation and global methylation levels in WT and KO mice. In WT and KO mice in the PM2.5 exposure chamber, among the methylation sites examined in the CYP2E1 promoter, the CpG2 methylation level showed an opposite trend with CYP2E1 mRNA expression. The same relationship was evident between CpG3 unit methylation in the CYP1A1 promoter and CYP1A1 mRNA expression, and between CpG1 unit methylation in the CYP2S1 promoter and CYP2S1 mRNA expression. This data suggests that methylation of these CpG units regulates the expression of the corresponding gene. After exposure to PM2.5, the expression of the DNA methylation markers ten-eleven translocation 3 (TET3) and 5-hydroxymethylcytosine (5hmC) was decreased in the WT group but significantly increased in the KO group. In summary, the changes in CYP2E1, CYP1A1, and CYP2S1 expression in the PM2.5 exposure chamber of WT and Nrf2-/- mice might be related to the specific methylation patterns in their promoter CpG units. After exposure to PM2.5, Nrf2 might regulate CYP2E1 expression by affecting CpG2 unit methylation and induce DNA demethylation via TET3 expression. Our study revealed the underlying mechanism for Nrf2 to regulate epigenetics after lung exposure to PM2.5.

13.
J Hazard Mater ; 449: 130985, 2023 05 05.
Article En | MEDLINE | ID: mdl-36801716

BACKGROUND: Vascular toxicity induced by particulate matter (PM) exposure exacerbates the onset and development of cardiovascular diseases; however, its detailed mechanism remains unclear. Platelet-derived growth factor receptor ß (PDGFRß) acts as a mitogen for vascular smooth muscle cells (VSMCs) and is therefore essential for normal vasoformation. However, the potential effects of PDGFRß on VSMCs in PM-induced vascular toxicity have not yet been elucidated. METHODS: To reveal the potential roles of PDGFRß signalling in vascular toxicity, individually ventilated cage (IVC)-based real-ambient PM exposure system mouse models and PDGFRß overexpression mouse models were established in vivo, along with in vitro VSMCs models. RESULTS: Vascular hypertrophy was observed following PM-induced PDGFRß activation in C57/B6 mice, and the regulation of hypertrophy-related genes led to vascular wall thickening. Enhanced PDGFRß expression in VSMCs aggravated PM-induced smooth muscle hypertrophy, which was attenuated by inhibiting the PDGFRß and janus kinase 2 /signal transducer and activator of transcription 3 (JAK2/STAT3) pathways. CONCLUSION: Our study identified the PDGFRß gene as a potential biomarker of PM-induced vascular toxicity. PDGFRß induced hypertrophic effects through the activation of the JAK2/STAT3 pathway, which may be a biological target for the vascular toxic effects caused by PM exposure.


Muscle, Smooth, Vascular , Signal Transduction , Animals , Mice , Hypertrophy/metabolism , Muscle, Smooth, Vascular/metabolism , Particulate Matter/metabolism , Receptor, Platelet-Derived Growth Factor beta
14.
Sci Total Environ ; 870: 161903, 2023 Apr 20.
Article En | MEDLINE | ID: mdl-36731555

Particulate matter (PM)-induced cardiometabolic disorder contributes to the progression of cardiac diseases, but its epigenetic mechanisms are largely unknown. This study used bioinformatic analysis, in vivo and in vitro multiple models to investigate the role of PM-induced cardiac fibroblast growth factor 1 (FGFR1) methylation and its impact on cardiomyocyte lipid metabolic disruption. Bioinformatic analysis revealed that FGFR1 was associated with cardiac pathologies, mitochondrial function and metabolism, supporting the possibility that FGFR1 may play regulatory roles in PM-induced cardiac functional impairment and lipid metabolism disorders. Individually ventilated cage (IVC)-based real-ambient PM exposure system mouse models were used to expose C57/BL6 mice for six and fifteen weeks. The results showed that PM induced cardiac lipid metabolism disorder, DNA nucleotide methyltransferases (DNMTs) alterations and FGFR1 expression declines in mouse heart. Lipidomics analysis revealed that carnitines, phosphoglycerides and lysophosphoglycerides were most significantly affected by PM exposure. At the cellular level, AC16 cells treated with FGFR1 inhibitor (PD173074) led to impaired mitochondrial and metabolic functions in cardiomyocytes. Inhibition of DNA methylation in cells by 5-AZA partially restored the FGFR1 expression, ameliorated cardiomyocyte injury and mitochondrial functions. These changes involved alterations in AMP-activated protein kinase (AMPK)-peroxisome proliferator activated receptors gamma, coactivator 1 alpha (PGC1α) pathways. Bisulfite sequencing PCR (BSP) and DNA methylation specific PCR (MSP) confirmed that PM exposure induced FGFR1 gene promoter region methylation. These results suggested that, by inducing FGFR1 methylation, PM exposure would affect cardiac injury and deranged lipid metabolism. Overexpression of FGFR1 in mouse heart using adeno-associated virus 9 (AAV9) effectively alleviated PM-induced cardiac impairment and metabolic disorder. Our findings identified that FGFR1 methylation might be one of the potential indicators for PM-induced cardiac mitochondrial and metabolic dysfunction, providing novel insights into underlying PM-related cardiotoxic mechanisms.


Heart Diseases , Particulate Matter , Mice , Animals , Particulate Matter/toxicity , Particulate Matter/metabolism , Lipid Metabolism , Myocytes, Cardiac , DNA Methylation
15.
Arch Toxicol ; 97(4): 1133-1146, 2023 04.
Article En | MEDLINE | ID: mdl-36806895

Intestinal organoid may serve as an alternative model for toxicity testing. However, the linkage between specific morphological alterations in organoids and chemical-induced toxicity has yet to be defined. Here, we generated C57BL/6 mouse intestinal organoids and conducted a morphology-based analysis on chemical-induced toxicity. Alterations in morphology were characterized by large spheroids, hyperplastic organoids, small spheroids, and protrusion-loss organoids, which responded in a concentration-dependent manner to the treatment of four metal(loid)s including cadmium (Cd), lead (Pb), hexavalent chromium (Cr-VI), and inorganic trivalent arsenic (iAs-III). Notably, alterations in organoid morphology characterized by abnormal morphology rate were correlated with specific intestinal toxic effects, including reduction in cell viability and differentiation, induction of apoptosis, dysfunction of mucus production, and damage to epithelial barrier upon repeated administration. The benchmark dose (BMDL10) values of morphological alterations (0.007-0.195 µM) were lower than those of conventional bioassays (0.010-0.907 µM). We also established that the morphologic features of organoids upon Cd, Pb, Cr-VI, or iAs-III treatment were metal specific, and mediated by Wnt, bone morphogenetic protein, apoptosis induction, and Notch signaling pathways, respectively. Collectively, these findings provide novel insights into the relevance of morphological alterations in organoids to specific toxic endpoints and identify specific morphological alterations as potential indicators of enterotoxicity.


Cadmium , Lead , Mice , Animals , Mice, Inbred C57BL , Intestines , Organoids , Intestinal Mucosa
16.
Environ Pollut ; 319: 120981, 2023 Feb 15.
Article En | MEDLINE | ID: mdl-36587786

Numerous studies have revealed that ambient long-term exposure to fine particulate matter (PM2.5) is significantly related to the development of lung cancer, but the molecular mechanisms of PM2.5 exposure-induced lung cancer remains unknown. As an important epigenetic regulator, microRNAs (miRNAs) play vital roles in responding to environment exposure and various diseases including lung cancer development. Here we constructed a PM2.5-induced malignant transformed cell model and found that miR-200 family, especially miR-200a-3p, was involved in the process of PM2.5 induced lung cancer. Further investigation of the function of miR-200 family (miR-200a-3p as a representative revealed that miR-200a-3p promoted cell migration by directly suppressing TNS3 expression. These results suggested that ambient PM2.5 exposure may increase the expression of miR-200 family and then promote the proliferation and migration of lung cancer cells. Our study provided novel model and insights into the molecular mechanism of ambient PM2.5 exposure-induced lung cancer.


Lung Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Lung Neoplasms/metabolism , Particulate Matter/toxicity , Particulate Matter/metabolism , Epithelial Cells/pathology , Cell Transformation, Neoplastic/metabolism
17.
Arch Toxicol ; 97(2): 441-456, 2023 Feb.
Article En | MEDLINE | ID: mdl-36336710

Cisplatin is recommended as a first-line chemotherapeutic agent against advanced non-small cell lung cancer (NSCLC), but acquired resistance substantially limits its clinical efficacy. Recently, DNA methylation has been identified as an essential contributor to chemoresistance. However, the precise DNA methylation regulatory mechanism of cisplatin resistance remains unclear. Here, we found that nicotinamide nucleotide transhydrogenase (NNT) was silenced by DNA hypermethylation in cisplatin resistance A549 (A549/DDP) cells. Also, the DNA hypermethylation of NNT was positively correlated to poor prognosis in NSCLC patients. Overexpression of NNT in A549/DDP cells could reduce their cisplatin resistance, and also suppressed their tumor malignancy such as cell proliferation and clone formation. However, NNT enhanced sensitivity of A549/DDP cells to cisplatin had little to do with its function in mediating NADPH and ROS level, but was mainly because NNT could inhibit protective autophagy in A549/DDP cells. Further investigation revealed that NNT could decrease NAD+ level, thereby inactivate SIRT1 and block the autophagy pathway, while re-activation of SIRT1 through NAD+ precursor supplementation could antagonize this effect. In addition, targeted demethylation of NNT CpG island via CRISPR/dCas9-Tet1 system significantly reduced its DNA methylation level and inhibited the autophagy and cisplatin resistance in A549/DDP cells. Thus, our study found a novel chemoresistance target gene NNT, which played important roles in cisplatin resistance of lung cancer cells. Our findings also suggested that CRISPR-based DNA methylation editing of NNT could be a potential therapeutics method in cisplatin resistance of lung cancer.


Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , NADP Transhydrogenases , Humans , A549 Cells , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Autophagy , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation , Cisplatin/pharmacology , DNA , DNA Methylation , Drug Resistance, Neoplasm/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , NAD/metabolism , NADP Transhydrogenases/genetics , NADP Transhydrogenases/metabolism , Sirtuin 1/metabolism
18.
Front Endocrinol (Lausanne) ; 13: 937281, 2022.
Article En | MEDLINE | ID: mdl-35909554

Benzene is a ubiquitous pollutant and mainly accumulates in adipose tissue which has important roles in metabolic diseases. The latest studies reported that benzene exposure was associated with many metabolic disorders, while the effect of benzene exposure on adipose tissue remains unclear. We sought to investigate the effect using in vivo and in vitro experiments. Male adult C57BL/6J mice were exposed to benzene at 0, 1, 10 and 100 mg/kg body weight by intragastric gavage for 4 weeks. Mature adipocytes from 3T3-L1 cells were exposed to hydroquinone (HQ) at 0, 1, 5 and 25 µM for 24 hours. Besides the routine hematotoxicity, animal experiments also displayed significant body fat content decrease from 1 mg/kg. Interestingly, the circulating non-esterified fatty acid (NEFA) level increased from the lowest dose (ptrend < 0.05). Subsequent analysis indicated that body fat content decrease may be due to atrophy of white adipose tissue (WAT) upon benzene exposure. The average adipocyte area of WAT decreased significantly even from 1 mg/kg with no significant changes in total number of adipocytes. The percentages of small and large adipocytes in WAT began to significantly increase or decrease from 1 mg/kg (all p < 0.05), respectively. Critical genes involved in lipogenesis and lipolysis were dysregulated, which may account for the disruption of lipid homeostasis. The endocrine function of WAT was also disordered, manifested as significant decrease in adipokine levels, especially the leptin. In vitro cell experiments displayed similar findings in decreased fat content, dysregulated critical lipid metabolism genes, and disturbed endocrine function of adipocytes after HQ treatment. Pearson correlation analysis showed positive correlations between white blood cell (WBC) count with WAT fat content and plasma leptin level (r = 0.330, 0.344, both p < 0.05). This study shed light on the novel aspect that benzene exposure could induce lipodystrophy and disturb endocrine function of WAT, and the altered physiology of WAT might in turn affect benzene-induced hematotoxicity and metabolic disorders. The study provided new insight into understanding benzene-induced toxicity and the relationship between benzene and adipose tissue.


Leptin , Lipodystrophy , Adipose Tissue, White/metabolism , Animals , Benzene/metabolism , Benzene/toxicity , Leptin/metabolism , Lipodystrophy/metabolism , Male , Mice , Mice, Inbred C57BL
19.
Toxicol Sci ; 189(2): 287-300, 2022 09 24.
Article En | MEDLINE | ID: mdl-35913497

Fine particulate matter (PM) is a leading environmental cause for the increased morbidity and mortality of atherosclerosis (AS) worldwide, but little is known about the toxic component and disturbance of PM exposure on foam cell formation, a crucial pathological process in AS. Airborne magnetite nanoparticles (NPs) have been reported to be detected in human serum, which inevitably encounter with macrophages in atherosclerotic plaques, thus throwing potential disturbance on the formation of macrophage-derived foam cells. Here we comprehensively unveiled that the environmental concentrations of PM exposure triggered and potentiated the formation of macrophage-derived foam cells using both real-ambient PM-exposed mice and AS mice models, including high-fat diet-fed mice and apolipoprotein E-deficient mice. The in vitro model further defined the dose-dependent response of PM treatment on foam cell formation. Interestingly, airborne magnetite NPs rather than nonmagnetic NPs at the same concentration were demonstrated to be the key toxic component of PM in the promoted foam cell formation. Furthermore, magnetite NPs exposure led to abnormal cholesterol accumulation in macrophages, which was attributed to the attenuation of cholesterol efflux and enhancement of lipoprotein uptake, but independent of cholesterol esterification. The in-depth data revealed that magnetite NPs accelerated the protein ubiquitination and subsequent degradation of SR-B1, a crucial transporter of cholesterol efflux. Collectively, these findings for the first time identified magnetite NPs as one key toxic component of PM-promoted foam cell formation, and provided new insight of abnormal cholesterol metabolism into the pathogenesis of PM-induced AS.


Atherosclerosis , Magnetite Nanoparticles , ATP Binding Cassette Transporter 1/metabolism , Animals , Atherosclerosis/chemically induced , Atherosclerosis/metabolism , Cholesterol/metabolism , Ferrosoferric Oxide/metabolism , Foam Cells/pathology , Homeostasis , Humans , Lipoproteins, LDL/metabolism , Magnetite Nanoparticles/toxicity , Mice , Particulate Matter/metabolism , Particulate Matter/toxicity
20.
Toxicol Appl Pharmacol ; 449: 116109, 2022 08 15.
Article En | MEDLINE | ID: mdl-35688185

Airborne nano-scale particulate matter (nPM) exposure is a risk factor for neurological diseases. However, to date, there has been no comprehensive evaluation of ambient nPM's neurotoxicity. We examined the toxic effects of nPM on human neurons derived from induced pluripotent stem cells (iPSCs) at doses ranging from 0 to 200 µg/mL, and employed whole-genome RNA-sequencing in different dose groups to gain further insight into the neurotoxicity of ambient nPM. Our findings showed that nPM was absorbed by neurons, and induced a variety of toxic effects. The apical benchmark dose lower confidence bound (aBMDL) values of each effect endpoint were ranked as follows, in ascending order: mitochondrial membrane potential, neurite length, early apoptosis, cell viability. BMD analysis based on transcriptomic data revealed that the point of departure (PoD) of the 20 pathways with the lowest p-values (0.75 µg/mL), the top 20 upstream regulators (0.79 µg/mL) and the neurological diseases (0.77 µg/mL) could be appropriate for nPM neurotoxicity evaluation. The transcriptomic PoDs (tPoDs) were similar to apical PoDs (aPoDs) since their absolute fold differences were within 10-fold. Further analysis of the transcriptomic data revealed that nPM exposure could disturb the pathways related to ferroptosis, neurotransmitters, xenobiotic metabolism, etc., which might be critical in regulating nPM neurotoxicity. We also found that low-dose nPM induced cytokine signaling pathways, while high doses of nPM activated cell-cycle regulation and DNA repair pathways. Our results indicate that BMD modeling based on transcriptomic data could be useful in illustrating the neurotoxic mechanism, and also could be a promising method for evaluating the potential health risks of nPM.


Induced Pluripotent Stem Cells , Neurotoxicity Syndromes , Benchmarking , Humans , Neurons , Neurotoxicity Syndromes/genetics , Particulate Matter/toxicity , Transcriptome
...