Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(24): 10558-10566, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38833713

RESUMEN

Soot particles emitted from aircraft engines constitute a major anthropogenic source of pollution in the vicinity of airports and at cruising altitudes. This emission poses a significant threat to human health and may alter the global climate. Understanding the characteristics of soot particles, particularly those generated from Twin Annular Premixing Swirler (TAPS) combustors, a mainstream combustor in civil aviation engines, is crucial for aviation environmental protection. In this study, a comprehensive characterization of soot particles emitted from TAPS combustors was conducted using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and Raman spectroscopy. The morphology and nanostructure of soot particles were examined across three distinct fuel stage ratios (FSR), at 10%, 15%, and 20%. The SEM analysis of soot particle morphology revealed that coated particles constitute over 90% of the total particle sample, with coating content increasing proportionally to the fuel stage ratio. The results obtained from HRTEM indicated that average primary particle sizes increase with the fuel stage ratio. The results of HRTEM and Raman spectroscopy suggest that the nanostructure of soot particles becomes more ordered and graphitized with an increasing fuel stage ratio, resulting in lower oxidation activity. Specifically, soot fringe length increased with the fuel stage ratio, while soot fringe tortuosity and separation distance decreased. In addition, there is a prevalent occurrence of defects in the graphitic lattice structure of soot particles, suggesting a high degree of elemental carbon disorder.


Asunto(s)
Aeronaves , Hollín , Nanoestructuras/química , Tamaño de la Partícula , Emisiones de Vehículos , Espectrometría Raman , Contaminantes Atmosféricos
2.
Sci Total Environ ; 945: 174128, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38908593

RESUMEN

With the continuous increase in global air transportation, the impact of ultrafine particulate matter (PM) emissions from aviation on human health and environmental pollution is becoming increasingly severe. In addition to carbon reduction throughout the lifecycle, Sustainable Aviation Fuels (SAF) also represent a significant pathway for reducing PM emissions. However, due to issues such as airworthiness safety and adaptability, existing research has mostly focused on the emission performance of SAF when blended with traditional fuels at <50 %, leaving the emission characteristics of higher blending ratios to be explored. In this study, using measurement methods recommended by the International Civil Aviation Organization (ICAO), the PM emission reduction characteristics of small turbofan engines fueled with 100 % Hydroprocessed Esters and Fatty Acids (HEFA)-SAF were experimentally evaluated and compared with traditional fuels RP-3 and Diesel, while avoiding the interference of lubricant blending combustion. The results showed that the peak number concentration of particle size distribution (PSD), PM total number, as well as the number and mass concentration of non-volatile particulate matter (nvPM) decreased initially and then increased with rising thrust conditions. HEFA-SAF exhibits PSD with smaller diameters, and the Geometric Mean Diameter (GMD) ranges from 7.7 nm to 20.3 nm under all conditions. Both volatile particulates (vPM) and nvPM from HEFA-SAF are significantly reduced, with nvPM number emission index (EIn) being 92 % and 71 % lower than Diesel and RP-3, respectively. The nvPM mass emission index (EIm) also shows reductions of 96 % and 89 % compared to Diesel and RP-3. Microscopic characterization also indicated that using HEFA-SAF emitted fewer and smaller PMs. This study establishes a foundation for evaluating the effectiveness of 100 % SAF in reducing PM emissions within the aviation sector, and contributes to the airworthiness regulations development related to the use of SAF in a variety of application environments, alongside enhancing environmental protection measures.

3.
Sci Total Environ ; 929: 172432, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38615768

RESUMEN

In recent years, there has been an increasing amount of research on nitrogen oxides (NOx) emissions, and the environmental impact of aviation NOx emissions at cruising altitudes has received widespread attention. NOx may play a crucial role in altering the composition of the atmosphere, particularly regarding ozone formation in the upper troposphere. At present, the ground emission database based on the landing and takeoff (LTO) cycle is more comprehensive, while high-altitude emission data is scarce due to the prohibitively high cost and the inevitable measurement uncertainty associated with in-flight sampling. Therefore, it is necessary to establish a comprehensive NOx emission database for the entire flight envelope, encompassing both ground and cruise phases. This will enable a thorough assessment of the impact of aviation NOx emissions on climate and air quality. In this study, a prediction model has been developed via convolutional neural network (CNN) technology. This model can predict the ground and cruise NOx emission index for turbofan engines and mixed turbofan engines fueled by either conventional aviation kerosene or sustainable aviation fuels (SAFs). The model utilizes data from the engine emission database (EEDB) released by the International Civil Aviation Organization (ICAO) and results obtained from several in-situ emission measurements conducted during ground and cruise phases. The model has been validated by comparing measured and predicted data, and the results demonstrate its high prediction accuracy for both the ground (R2 > 0.95) and cruise phases (R2 > 0.9). This surpasses traditional prediction models that rely on fuel flow rate, such as the Boeing Fuel Flow Method 2 (BFFM2). Furthermore, the model can predict NOx emissions from aircrafts burning SAFs with satisfactory accuracy, facilitating the development of a more complete and accurate aviation NOx emission inventory, which can serve as a basis for aviation environmental and climatic research. SYNOPSIS: The utilization of the ANOEPM-CNN offers a foundation for establishing more precise emission inventories, thereby reducing inaccuracies in assessing the impact of aviation NOx emissions on climate and air quality.

4.
Int J Mol Sci ; 25(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38612746

RESUMEN

Signal peptide peptidase (SPP) and its homologs, signal peptide peptidase-like (SPPL) proteases, are members of the GxGD-type aspartyl protease family, which is widespread in plants and animals and is a class of transmembrane proteins with significant biological functions. SPP/SPPLs have been identified; however, the functions of SPP/SPPL in rapeseed (Brassica napus L.) have not been reported. In this study, 26 SPP/SPPLs were identified in rapeseed and categorized into three groups: SPP, SPPL2, and SPPL3. These members mainly contained the Peptidase_A22 and PA domains, which were distributed on 17 out of 19 chromosomes. Evolutionary analyses indicated that BnaSPP/SPPLs evolved with a large number of whole-genome duplication (WGD) events and strong purifying selection. Members are widely expressed and play a key role in the growth and development of rapeseed. The regulation of rapeseed pollen fertility by the BnaSPPL4 gene was further validated through experiments based on bioinformatics analysis, concluding that BnaSPPL4 silencing causes male sterility. Cytological observation showed that male infertility caused by loss of BnaSPPL4 gene function occurs late in the mononucleate stage due to microspore dysplasia.


Asunto(s)
Brassica napus , Brassica rapa , Infertilidad Masculina , Animales , Humanos , Masculino , Brassica napus/genética , Ácido Aspártico Endopeptidasas , Fertilidad/genética , Péptido Hidrolasas
5.
ACS Appl Mater Interfaces ; 15(37): 43282-43293, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37672316

RESUMEN

Soil salinization is one of the global ecological and environmental problems that are tremendously threatening to the sustainable development of agriculture and food supply. In this work, a facile strategy was proposed to enhance the salt stress resistance of plants by preparing salicylic acid (SA)-functionalized mesoporous silica nanocarriers loaded with emamectin benzoate (EB). The obtained nanopesticides demonstrated a particle size of less than 300 nm. As an endogenous plant hormone, the grafting of SA in this nanopesticide system improved the uptake and translocation of pesticides in cucumber plants by 145.06%, and the applications of such nanopesticides enhanced the salt stress resistance of plants. This phenomenon was accounted for by the SA-functionalized nanopesticides increasing the superoxide dismutase and peroxidase activities (640 and 175%, respectively) and reducing the malondialdehyde content (54.10%), correspondingly alleviating the accumulation of reactive oxygen species and cell damage in plants. The above results were also confirmed by Evans blue staining and NBT staining experiments on cucumber leaves. In addition, these nanopesticides exhibited high insecticidal toxicity, and they also demonstrated biosafety toward nontarget organisms due to their sustained release property. Therefore, this work developed a biosafe SA-functionalized nanopesticide system, and these newly developed nanopesticides have potential in the agricultural field for enhancing salt stress resistance of plants.


Asunto(s)
Agricultura , Ácido Salicílico , Transporte Biológico , Malondialdehído , Ácido Salicílico/farmacología , Estrés Salino
6.
Front Pharmacol ; 14: 1116073, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063263

RESUMEN

SHR6390 (dalpiciclib) is a selective and effective cyclin-dependent kinase (CDK) 4/6 inhibitor and an effective cancer therapeutic agent. On 31 December 2021, the new drug application was approved by National Medical Product Administration (NMPA). The metabolism, mass balance, and pharmacokinetics of SHR6390 in 6 healthy Chinese male subjects after a single oral dose of 150 mg [14C]SHR6390 (150 µCi) in this research. The Tmax of SHR6390 was 3.00 h. In plasma, the t 1/2 of SHR6390 and its relative components was approximately 17.50 h. The radioactivity B/P (blood-to-plasma) AUC0-t ratio was 1.81, indicating the preferential distribution of drug-related substances in blood cells. At 312 h after administration, the average cumulative excretion of radioactivity was 94.63% of the dose, including 22.69% in urine and 71.93% in stool. Thirteen metabolites were identified. In plasma, because of the low level of radioactivity, only SHR6390 was detected in pooled AUC0-24 h plasma. Stool SHR6390 was the main component in urine and stool. Five metabolites were identified in urine, and 12 metabolites were identified in stool. Overall, faecal clearance is the main method of excretion.

7.
Int J Biol Macromol ; 229: 123-135, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36528146

RESUMEN

Oxidative stress and infection are the main reasons for postponement of wound healing rate. They can potentially lead to serious inflammation and eventually lead to a longer and more painful recovery phase. Although wound dressings based on synthetic materials with antioxidative property have been proved to exhibit remarkable effect in controlling ROS level and improving wound healing, issues, such as high cost in raw materials, complicated procedures, usage of various toxic additives, and potential allergies, have significantly confined further clinical applications. In this study, a novel type of tissue engineering scaffold, based on tomatoes (Solanum lycopersicon) and gelatin methacryloyl (GelMA), was prepared via facile lyophilization and photo cross-link method (SL/GelMA). By taking advantages of various antioxidative components, such as carotenoids, flavonoids, phenolic acids, vitamin E, and vitamin C in tomatoes, SL/GelMA can effectively regulate ROS level, relieve the oxidative stress in wound bed, promote cell migration and angiogenesis, contribute to collagen deposition, and thus accelerate the rate of wound enclosure. Along with its high biocompatibility and low allergic potential, we believe that the food-derived wound dressing with facile preparation method, easy accessibility, and high cost-effectiveness can be translated for clinical treatments of various chronic wounds.


Asunto(s)
Hidrogeles , Solanum lycopersicum , Hidrogeles/farmacología , Especies Reactivas de Oxígeno , Cicatrización de Heridas , Gelatina/farmacología , Antioxidantes/farmacología
8.
Br J Clin Pharmacol ; 88(7): 3307-3320, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35112382

RESUMEN

AIM: This trial (NCT04013048) investigated the metabolite profiles, mass balance and pharmacokinetics of fuzuloparib, a novel poly (ADP-ribose) polymerase inhibitor, in subjects with advanced solid cancers. METHODS: A single dose of 150 mg [14 C]fuzuloparib was administered to five subjects with advanced solid cancers. Blood, urine and faecal samples were collected, analysed for radioactivity and unchanged fuzuloparib, and profiled for metabolites. The safety of the medicine was assessed during the study. RESULTS: The maximum concentrations (Cmax ) of the total radioactivity (TRA) and unchanged fuzuloparib in plasma were 5.39 µg eq./mL and 4.19 µg/mL, respectively, at approximately 4 hours post dose. The exposure (AUC0-t ) of fuzuloparib accounted for 70.7% of the TRA in plasma, and no single metabolite was observed accounting for more than 10% of the plasma TRA. The recovery of TRA in excreta was 103.3 ± 3.8% in 288 hours, including 59.1 ± 9.9% in urine and 44.2 ± 10.8% in faeces. Sixteen metabolites of fuzuloparib were identified, including mono-oxidation (M1), hydrogenation (M2), di-oxidation (M3), trioxidation (M4), glucuronidation (M5, M7, M8) and de-ethylation (M6) products, and there was no specific binding between these metabolites and blood cells. Aliphatic hydroxylated fuzuloparib (M1-1) was the primary metabolite in the excreta, accounting for more than 40% of the dose for subjects. There were no serious adverse events observed in the study. CONCLUSION: Fuzuloparib was widely metabolized and excreted completely through urine and faeces in subjects with advanced solid cancer. Unchanged fuzuloparib was indicated to be the primary drug-related compound in circulation. [14 C]fuzuloparib was well-tolerated at the study dose.


Asunto(s)
Antineoplásicos , Neoplasias , Adenosina Difosfato/análisis , Administración Oral , Antineoplásicos/efectos adversos , Heces/química , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/efectos adversos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/análisis , Ribosa/análisis
9.
Drug Metab Dispos ; 50(6): 809-818, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34862251

RESUMEN

Excretion of [14C]HR011303-derived radioactivity showed significant species difference. Urine (81.50% of dose) was the main excretion route in healthy male subjects, whereas feces (87.16% of dose) was the main excretion route in rats. To further elucidate the underlying cause for excretion species differences of HR011303, studies were conducted to uncover its metabolism and excretion mechanism. M5, a glucuronide metabolite of HR011303, is the main metabolite in humans and rats. Results of a rat microsome incubation study suggested that HR011303 was metabolized to M5 in the rat liver. According to previous studies, M5 is produced in both human liver and kidney microsomes. We found that M5 in the human liver can be transported to the blood by multidrug resistance-associated protein (MRP) 3, and then the majority of M5 can be hydrolyzed to HR011303. HR011303 enters the human kidney or liver through passive diffusion, whereas M5 is taken up through organic anion transporter (OAT) 3, organic anion-transporting polypeptide (OATP) 1B1, and OATP1B3. When HR011303 alone is present, it can be metabolized to M5 in both sandwich-cultured rat hepatocytes (SCRH) and sandwich-cultured human hepatocytes (SCHH) and excreted into bile as M5 in SCRH. Using transporter inhibitors in sandwich-cultured model and membrane vesicles expressing MRP2 or Mrp2, we found that M5 was a substance of MRP2/Mrp2, and the bile efflux of M5 was mainly mediated by MRP2/Mrp2. Considering the significant role of MRP3/Mrp3 and MRP2/Mrp2 in the excretion of glucuronides, the competition between them for M5 was possibly the determinant for the different excretion routes in humans and rats. SIGNIFICANCE STATEMENT: Animal experiments are necessary to predict dosage and safety of candidate drugs prior to clinical trials. However, extrapolation results often differ from the actual situation. For HR011303, excretory pathways exhibited a complete reversal, through urine in humans and feces in rats. Such phenomena have been observed in several drugs, but no in-depth studies have been conducted to date. In the present study, the excretion species differences of HR011303 can be explained by the competition for M5 between MRP2/Mrp2 and MRP3/Mrp3.


Asunto(s)
Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Transportadores de Anión Orgánico , Animales , Glucurónidos/metabolismo , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Masculino , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Transportadores de Anión Orgánico/metabolismo , Ratas , Especificidad de la Especie
10.
Drug Metab Dispos ; 50(6): 798-808, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34862252

RESUMEN

HR011303, a promising selective urate transporter 1 inhibitor, is currently being studied in a phase III clinical trial in China for the treatment of hyperuricemia and gout. In the current study, the pharmacokinetics, mass balance, and metabolism of HR011303 were examined in six healthy Chinese male subjects who received a single oral dose of 10 mg of [14C]HR011303 (80 µCi). The results showed that HR011303 was rapidly absorbed with a median time to reach C max of 1.50 hours postdose, and the arithmetic mean half-life of total radioactivity was approximately 24.2 hours in plasma. The mean blood-to-plasma radioactivity concentration ratio was 0.66, suggesting the preferential distribution of drug-related components in plasma. At 216 hours postdose, the mean cumulative excreted radioactivity was 91.75% of the dose, including 81.50% in urine and 10.26% in feces. Six metabolites were identified, and the parent drug HR011303 was the most abundant component in plasma and feces, but a minor component in urine. Glucuronidation of the carboxylic acid moiety of HR011303 was the primary metabolic pathway in humans, amounting to 69.63% of the dose (M5, 51.57% of the dose; M5/2, 18.06% of the dose) in the urine; however, it was not detected in plasma. UDP-glucuronosyltransferase (UGT) 2B7 was responsible for the formation of M5. Overall, after a single oral dose of 10 mg of [14C]HR011303 (80 µCi), HR011303 and its main metabolites were eliminated via renal excretion. The major metabolic pathway was carboxylic acid glucuronidation, which was catalyzed predominantly by UGT2B7. SIGNIFICANCE STATEMENT: This study determined the absorption and disposition of HR011303, a selective urate transporter (URAT) 1 inhibitor currently in development for the treatment of hyperuricemia and gout. This work helps to characterize the major metabolic pathways of new URAT inhibitors and identify the absorption and clearance mechanism.


Asunto(s)
Gota , Hiperuricemia , Administración Oral , Ácidos Carboxílicos , Heces , Glucuronosiltransferasa/metabolismo , Gota/tratamiento farmacológico , Humanos , Masculino , Transportadores de Anión Orgánico , Uricosúricos , Uridina Difosfato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA