Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Nat Commun ; 15(1): 4920, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38858353

The differentiation of the stroma is a hallmark event during postnatal uterine development. However, the spatiotemporal changes that occur during this process and the underlying regulatory mechanisms remain elusive. Here, we comprehensively delineated the dynamic development of the neonatal uterus at single-cell resolution and characterized two distinct stromal subpopulations, inner and outer stroma. Furthermore, single-cell RNA sequencing revealed that uterine ablation of Pr-set7, the sole methyltransferase catalyzing H4K20me1, led to a reduced proportion of the inner stroma due to massive cell death, thus impeding uterine development. By combining RNA sequencing and epigenetic profiling of H4K20me1, we demonstrated that PR-SET7-H4K20me1 either directly repressed the transcription of interferon stimulated genes or indirectly restricted the interferon response via silencing endogenous retroviruses. Declined H4K20me1 level caused viral mimicry responses and ZBP1-mediated apoptosis and necroptosis in stromal cells. Collectively, our study provides insight into the epigenetic machinery governing postnatal uterine stromal development mediated by PR-SET7.


Epigenesis, Genetic , Histone-Lysine N-Methyltransferase , Stromal Cells , Uterus , Female , Animals , Uterus/metabolism , Stromal Cells/metabolism , Mice , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Interferons/metabolism , Interferons/genetics , Endogenous Retroviruses/genetics , Apoptosis/genetics , Mice, Inbred C57BL , Cell Death/genetics , Necroptosis/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Histones/metabolism , Single-Cell Analysis , Mice, Knockout , Cell Differentiation/genetics
2.
Cell Death Differ ; 2024 May 02.
Article En | MEDLINE | ID: mdl-38698061

Uterine luminal epithelia (LE), the first layer contacting with the blastocyst, acquire receptivity for normal embryo implantation. Besides the well-accepted transcriptional regulation dominated by ovarian estrogen and progesterone for receptivity establishment, the involvement of epigenetic mechanisms remains elusive. This study systematically profiles the transcriptome and genome-wide H3K27me3 distribution in the LE throughout the preimplantation. Combining genetic and pharmacological approaches targeting the PRC2 core enzyme Ezh1/2, we demonstrate that the defective remodeling of H3K27me3 in the preimplantation stage disrupts the differentiation of LE, and derails uterine receptivity, resulting in implantation failure. Specifically, crucial epithelial genes, Pgr, Gata2, and Sgk1, are transcriptionally silenced through de novo deposition of H3K27me3 for LE transformation, and their sustained expression in the absence of H3K27me3 synergistically confines the nuclear translocation of FOXO1. Further functional studies identify several actin-associated genes, including Arpin, Tmod1, and Pdlim2, as novel direct targets of H3K27me3. Their aberrantly elevated expression impedes the morphological remodeling of LE, a hindrance alleviated by treatment with cytochalasin D which depolymerizes F-actin. Collectively, this study uncovers a previously unappreciated epigenetic regulatory mechanism for the transcriptional silencing of key LE genes via H3K27me3, essential for LE differentiation and thus embryo implantation.

3.
Cell Rep ; 43(6): 114246, 2024 May 18.
Article En | MEDLINE | ID: mdl-38762885

The decidua plays a crucial role in providing structural and trophic support to the developing conceptus before placentation. Following embryo attachment, embryonic components intimately interact with the decidual tissue. While evidence indicates the participation of embryo-derived factors in crosstalk with the uterus, the extent of their impact on post-implantation decidual development requires further investigation. Here, we utilize transgenic mouse models to selectively eliminate primary trophoblast giant cells (pTGCs), the embryonic cells that interface with maternal tissue at the forefront. pTGC ablation impairs decidualization and compromises decidual interferon response and lipid metabolism. Mechanistically, pTGCs release factors such as interferon kappa (IFNK) to strengthen the decidual interferon response and lipoprotein lipase (LPL) to enhance lipid accumulation within the decidua, thereby promoting decidualization. This study presents genetic and metabolomic evidence reinforcing the proactive role of pTGC-derived factors in mobilizing maternal resources to strengthen decidualization, facilitating the normal progression of early pregnancy.

4.
Elife ; 122023 07 27.
Article En | MEDLINE | ID: mdl-37498654

Decidualization, denoting the transformation of endometrial stromal cells into specialized decidual cells, is a prerequisite for normal embryo implantation and a successful pregnancy in human. Here, we demonstrated that knockout of Gαq lead to an aberrantly enhanced inflammatory state during decidualization. Furthermore, we showed that deficiency of Gαq resulted in over-activation of nuclear factor (NF)-κB signaling, due to the decreased expression of NFκBIA, which encode the IκB protein and is the negative regulator for NF-κB. Mechanistically, Gαq deficiency decreased the Protein kinase D (PKD, also called PKCµ) phosphorylation levels, leading to attenuated HDAC5 phosphorylation and thus its nuclear export. Aberrantly high level of nuclear HDAC5 retarded histone acetylation to inhibit the induced NFκBIA transcription during decidualization. Consistently, pharmacological activation of the PKD/PKCµ or inhibition of the HDAC5 restored the inflammatory state and proper decidual response. Finally, we disclosed that over-active inflammatory state in Gαq-deficient decidua deferred the blastocyst hatching and adhesion in vitro, and the decidual expression of Gαq was significantly lower in women with recurrent pregnancy loss compared with normal pregnancy. In brief, we showed here that Gαq as a key regulator of the inflammatory cytokine's expression and decidual homeostasis in response to differentiation cues, which is required for successful implantation and early pregnancy.


Decidua , NF-kappa B , Pregnancy , Female , Humans , NF-kappa B/metabolism , Decidua/metabolism , Active Transport, Cell Nucleus , Protein Kinase C/metabolism , GTP-Binding Proteins/metabolism , Stromal Cells/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/metabolism
5.
Nat Commun ; 14(1): 3220, 2023 06 03.
Article En | MEDLINE | ID: mdl-37270588

Progesterone (P4) is required for the preparation of the endometrium for a successful pregnancy. P4 resistance is a leading cause of the pathogenesis of endometrial disorders like endometriosis, often leading to infertility; however, the underlying epigenetic cause remains unclear. Here we demonstrate that CFP1, a regulator of H3K4me3, is required for maintaining epigenetic landscapes of P4-progesterone receptor (PGR) signaling networks in the mouse uterus. Cfp1f/f;Pgr-Cre (Cfp1d/d) mice showed impaired P4 responses, leading to complete failure of embryo implantation. mRNA and chromatin immunoprecipitation sequencing analyses showed that CFP1 regulates uterine mRNA profiles not only in H3K4me3-dependent but also in H3K4me3-independent manners. CFP1 directly regulates important P4 response genes, including Gata2, Sox17, and Ihh, which activate smoothened signaling pathway in the uterus. In a mouse model of endometriosis, Cfp1d/d ectopic lesions showed P4 resistance, which was rescued by a smoothened agonist. In human endometriosis, CFP1 was significantly downregulated, and expression levels between CFP1 and these P4 targets are positively related regardless of PGR levels. In brief, our study provides that CFP1 intervenes in the P4-epigenome-transcriptome networks for uterine receptivity for embryo implantation and the pathogenesis of endometriosis.


Endometriosis , Progesterone , Trans-Activators , Animals , Female , Humans , Mice , Pregnancy , Embryo Implantation/genetics , Endometriosis/genetics , Endometriosis/metabolism , Endometrium/metabolism , Epigenesis, Genetic , Progesterone/pharmacology , Progesterone/metabolism , Receptors, Progesterone/genetics , Receptors, Progesterone/metabolism , RNA, Messenger/metabolism , Uterus/metabolism , Trans-Activators/genetics
6.
Cell Death Dis ; 13(9): 757, 2022 09 02.
Article En | MEDLINE | ID: mdl-36056002

Ciliated and secretory cells are two major cell types that comprise the oviduct epithelia. Accumulating evidences support a role of oviductal multiciliated epithelia for embryo transport, however the mechanisms underlying this specialized cell type differentiation remain elusive. Here, we report that CDC42 depletion in oviduct epithelia hampers the morphogenesis of multiciliated cell, and results in embryo retention, leading to early pregnancy failure. Utilizing the oviduct organoid model, we further observed that CDC42 guides secretory cells transition into multiciliated cells independent of its GTPase activity and the well-known Notch pathway. Further exploration uncovered the AKT as a novel indispensable regulator for multiciliated cells differentiation, whose activity was maintained by CDC42 through interacting with the p110ß. Consistently, re-activating AKT partially incites multiciliated cells differentiation in Cdc42 knockout oviductal organoids. Finally, low levels of CDC42 and phospho-AKT with reduced multiciliated cells in the oviduct are observed in women with ectopic pregnancy. Collectively, we provide previously unappreciated evidence that CDC42-AKT signaling is a critical determinant for morphogenesis of oviduct multiciliated cell, which possesses the clinical application in understanding the pathology of ectopic pregnancy and facilitating the development of prevention strategies.


Embryo, Mammalian/metabolism , Pregnancy, Ectopic , Proto-Oncogene Proteins c-akt/metabolism , cdc42 GTP-Binding Protein/metabolism , Animals , Fallopian Tubes , Female , Humans , Mice , Organoids , Oviducts/metabolism , Pregnancy , Pregnancy, Ectopic/metabolism , Proto-Oncogene Proteins c-akt/genetics
7.
Proc Natl Acad Sci U S A ; 119(32): e2206000119, 2022 08 09.
Article En | MEDLINE | ID: mdl-35914132

Estrogen and progesterone specify the establishment of uterine receptivity mainly through their respective nuclear receptors, ER and PR. PR is transcriptionally induced by estrogen-ER signaling in the endometrium, but how the protein homeostasis of PR in the endometrium is regulated remains elusive. Here, we demonstrated that the uterine-selective depletion of P38α derails normal uterine receptivity ascribed to the dramatic down-regulation of PR protein and disordered progesterone responsiveness in the uterine stromal compartment, leading to defective implantation and female infertility. Specifically, Ube3c, an HECT family E3 ubiquitin ligase, targets PR for polyubiquitination and thus proteasome degradation in the absence of P38α. Moreover, we discovered that P38α restrains the polyubiquitination activity of Ube3c toward PR by phosphorylating the Ube3c at serine741 . In summary, we provided genetic evidence for the regulation of PR protein stability in the endometrium by P38α and identified Ube3c, whose activity was modulated by P38α-mediated phosphorylation, as an E3 ubiquitin ligase for PR in the uterus.


Embryo Implantation , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase 14 , Progesterone , Uterus , Animals , Embryo Implantation/physiology , Endometrium/metabolism , Female , Infertility, Female , Mitogen-Activated Protein Kinase 14/metabolism , Phosphorylation , Progesterone/metabolism , Receptors, Progesterone/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Uterus/enzymology , Uterus/metabolism
8.
PLoS Genet ; 17(8): e1009786, 2021 08.
Article En | MEDLINE | ID: mdl-34460816

The maternal recognition of pregnancy is a necessary prerequisite for gestation maintenance through prolonging the corpus luteum lifespan and ensuring progesterone production. In addition to pituitary prolactin and placental lactogens, decidual derived prolactin family members have been presumed to possess luteotropic effect. However, there was a lack of convincing evidence to support this hypothesis. Here, we unveiled an essential role of uterine Notch2 in pregnancy recognition and corpus luteum maintenance. Uterine-specific deletion of Notch2 did not affect female fertility. Nevertheless, the expression of decidual Prl8a2, a member of the prolactin family, was downregulated due to Notch2 ablation. Subsequently, we interrupted pituitary prolactin function to determine the luteotropic role of the decidua by employing the lipopolysaccharide-induced prolactin resistance model, or blocking the prolactin signaling by prolactin receptor-Fc fusion protein, or repressing pituitary prolactin release by dopamine receptor agonist bromocriptine, and found that Notch2-deficient females were more sensitive to these stresses and ended up in pregnancy loss resulting from abnormal corpus luteum function and insufficient serum progesterone level. Overexpression of Prl8a2 in Notch2 knockout mice rescued lipopolysaccharide-induced abortion, highlighting its luteotropic function. Further investigation adopting Rbpj knockout and DNMAML overexpression mouse models along with chromatin immunoprecipitation assay and luciferase analysis confirmed that Prl8a2 was regulated by the canonical Notch signaling. Collectively, our findings demonstrated that decidual prolactin members, under the control of uterine Notch signaling, assisted pituitary prolactin to sustain corpus luteum function and serum progesterone level during post-implantation phase, which was conducive to pregnancy recognition and maintenance.


Corpus Luteum/metabolism , Prolactin/metabolism , Receptor, Notch2/metabolism , Animals , Corpus Luteum Maintenance/drug effects , Decidua/metabolism , Embryo Implantation/physiology , Female , Mice , Pituitary Gland/metabolism , Placenta/metabolism , Pregnancy , Progesterone/metabolism , Receptor, Notch2/physiology , Uterus/metabolism
9.
Hum Reprod ; 35(11): 2439-2453, 2020 11 01.
Article En | MEDLINE | ID: mdl-33047116

STUDY QUESTION: Does osteoprotegerin (OPG) promote human endometrial stromal decidualization? SUMMARY ANSWER: OPG is essential for human endometrial stromal decidualization through its interaction with syndecan-1 to decrease Akt phosphorylation. WHAT IS KNOWN ALREADY: OPG (a cytokine receptor) levels are significantly increased in the circulation of pregnant women. However, the role and mechanism of OPG in human endometrial stromal cell (ESC) decidualization remain elusive. STUDY DESIGN, SIZE, DURATION: We analyzed the endometrial expression of OPG in endometrial tissue samples collected from women with regular menstrual cycles (ranging from 25 to 35 days), and decidual tissue samples collected from woman with normal early pregnancy or recurrent pregnancy loss (RPL) who visited the Department of Gynecology and Obstetrics at a tertiary care center from January to October 2018. None of the subjects had hormonal treatment for at least 3 months prior to the procedure. In total, 16 women with normal early pregnancy and 15 with RPL were selected as subjects for this study. The function of OPG in decidualization was explored in a human endometrial stromal cell (HESC) line and primary cultures of HESCs. PARTICIPANTS/MATERIALS, SETTING, METHODS: We collected endometrial tissues (by biopsy) from the subjects during their menstrual cycle and decidual tissues from subjects with a normal early pregnancy and those with RPL at the time of dilation and curettage. The control group comprised randomly selected women who underwent termination of an apparently normal early pregnancy. The endometrial OPG expression was analyzed using immunohistochemical staining and quantitative RT-PCR (qRT-PCR). Immunofluorescence staining and western blot, and qRT-PCR were used to explore the mRNA and protein expression, respectively, of OPG in an immortalized HESC line and in primary cultures of HESC during proliferation and decidualization. siRNA-mediated knockdown experiments were performed to examine the function of OPG in HESC proliferation and decidualization. Flow cytometry and the cell proliferation MTS assay were performed to further examine the role of OPG in HESC proliferation. We also analyzed decidual marker gene expression by qRT-PCR to assess the consequences of OPG loss for HESC decidualization. A co-immunoprecipitation (IP) assay was used to determine the potential interaction between the OPG and Syndecan-1. Western blot analysis of the rescue experiments performed using the phosphatidylinositol 3-kinase (PI3K) signaling-specific inhibitor LY294002 was used to investigate the downstream signaling pathways through which OPG could mediate HESC decidualization. MAIN RESULTS AND THE ROLE OF CHANCE: OPG was expressed in both the human endometrium and in vitro decidualized ESCs. Knockdown experiments revealed that OPG loss impaired the expression of IGF-binding protein-1 (IGFBP-1) (P < 0.05) and prolactin (PRL) (P < 0.05), two specific markers of decidualization, in HESC undergoing decidualization. We also uncovered that OPG knockdown induced the aberrant activation of Akt (protein kinase B) during HESC decidualization (P < 0.05). The inhibition of Akt activation could rescue the impaired expression of the decidual markers PRL (P < 0.05) and IGFBP-1 (P < 0.05) in response to OPG knockdown. Syndecan-1 was considered a potential receptor candidate, as it was expressed in both the endometrium and in vitro cultured stromal cells. Subsequent co-IP experiments demonstrated the interaction between OPG and Syndecan-1 during decidualization. In addition, Syndecan-1 knockdown not only clearly attenuated the decidualization markers PRL (P < 0.05) and IGFBP-1 (P < 0.05) but also induced the aberrant enhancement of Akt phosphorylation in decidualized cells, consistent with the phenotype of OPG knockdown cells. Finally, we revealed that the transcript and protein expression of both OPG and Syndecan-1 was significantly lower in the decidual samples of women with RPL than in those of women with normal pregnancy (P < 0.05). LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: In this study, based on a number of approaches, it was demonstrated that OPG mediated the repression of Akt that occurs during human stromal cell decidualization, however, the molecular link between OPG and Akt signaling was not determined, and still requires further exploration. WIDER IMPLICATIONS OF THE FINDINGS: OPG is required for decidualization, and a decrease in OPG levels is associated with RPL. These findings provide a new candidate molecule for the diagnosis and potential treatment of RPL. STUDY FUNDING/COMPETING INTEREST(S): This work was supported in part by the National Natural Science Foundation of China U1605223 (to G.S.), 81701457 (to Y.J.) and 81601349 (to Y.J.). The authors have no conflicts of interest to disclose.


Decidua , Proto-Oncogene Proteins c-akt , Cells, Cultured , China , Decidua/metabolism , Endometrium/metabolism , Female , Humans , Osteoprotegerin/genetics , Osteoprotegerin/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Pregnancy , Proto-Oncogene Proteins c-akt/metabolism , Stromal Cells/metabolism , Syndecan-1/genetics , Syndecan-1/metabolism
10.
Front Plant Sci ; 8: 1533, 2017.
Article En | MEDLINE | ID: mdl-29038660

Pak choi (Brassica rapa ssp. chinensis Makino) is a representative seed vernalization vegetable and premature bolting in spring can cause significant economic loss. Thus, it is critical to elucidate the mechanism of molecular regulation of vernalization and floral bud initiation to prevent premature bolting. Gibberellin (GA) is the key plant hormone involved in regulating plant development. To gain a better understanding of GA metabolism in pak choi, the content of GA in pak choi was measured at different stages of plant development using enzyme-linked immunosorbent assay. The results showed that the GA content increased significantly after low-temperature treatment (4°C) and then decreased rapidly with vegetative growth. During floral bud initiation, the GA content increased rapidly until it peaked upon floral bud differentiation. To elucidate these changes in GA content, the expression of homologous genes encoding enzymes directly involved in GA metabolism were analyzed. The results showed that the changes in the expression of four genes involved in GA synthesis (Bra035120 encoding ent-kaurene synthase, Bra009868 encoding ent-kaurene oxidase, Bra015394 encoding ent-kaurenoic acid oxidase, and Bra013890 encoding GA20-oxidase) were correlated with the changes in GA content. In addition, by comparing the expression of genes involved in GA metabolism at different growth stages, seven differentially expressed genes (Bra005596, Bra009285, Bra022565, Bra008362, Bra033324, Bra010802, and Bra030500) were identified. The differential expression of these genes were directly correlated with changes in GA content, suggesting that these genes were directly related to vernalization, floral bud initiation and development. These results contribute to the understanding of the molecular mechanism of changes in GA content during different developmental phases in pak choi.

...