Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Nutrients ; 16(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38999895

RESUMEN

Excessive alcohol consumption has led to the prevalence of gastrointestinal ailments. Alleviating gastric disorders attributed to alcohol-induced thinning of the mucus layer has centered on enhancing mucin secretion as a pivotal approach. In this study, foxtail millet bran polyphenol BPIS was divided into two components with MW < 200 D and MW > 200 D by molecular interception technology. Combined with MTT, cell morphology observation, and trypan blue staining, isoferulic acid (IFA) within the MW < 200 D fraction was determined as the effective constituent to mitigate ethanol-induced damage of gastric epithelial cells. Furthermore, a Wistar rat model with similar clinical features to alcohol-induced gastric mucosal injury was established. Then, gastric morphological observation, H&E staining, and assessments of changes in gastric hexosamine content and gastric wall binding mucus levels were carried out, and the results revealed that IFA (10 mg/Kg) significantly ameliorated alcohol-induced gastric mucosal damage. Finally, we applied techniques including Co-IP, molecular docking, and fluorescence spectroscopy and found that IFA inhibited the alcohol-induced downregulation of N-acetylgalactosamintransferase 2 (GALNT2) activity related to mucus synthesis through direct interaction with GALNT2 in gastric epithelial cells, thus promoting mucin synthesis. Our study lays a foundation for whole grain dietary intervention tailored to individuals suffering from alcoholic gastric mucosal injury.


Asunto(s)
Etanol , Mucosa Gástrica , Ratas Wistar , Animales , Mucosa Gástrica/efectos de los fármacos , Mucosa Gástrica/patología , Ratas , Masculino , Setaria (Planta) , Extractos Vegetales/farmacología , Humanos , Células Epiteliales/efectos de los fármacos , Simulación del Acoplamiento Molecular , Modelos Animales de Enfermedad
2.
J Hazard Mater ; 476: 135213, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39018602

RESUMEN

Deltamethrin is a classical pyrethroid insecticide that is frequently detected in aquatic environments and organisms. Furthermore, deltamethrin has been detected in samples related to human health and is a potential risk to public health. This study aimed to investigate the mechanism of cardiotoxicity induced by deltamethrin. Zebrafish were exposed to 0.005, 0.05, or 0.5 µg/L deltamethrin for 28 days. The results showed a significant reduction in male reproduction compared to female reproduction. Additionally, the heart rate decreased by 15.75 % in F1 after parental exposure to 0.5 µg/L deltamethrin. To evaluate cardiotoxicity, deltamethrin was administered to the zebrafish embryos. By using miRNA-Seq and bioinformatics analysis, it was discovered that miR-29b functions as a toxic regulator by targeting dnmts. The overexpression of miR-29b and inhibition of dnmts resulted in cardiac abnormalities, such as pericardial edema, bradycardia, and abnormal expression of genes related to the heart. Similar changes in the levels of miR-29b and dnmts were also detected in the gonads of F0 males and F1 embryos, confirming their effects. Overall, the results suggest that deltamethrin may have adverse effects on heart development in early-stage zebrafish and on reproduction in adult zebrafish. Furthermore, epigenetic modifications may threaten the cardiac function of offspring.


Asunto(s)
Cardiotoxicidad , Epigénesis Genética , Insecticidas , MicroARNs , Nitrilos , Piretrinas , Pez Cebra , Animales , Femenino , Masculino , Embrión no Mamífero/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Corazón/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Insecticidas/toxicidad , MicroARNs/genética , Nitrilos/toxicidad , Piretrinas/toxicidad , Reproducción/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo
3.
J Appl Stat ; 51(9): 1709-1728, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39035173

RESUMEN

It is well-known that the presence of serial correlation may result in an inefficient or even biased estimation in time series analysis. In this paper, we consider testing serial correlation in a general d-factor model when the model errors follow the GARCH process, which is frequently used in modeling financial data. Two empirical likelihood-based testing statistics are suggested as a way to deal with problems that might come up with infinite variance. Both statistics are shown to be chi-squared distributed asymptotically under mild conditions. Simulations confirm the excellent finite-sample performance of both tests. Finally, to emphasize the importance of using our tests, we explore the impact of the exchange rate on the stock return using both monthly and daily data from eight countries.

4.
Reprod Domest Anim ; 59(6): e14647, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38924282

RESUMEN

Endometritis is a common postpartum disease in cows. It delays uterine involution and impairs normal physiological function. This can result in long-term or even lifelong infertility and cause significant losses to the dairy farming industry. Traditional treatments like antibiotics possess certain shortcomings, such as antibiotic residues, the abuse of antibiotics, and increased antimicrobial resistance of pathogens. Alternative treatment strategies are needed to minimize the utilization of antibiotics in dairy production. As an essential trace element in animals, selenium (Se) plays a vital role in regulating immune function, the inflammatory response, and oxidative stress, affecting the speed and completeness of tissue repair. This paper reviewed previous studies to analyse the potential of Se in the prevention and treatment of bovine endometritis, aiming to provide a new direction to increase production capacity in the future.


Asunto(s)
Enfermedades de los Bovinos , Endometritis , Selenio , Animales , Bovinos , Endometritis/veterinaria , Endometritis/prevención & control , Endometritis/tratamiento farmacológico , Femenino , Selenio/uso terapéutico , Selenio/administración & dosificación , Selenio/farmacología , Enfermedades de los Bovinos/prevención & control , Enfermedades de los Bovinos/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos
5.
Cardiorenal Med ; 14(1): 334-349, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38801815

RESUMEN

INTRODUCTION: Large prospective trials have demonstrated that finerenone could reduce the risk of cardiovascular death and progression of renal failure among patients with chronic kidney disease associated heart failure and/or type 2 diabetes mellitus (T2DM). The aim of this study was to explore the molecular mechanism of finerenone in the treatment of cardiorenal diseases through network pharmacology. METHODS: The STITH, SwissTargetPrediction, PharmMapper, DrugBank, and ChEMBL databases were used to screen the targets of finerenone. The disease-related targets were retrieved from the DisGeNET, GeneCards, CTD, OMIM, and MalaCards databases. The protein-protein interaction (PPI) network was conducted with STRING database and Cytoscape software. The clusterProfiler R package was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The interactions of key targets and finerenone were analyzed by molecular docking in Autodock software. Diabetes mellitus was induced by intraperitoneal injection of streptozotocin. Histopathology of myocardial and renal tissues was observed by hematoxylin-eosin (HE) staining, and detection of protein expressions was conducted using Western blotting. RESULTS: A total of 111 potential cardiorenal targets of finerenone were identified. The main mechanisms of action may be associated with lipids and atherosclerosis, fluid shear stress and atherosclerosis, AGE-RAGE signaling pathway in diabetic complications, and diabetic cardiomyopathy. The hub targets demonstrated by the PPI network were CASP3, ALB, MMP9, EGFR, ANXA5, IGF1, SRC, TNFRSF1A, IL2, and PPARG, and the docking results suggested that finerenone could bind to these targets with high affinities. HE staining revealed the cardiorenal protection of finerenone on diabetic mice. In addition, the protein expressions of CASP3 and EGFR were increased while ALB was decreased in myocardial and renal tissues in diabetic mice compared with control mice, which were reversed by finerenone. CONCLUSION: This study suggested that finerenone exerts cardiorenal benefits through multiple targets and pathways.


Asunto(s)
Diabetes Mellitus Experimental , Simulación del Acoplamiento Molecular , Naftiridinas , Farmacología en Red , Naftiridinas/farmacología , Animales , Ratones , Diabetes Mellitus Experimental/complicaciones , Mapas de Interacción de Proteínas , Masculino , Receptores ErbB/metabolismo , Receptores ErbB/efectos de los fármacos , Humanos , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Ratones Endogámicos C57BL , Antagonistas de Receptores de Mineralocorticoides/farmacología , Antagonistas de Receptores de Mineralocorticoides/uso terapéutico , Insuficiencia Cardíaca/tratamiento farmacológico
6.
J Transl Med ; 22(1): 433, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720361

RESUMEN

Doxorubicin (DOX) is a broad-spectrum and highly efficient anticancer agent, but its clinical implication is limited by lethal cardiotoxicity. Growing evidences have shown that alterations in intestinal microbial composition and function, namely dysbiosis, are closely linked to the progression of DOX-induced cardiotoxicity (DIC) through regulating the gut-microbiota-heart (GMH) axis. The role of gut microbiota and its metabolites in DIC, however, is largely unelucidated. Our review will focus on the potential mechanism between gut microbiota dysbiosis and DIC, so as to provide novel insights into the pathophysiology of DIC. Furthermore, we summarize the underlying interventions of microbial-targeted therapeutics in DIC, encompassing dietary interventions, fecal microbiota transplantation (FMT), probiotics, antibiotics, and natural phytochemicals. Given the emergence of microbial investigation in DIC, finally we aim to point out a novel direction for future research and clinical intervention of DIC, which may be helpful for the DIC patients.


Asunto(s)
Cardiotoxicidad , Doxorrubicina , Microbioma Gastrointestinal , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Doxorrubicina/efectos adversos , Cardiotoxicidad/etiología , Animales , Disbiosis , Trasplante de Microbiota Fecal
7.
Environ Sci Technol ; 58(22): 9515-9524, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38687472

RESUMEN

Deltamethrin (DM) is a widely used insecticide that has demonstrated developmental toxicity in the early life stages of fish. To better characterize the underlying mechanisms, embryos from Tg(cmlc2:RFP), Tg(apo14:GFP), and Tg(mpx:GFP) transgenic strains of zebrafish were exposed to nominal DM concentrations of 0.1, 1, 10, 25, and 50 µg/L until 120 h post-fertilization (hpf). Heart size increased 56.7%, and liver size was reduced by 17.1% in zebrafish exposed to 22.7 and 24.2 µg/L DM, respectively. RNA sequencing and bioinformatic analyses predicted that key biological processes affected by DM exposure were related to inflammatory responses. Expression of IL-1 protein was increased by 69.0% in the 24.4 µg/L DM treatment, and aggregation of neutrophils in cardiac and hepatic histologic sections was also observed. Coexposure to resatorvid, an anti-inflammatory agent, mitigated inflammatory responses and cardiac toxicity induced by DM and also restored liver biomass. Our data indicated a complex proinflammatory mechanism underlying DM-induced cardiotoxicity and hepatotoxicity which may be important for key events of adverse outcomes and associated risks of DM to early life stages of fish.


Asunto(s)
Cardiotoxicidad , Pez Cebra , Animales , Piretrinas/toxicidad , Insecticidas/toxicidad , Hígado/efectos de los fármacos , Nitrilos/toxicidad , Corazón/efectos de los fármacos
8.
Comput Methods Programs Biomed ; 250: 108173, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615386

RESUMEN

BACKGROUND AND OBJECTIVE: The conventional valve stents that are cylindrical in shape will become elliptical when implanted in bicuspid aortic valve, thereby reducing the durability of the artificial valve. In this study, a new design of valve stent is presented where valve stents have elliptical cross-section at the annulus and it is expected to have better expandability and circle shape during the interaction between the stent and bicuspid aortic valve, thereby extending the durability of artificial valve. METHODS: Finite element method (FEM) is used to study the mechanical behavior of the novel valve stent in the bicuspid aortic valve. The effects of three matching relationship between the ellipticity of the stents and the ellipticity of the annulus (i.e., the ellipticity of the stent is greater than, equal to and less than the annulus ellipticity, respectively) on the mechanical behavior of stent expansion are studied. In addition, the expansion mechanical behavior of the novel valve stent at different implantation depths is also compared. RESULTS: Results indicate that novel valve stent implantation with elliptical features is superior to conventional circular valve stent. When the novel valve stent ellipticity is less than the annulus ellipticity, the ellipticity of the novel valve stent after implantation is smaller than that of the conventional circular valve stent. This indicated that the novel valve stent has better expandability and post-expansion shape, making artificial valve to have better durability. The risk of paravalvular leak after implantation is lowest when the novel valve stent ellipticity is less than annulus ellipticity. When the novel valve stent ellipticity coincides with annulus ellipticity, the aortic wall is subjected to greatest stress. With the increase of implantation depth, the stress on the novel valve stent decrease. CONCLUSIONS: This study might provide insights for improving stent design for bicuspid aortic valve.


Asunto(s)
Válvula Aórtica , Enfermedad de la Válvula Aórtica Bicúspide , Análisis de Elementos Finitos , Prótesis Valvulares Cardíacas , Diseño de Prótesis , Stents , Válvula Aórtica/anomalías , Válvula Aórtica/cirugía , Humanos , Enfermedad de la Válvula Aórtica Bicúspide/cirugía , Estrés Mecánico , Enfermedades de las Válvulas Cardíacas/cirugía , Enfermedad de la Válvula Aórtica/cirugía
9.
ACS Omega ; 9(10): 11925-11941, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38496984

RESUMEN

Despite the previous preparation of aconine hydrochloride monohydrate (AHM), accurate determination of the crystal's composition was hindered by severely disordered water molecules within the crystal. In this study, we successfully prepared a new dihydrate form of the aconine hydrochloride [C25H42NO9+Cl-·2(H2O), aconine hydrochloride dihydrate (AHD)] and accurately refined all water molecules within the AHD crystal. Our objective is to elucidate both water-chloride and water-water interactions in the AHD crystal. The crystal structure of AHD was determined at 136 K using X-ray diffraction and a multipolar atom model was constructed by transferring charge-density parameters to explore the topological features of key short contacts. By comparing the crystal structures of dihydrate and monohydrate forms, we have observed that both AHD and AHM exhibit identical aconine cations, except for variations in the number of water molecules present. In the AHD crystal, chloride anions and water molecules serve as pivotal connecting hubs to establish three-dimensional hydrogen bonding networks and one-dimensional hydrogen bonding chain; both water-chloride and water-water interactions assemble supramolecular architectures. The crystal packing of AHD exhibits a complete reversal in the stacking order compared to AHM, thereby emphasizing distinct disparities between them. Hirshfeld surface analysis reveals that H···Cl- and H···O contacts play a significant role in constructing the hydrogen bonding network and chain within these supramolecular architectures. Furthermore, topological analysis and electrostatic interaction energy confirm that both water-chloride and water-water interactions stabilize supramolecular architectures through electrostatic attraction facilitated by H···Cl- and H···O contacts. Importantly, these findings are strongly supported by the existing literature evidence. Consequently, navigating these water-chloride and water-water interactions is imperative for ensuring storage and safe processing of this pharmaceutical compound.

10.
BMC Vet Res ; 20(1): 109, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38500165

RESUMEN

BACKGROUND: Endometritis is a common bovine postpartum disease. Rapid endometrial repair is beneficial for forming natural defense barriers and lets cows enter the next breeding cycle as soon as possible. Selenium (Se) is an essential trace element closely related to growth and development in animals. This study aims to observe the effect of Se on the proliferation of bovine endometrial epithelial cells (BEECs) induced by lipopolysaccharide (LPS) and to elucidate the possible underlying mechanism. RESULTS: In this study, we developed a BEECs damage model using LPS. Flow cytometry, cell scratch test and EdU proliferation assay were used to evaluate the cell cycle, migration and proliferation. The mRNA transcriptions of growth factors were detected by quantitative reverse transcription-polymerase chain reaction. The activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and Wnt/ß-catenin pathways were detected by Western blotting and immunofluorescence. The results showed that the cell viability and BCL-2/BAX protein ratio were significantly decreased, and the cell apoptosis rate was significantly increased in the LPS group. Compared with the LPS group, Se promoted cell cycle progression, increased cell migration and proliferation, and significantly increased the gene expressions of TGFB1, TGFB3 and VEGFA. Se decreased the BCL-2/BAX protein ratio, promoted ß-catenin translocation from the cytoplasm to the nucleus and activated the Wnt/ß-catenin and PI3K/AKT signaling pathways inhibited by LPS. CONCLUSIONS: In conclusion, Se can attenuate LPS-induced damage to BEECs and promote cell proliferation and migration in vitro by enhancing growth factors gene expression and activating the PI3K/AKT and Wnt/ß-catenin signaling pathways.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Selenio , Femenino , Bovinos , Animales , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/farmacología , Lipopolisacáridos/toxicidad , Lipopolisacáridos/metabolismo , Selenio/farmacología , Selenio/metabolismo , beta Catenina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteína X Asociada a bcl-2/farmacología , Vía de Señalización Wnt , Células Epiteliales , Proliferación Celular , Apoptosis
11.
Mol Biol Rep ; 51(1): 266, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302764

RESUMEN

BACKGROUND: Rhein, which has antioxidant and anti-inflammatory response properties, is a beneficial treatment for different pathologies. However, the mechanism by which rhein protects against myocardial ischemic injury is poorly understood. METHODS AND RESULTS: To establish an acute myocardial infarction (AMI) rat model, we performed left anterior descending (LAD) ligation. Sprague‒Dawley rats were randomly divided into four groups: sham, AMI, AMI + rhein (AMI + R), and AMI + mitochondrial fission inhibitor (AMI + M). The extent of myocardial injury was evaluated by TTC staining, serum myocardial injury markers, and HE and Masson staining. Cardiac mitochondria ultrastructure was visualized by transmission electron microscopy. TUNEL assay and flow cytometry analysis were used to estimate cell apoptosis. Protein expression levels were measured by Western blotting. In vitro, the efficacy of rhein was assessed in H9c2 cells under hypoxic condition. Our results revealed that rats with AMI exhibited increased infarct size and indicators of myocardial damage, along with activation of Drp1-dependent mitochondrial fission, decreased mitophagy and increased apoptosis rates. However, pretreatment with rhein significantly reversed these effects and demonstrated similar efficacy to Mdivi-1. Furthermore, rhein pretreatment protected against myocardial ischemic injury by inhibiting mitochondrial fission, as evidenced by decreased Drp1 expression. It also enhanced mitophagy, as indicated by increased expression of Beclin1, Pink1 and Parkin, an increased LC3-II/LC3-I ratio and increased formation of autolysosomes. Additionally, rhein pretreatment mitigated apoptosis in AMI. These results were also confirmed in vitro in H9c2 cells. CONCLUSION: Our results demonstrate that rhein pretreatment exerts cardioprotective effects against myocardial ischemic injury via the Drp1/Pink1/Parkin pathway.


Asunto(s)
Antraquinonas , Dinámicas Mitocondriales , Proteínas Quinasas , Ratas , Animales , Ratas Sprague-Dawley , Proteínas Quinasas/metabolismo , Autofagia , Mitocondrias/metabolismo , Apoptosis , Ubiquitina-Proteína Ligasas/metabolismo
12.
Adv Healthc Mater ; 13(15): e2400049, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38416676

RESUMEN

Wound healing and infection remain significant challenges due to the ineffectiveness against multidrug-resistant (MDR) bacteria and the complex oxidative wound microenvironments. To address these issues, thymoquinone-reinforced injectable and thermosensitive TQ@PEG-PAF-Cur hydrogels with dual functions of microenvironment reshaping and photodynamic therapy are developed. The hydrogel comprises natural compound thymoquinone (TQ) and poly (ethylene glycol)-block-poly (alanine-co-phenyl alanine) copolymers (PEG-PAF) conjugated with natural photosensitizer curcumin (Cur). The incorporation of TQ and Cur reduces the sol-to-gel transition temperature of TQ@PEG-PAF-Cur to 30°C, compared to PEG-PAF hydrogel (37°C), due to the formation of strong hydrogen bonding, matching the wound microenvironment temperature. Under blue light excitation, TQ@PEG-PAF-Cur generates significant amounts of reactive oxygen species such as H2O2, 1O2, and ·OH, exhibiting rapid and efficient bactericidal capacities against methicillin-resistant Staphylococcus aureus and broad spectrum ß-lactamases Escherichia coli via photodynamic therapy (PDT). Additionally, Cur effectively inhibits the expressions of proinflammatory cytokines in skin tissue-forming cells. As a result, the composite hydrogel can rapidly transform into a gel to cover the wound, reshape the wound microenvironment, and accelerate wound healing in vivo. This collaborative antibacterial strategy provides valuable insights to guide the development of multifunctional materials for efficient wound healing.


Asunto(s)
Curcumina , Farmacorresistencia Bacteriana Múltiple , Hidrogeles , Staphylococcus aureus Resistente a Meticilina , Cicatrización de Heridas , Hidrogeles/química , Hidrogeles/farmacología , Cicatrización de Heridas/efectos de los fármacos , Animales , Curcumina/farmacología , Curcumina/química , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Fotoquimioterapia/métodos , Antibacterianos/farmacología , Antibacterianos/química , Polietilenglicoles/química , Polietilenglicoles/farmacología , Ratones , Escherichia coli/efectos de los fármacos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Especies Reactivas de Oxígeno/metabolismo , Fototerapia/métodos , Humanos
13.
Front Mol Biosci ; 11: 1297437, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38384498

RESUMEN

Atherosclerosis is a complex vascular disorder characterized by the deposition of lipids, inflammatory cascades, and plaque formation in arterial walls. A thorough understanding of its causes and progression is necessary to develop effective diagnostic and therapeutic strategies. Recent breakthroughs in metabolomics have provided valuable insights into the molecular mechanisms and genetic factors involved in atherosclerosis, leading to innovative approaches for preventing and treating the disease. In our study, we analyzed clinical serum samples from both atherosclerosis patients and animal models using laser desorption ionization mass spectrometry. By employing methods such as orthogonal partial least-squares discrimination analysis (OPLS-DA), heatmaps, and volcano plots, we can accurately classify atherosclerosis (AUC = 0.892) and identify key molecules associated with the disease. Specifically, we observed elevated levels of arachidonic acid and its metabolite, leukotriene B4, in atherosclerosis. By inhibiting arachidonic acid and monitoring its downstream metabolites, we discovered the crucial role of this metabolic pathway in regulating atherosclerosis. Metabolomic research provides detailed insights into the metabolic networks involved in atherosclerosis development and reveals the close connection between abnormal metabolism and the disease. These studies offer new possibilities for precise diagnosis, treatment, and monitoring of disease progression, as well as evaluating the effectiveness of therapeutic interventions.

14.
Adv Sci (Weinh) ; 11(12): e2306964, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38234236

RESUMEN

The effective management of osteomyelitis remains extremely challenging due to the difficulty associated with treating bone defects, the high probability of recurrence, the requirement of secondary surgery or multiple surgeries, and the difficulty in eradicating infections caused by methicillin-resistant Staphylococcus aureus (MRSA). Hence, smart biodegradable biomaterials that provide effective and precise local anti-infection effects and can promote the repair of bone defects are actively being developed. Here, a novel nano-micro composite is fabricated by combining calcium phosphate (CaP) nanosheets with drug-loaded GelMA microspheres via microfluidic technology. The microspheres are covalently linked with vancomycin (Van) through an oligonucleotide (oligo) linker using an EDC/NHS carboxyl activator. Accordingly, a smart nano-micro composite called "CaP@MS-Oligo-Van" is synthesized. The porous CaP@MS-Oligo-Van composites can target and capture bacteria. They can also release Van in response to the presence of bacterial micrococcal nuclease and Ca2+, exerting additional antibacterial effects and inhibiting the inflammatory response. Finally, the released CaP nanosheets can promote bone tissue repair. Overall, the findings show that a rapid, targeted drug release system based on CaP@MS-Oligo-Van can effectively target bone tissue infections. Hence, this agent holds potential in the clinical treatment of osteomyelitis caused by MRSA.


Asunto(s)
Fosfatos de Calcio , Staphylococcus aureus Resistente a Meticilina , Osteomielitis , Infecciones Estafilocócicas , Humanos , Infecciones Estafilocócicas/tratamiento farmacológico , Vancomicina/farmacología , Vancomicina/uso terapéutico , Antibacterianos/farmacología , Osteomielitis/tratamiento farmacológico , Osteomielitis/microbiología
15.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38289713

RESUMEN

Bovine endometritis severely inhibits uterine repair and causes considerable economic loss. Besides, parturition-induced high cortisol levels inhibit immune function, reduce cell proliferation, and further inhibit tissue repair. Selenium (Se) is an essential trace element for animals to maintain normal physiological function and has powerful antioxidant functions. This study investigated whether Se supplementation reduces endometrial damage and promotes tissue repair in cows with endometritis under stress and explored the underlying mechanism. Primary bovine endometrial epithelial cells were isolated and purified from healthy cows. The cells were treated with different combinations of lipopolysaccharide (LPS), cortisol, and various concentrations of Se. Data showed that LPS stimulation inhibited cell proliferation and increased cell apoptosis. High levels of cortisol further exacerbated these effects. Flow cytometry, scratch wound healing tests, and 5-ethynyl-2'-deoxyuridine (EdU) proliferation assays showed that Se supplementation promoted cell cycle progression, cell migration, and cell proliferation in the presence of LPS and cortisol. The quantitative PCR results showed that the expression of related growth factors was increased after Se supplementation. After administering various inhibitors, we further demonstrated that Se supplementation decreased the activity of glycogen synthetase kinase 3ß (GSK-3ß) through the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway to reduce the degradation of ß-catenin except the Wnt signal to promote cell proliferation. In conclusion, Se supplementation attenuated the cell damage induced by LPS at high cortisol levels and increased cell proliferation to promote uterine repair by elevating the mRNA expression of TGFB3 and VEGFA and activating the PI3K/AKT/GSK-3ß/ß-catenin signaling pathway.


After parturition, endometritis is a common bovine disease, which hinders endometrial repair and reduces bovine economic value. Besides, parturition-induced high cortisol levels cause immunosuppression, aggravate infection, and further inhibit cell proliferation and tissue repair. As an essential trace element, adding selenium to feed helps to maintain the normal physiological function of animals. This study developed a cellular model using lipopolysaccharide (LPS) and cortisol to simulate cows with endometritis in stress conditions. The results showed that Se supplementation attenuated bovine endometrial epithelial cell damage and promoted their proliferation in the presence of LPS and high cortisol levels, which are positively correlated with the concentration of Se. Besides, this study proved another molecular mechanism for Se to regulate ß-catenin except for the Wnt signal by affecting the ß-catenin degradation pathway.


Asunto(s)
Enfermedades de los Bovinos , Endometritis , Selenio , Femenino , Bovinos , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Endometritis/inducido químicamente , Endometritis/genética , Endometritis/veterinaria , Lipopolisacáridos/toxicidad , Hidrocortisona/metabolismo , Selenio/farmacología , Selenio/metabolismo , beta Catenina/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proliferación Celular , Células Epiteliales/metabolismo , Suplementos Dietéticos , Enfermedades de los Bovinos/genética
16.
Adv Mater ; 36(11): e2310532, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38095435

RESUMEN

Metallo-ß-lactamases (MBLs) represent a prevalent resistance mechanism in Gram-negative bacteria, rendering last-line carbapenem-related antibiotics ineffective. Here, a bioresponsive sliver peroxide (Ag2 O2 )-based nanovesicle, named Ag2 O2 @BP-MT@MM, is developed as a broad-spectrum MBL inhibitor for combating MBL-producing bacterial pneumonia. Ag2 O2 nanoparticle is first orderly modified with bovine serum albumin and polydopamine to co-load meropenem (MER) and [5-(p-fluorophenyl)-2-ureido]-thiophene-3-carboxamide (TPCA-1) and then encapsulated with macrophage membrane (MM) aimed to target inflammatory lung tissue specifically. The resultant Ag2 O2 @BP-MT@MM effectively abrogates MBL activity by displacing the Zn2+ cofactor in MBLs with Ag+ and displays potent bactericidal and anti-inflammatory properties, specific targeting abilities, and great bioresponsive characteristics. After intravenous injection, the nanoparticles accumulate prominently at infection sites through MM-mediated targeting . Ag+ released from Ag2 O2 decomposition at the infection sites effectively inhibits MBL activity and overcomes the resistance of MBL-producing bacteria to MER, resulting in synergistic elimination of bacteria in conjunction with MER. In two murine infection models of NDM-1+ Klebsiella pneumoniae-induced severe pneumonia and NDM-1+ Escherichia coli-induced sepsis-related bacterial pneumonia, the nanoparticles significantly reduce bacterial loading, pro-inflammatory cytokine levels locally and systemically, and the recruitment and activation of neutrophils and macrophages. This innovative approach presents a promising new strategy for combating infections caused by MBL-producing carbapenem-resistant bacteria.


Asunto(s)
Neumonía Bacteriana , Inhibidores de beta-Lactamasas , Animales , Ratones , Inhibidores de beta-Lactamasas/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Meropenem/farmacología , Carbapenémicos/farmacología , beta-Lactamasas , Neumonía Bacteriana/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana
17.
Medicine (Baltimore) ; 102(46): e35891, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37986324

RESUMEN

To select an optimal treatment, it is crucial to evaluate the risk of lymph node metastasis (LNM) in patients with superficial esophageal squamous cell carcinoma (SESCC). The research aimed to explore more risk factors than before and construct a practical nomogram to predict LNM in patients with SESCC. We retrospectively reviewed 1080 patients diagnosed with esophageal cancer who underwent esophagectomy with lymphadenectomy between January 2013 and October 2021 at the Affiliated Hospital of Qingdao University. The clinical parameters, endoscopic features, and pathological characteristics of the 123 patients that were finally enrolled in this study were collected. The independent risk factors for LNM were determined using univariate and multivariate analyses. Using these factors, a nomogram was constructed to predict LNM. LNM was observed in 21 patients. Univariate analysis showed that the absence or presence of hypertriglyceridemia, tumor location, lesion size, macroscopic type, invasion depth, differentiation, absence or presence of lymphovascular invasion (LVI), and perineural invasion were significantly associated with LNM. According to the multivariate analysis, hypertriglyceridemia, tumors located in the lower thoracic esophagus, lesion size > 20 mm, submucosal invasion, and LVI were independent risk factors for LNM. A nomogram was established using these 5 factors. It showed good calibration and discrimination. Hypertriglyceridemia, tumors located in the lower thoracic esophagus, lesion size > 20 mm, submucosal invasion, and LVI were independent risk factors for LNM. A nomogram was constructed using these 5 factors. This model can help clinicians assess the risk of LNM in patients with SESCC for optimal treatment selection.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Hiperlipidemias , Hipertrigliceridemia , Humanos , Carcinoma de Células Escamosas de Esófago/cirugía , Carcinoma de Células Escamosas de Esófago/patología , Neoplasias Esofágicas/cirugía , Neoplasias Esofágicas/patología , Nomogramas , Metástasis Linfática/patología , Estudios Retrospectivos , Carcinoma de Células Escamosas/patología , Escisión del Ganglio Linfático , Factores de Riesgo , Invasividad Neoplásica/patología , Ganglios Linfáticos/cirugía , Ganglios Linfáticos/patología
18.
Sleep Breath ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37917283

RESUMEN

BACKGROUND: Previous studies have revealed that sleep structure and hypoxemia are two important environmental factors for cognitive impairment in patients with obstructive sleep apnea-hypopnea syndrome (OSAHS). We hypothesized that the pathophysiological mechanisms between these two factors may also be involved in cognitive impairment in patients with OSAHS. Previous studies have suggested that alterations in serum glucose and lipid metabolism, inflammatory responses, and astrocyte markers not only contribute to sleep structural disorders in OSAHS but also affect the occurrence and development of this disease. Therefore, we hypothesized that alterations in the abovementioned indicators may be involved in cognitive impairment in OSAHS. Additionally, obesity is an important risk factor for OSAHS. This study therefore aimed to explore the correlation between serum indicators and cognitive impairment in patients with OSAHS. METHODS: Patients with OSAHS who underwent polysomnography in our hospital were recruited in this study. The overall cognitive function of patients were evaluated using the Mini mental State Examination (MMSE). Blood biochemical indicators such as glucose (GLU), triglycerides (TG), and triglyceride glucose (TyG) index were measured. Enzyme-linked immunosorbent assay (ELISA) was used to determine the levels of serum glucagon-like peptide-1 receptor (GLP-1R), fibroblast growth factor 21 (FGF21), S100 calcium binding protein B (S100B), brain derived neurotrophic factor (BDNF), inflammatory factors such as C-reactive protein (CRP), tumor necrosis factor-α (TNFα), interleukin-4 (IL-4), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6). Spearman correlation analysis was used to determine if the indicator was related to cognitive function, and backward linear regression analysis was used to identify the main risk factors for cognitive impairment in non-obese and obese patients with OSAHS. RESULTS: Among 34 patients, 19 were non-obese and 15 were obese. Obese patients exhibited higher AHI compared to non-obese individuals, and the difference was statistically significant (p < 0.05). In non-obese patients, Spearman correlation analysis revealed a negative correlation between serum GLU, IL-4, and MMSE scores (p < 0.05); IL-6 was positively correlated with MMSE (p < 0.05). In addition, GLU and IL-6 were independently correlated with MMSE in non-obese patients (p < 0.05). In obese patients, serum TG and TyG were positively correlated with MMSE scores (p < 0.05); age, BMI, and IL-4 were negatively correlated with MMSE scores (p < 0.05). In addition, age and IL-4 were independently correlated with MMSE in obese patients (p < 0.05). CONCLUSIONS: Our data suggested that GLU and IL-6 were independently correlated with cognitive impairment in non-obese patients with OSAHS; age and IL-4 were independently correlated with cognitive impairment in obese patients. Early detection of this difference in heterogeneity may provide theoretical support for future investigations in prevention and treatment of cognitive impairment in patients with OSAHS.

19.
Biol Trace Elem Res ; 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37814171

RESUMEN

Endometritis is a common postpartum disease of female animals that causes significant losses to the goat industry. High levels of cortisol induced by various stresses after delivery severely inhibit innate immunity and tissue repair. The repair ability of the endometrium is closely related to the reproductive performance of goats. Selenium (Se) is an essential trace element in animals that has powerful antioxidant and immunity-enhancing functions. In this study, we established a goat model of endometritis at high cortisol (Hydrocortisone) levels to investigate the effect of Se (supplement additive) on endometrial repair. The results showed that the clinical symptoms, %PMN in uterine secretions, morphological endometrial damage, and the gene expression of BAX were reduced in the goats with Se supplementation compared with those in the model group. Se increased the gene expression of BCL2, VEGFA, TGFB1, and PCNA and activated the PI3K/AKT and Wnt/ß-catenin signaling pathways in goats with Se supplementation. In conclusion, Se reduced the inflammatory response, increased the proliferation, and decreased the apoptosis of endometrial cells to promote endometrial tissue repair in goats with endometritis at high cortisol levels. It probably achieved this effect of promoting repair by activating the Wnt/ß-catenin and PI3K/AKT pathways and affecting the gene expression of VEGFA, TGFB1, PCNA, BCL2, and BAX.

20.
Front Neurosci ; 17: 1195570, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37662105

RESUMEN

Objective: To use the United States National Health and Nutrition Examination Study (NHANES) to develop and validate a risk-prediction nomogram for cognitive impairment in people aged over 60 years. Methods: A total of 2,802 participants (aged ≥ 60 years) from NHANES were analyzed. The least absolute shrinkage and selection operator (LASSO) regression model and multivariable logistic regression analysis were used for variable selection and model development. ROC-AUC, calibration curve, and decision curve analysis (DCA) were used to evaluate the nomogram's performance. Results: The nomogram included five predictors, namely sex, moderate activity, taste problem, age, and education. It demonstrated satisfying discrimination with a AUC of 0.744 (95% confidence interval, 0.696-0.791). The nomogram was well-calibrated according to the calibration curve. The DCA demonstrated that the nomogram was clinically useful. Conclusion: The risk-prediction nomogram for cognitive impairment in people aged over 60 years was effective. All predictors included in this nomogram can be easily accessed from its' user.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA