Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 667: 700-712, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38670013

RESUMEN

Aqueous zinc-ion capacitors (AZICs) are considered potential energy storage devices thanks to their ultrahigh power density, high safety, and extended cycling life. Carbon-based materials widely used as cathodes in AZICs face challenges, such as inappropriate pore sizes, poor electrolyte-electrode wettability, and insufficient vacancy defects and active sites. These limitations hinder efficient energy storage capacity and long-term stability. To address these issues, the B and F co-doped hierarchical porous carbon cathode materials (BFPC) are constructed through a facile annealing treatment process. The BFPC-2//Zn device exhibited high capacities of 222.4 and 118.3 mAh g-1 at current densities of 0.2 and 10 A g-1, respectively. Notably, the BFPC-2//Zn device demonstrated long-term cycling stability with a high capacity retention of 96.9 % after 20,000 cycles at 10 A g-1. Additionally, the assembled BFPC-2 based AZICs displayed a maximum energy density of 175.8 Wh kg-1 and an ultrahigh power density of 17.3 kW kg-1. Mechanism studies revealed that the exceptional energy storage ability and charge-transfer process of the BFPC cathode are attributed to the synergistic effect of B and F heteroatoms and the coupling effect between vacancy defects and pore size. This work presents a novel design strategy by incorporating B and F active sites into hierarchical porous carbon materials, providing enhanced energy storage capabilities for practical application in AZICs.

2.
Environ Sci Technol ; 58(14): 6370-6380, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38497719

RESUMEN

The discovery of the significant lethal impacts of the tire additive transformation product N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-Q) on coho salmon has garnered global attention. However, the bioaccumulation and trophic transfer of tire additives and their transformation products (TATPs) within food webs remain obscure. This study first characterized the levels and compositions of 15 TATPs in the Pearl River Estuary, estimated their bioaccumulation and trophic transfer potential in 21 estuarine species, and identified priority contaminants. Our observations indicated that TATPs were prevalent in the estuarine environment. Eight, six, seven, and 10 TATPs were first quantified in the shrimp, sea cucumber, snail, and fish samples, with total mean levels of 45, 56, 64, and 67 ng/g (wet weight), respectively. N,N'-Diphenyl-p-phenylenediamine (DPPD) and N,N'-bis(2-methylphenyl)-1,4-benzenediamine (DTPD) exhibited high bioaccumulation. Significant biodilution was only identified for benzothiazole, while DPPD and DTPD displayed biomagnification trends based on Monte Carlo simulations. The mechanisms of bioaccumulation and trophodynamics of TATPs could be explained by their chemical hydrophobicity, molecular mass, and metabolic rates. Based on a multicriteria scoring technique, DPPD, DTPD, and 6PPD-Q were characterized as priority contaminants. This work emphasizes the importance of biomonitoring, particularly for specific hydrophobic tire additives.


Asunto(s)
Cadena Alimentaria , Fenilendiaminas , Contaminantes Químicos del Agua , Animales , Bioacumulación , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis
3.
Environ Int ; 184: 108478, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38330749

RESUMEN

Estuaries serve as crucial filters for land-based pollutants to the open sea, but there is a lack of information on the migration and fate of organophosphate flame retardants (OPFRs) within estuaries. This study focused on the Pearl River Estuary (PRE) by examining the co-occurrence of OPFRs and their metabolites and quantifying their transport fluxes using a mass balance model. The seawater concentrations of OPFRs and their metabolites exhibited significant seasonal variations (p < 0.01), while the sediment concentrations of OPFRs reflected the long-term distributional equilibrium in the PRE. The concentration of Σ9OPFRs in seawater showed a relentless dilution from the entrance to the offshore region in the normal and wet seasons, which was significantly in accordance with the gradients of pH, dissolved oxygen (DO), and salinity (p < 0.05). Furthermore, horizontal migration dominated the transport of OPFRs, and the inventory assessment revealed that both the water column and sediment were important reservoirs in the PRE. According to the estimated fluxes from the mass balance model, riverine input emerged as the principal pathway for OPFR entry into the PRE (1.55 × 105, 6.28 × 104, and 9.00 × 104 kg/yr in the normal, dry and wet seasons, respectively), whereas outflow to the open sea predominantly determined the main fates of the OPFRs. The risk quotient (RQ) results showed that EHDPHP (0.835) in water posed medium ecological risk, while other OPFRs and metabolites presented relatively lower risk (RQ < 0.1). The risk control effects were evaluated through scenario simulations of mathematical fitting between controllable source factors and the RQ of risky OPFR. The risk of EHDPHP in the PRE could be effectively reduced by restricting its concentrations in entrance region (<9.31, 8.67, and 12.7 ng/L in the normal, dry and wet seasons, respectively) of the PRE. This research offers foundational insights into environmental management and pollution control strategies for emerging pollutants in estuaries.


Asunto(s)
Contaminantes Ambientales , Retardadores de Llama , Contaminantes Químicos del Agua , Organofosfatos/análisis , Estuarios , Retardadores de Llama/análisis , Ríos , Contaminantes Químicos del Agua/análisis , Agua , China
4.
J Hazard Mater ; 465: 133390, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38163409

RESUMEN

Tetrabromobisphenol A (TBBPA) analogues have been investigated for their prevalent occurrence in environments and potential hazardous effects to humans and wildlife; however, there is still limited knowledge regarding their toxicokinetics and trophic transfer in aquatic food chains. Using a developed toxicokinetic model framework, we quantified the bioaccumulation, biotransformation and trophic transfer of tetrabromobisphenol S (TBBPS) and tetrabromobisphenol A di(allyl ether) (TBBPA-DAE) during trophic transfer from brine shrimp (Artemia salina) to zebrafish (Danio rerio). The results showed that the two TBBPA analogues could be readily accumulated by brine shrimp, and the estimated bioconcentration factor (BCF) value of TBBPS (5.68 L kg-1 ww) was higher than that of TBBPA-DAE (1.04 L kg-1 ww). The assimilation efficiency (AE) of TBBPA-DAE in zebrafish fed brine shrimp was calculated to be 16.3%, resulting in a low whole-body biomagnification factor (BMF) in fish (0.684 g g-1 ww). Based on the transformation products screened using ultra-high-performance liquid chromatograph-high resolution mass spectrometry (UPLC-HRMS), oxidative debromination and hydrolysis were identified as the major transformation pathways of TBBPS, while the biotransformation of TBBPA-DAE mainly took place through ether bond breaking and phase-II metabolism. Lower accumulation of TBBPA as a metabolite than its parent chemical was observed in both brine shrimp and zebrafish, with metabolite parent concentration factors (MPCFs) < 1. The investigated BCFs for shrimp of the two TBBPA analogues were only 3.77 × 10-10 - 5.59 × 10-3 times of the theoretical Kshrimp-water based on the polyparameter linear free energy relationships (pp-LFERs) model, and the BMF of TBBPA-DAE for fish was 0.299 times of the predicted Kshrimp-fish. Overall, these results indicated the potential of the trophic transfer in bioaccumulation of specific TBBPA analogues in higher trophic-level aquatic organisms and pointed out biotransformation as an important mechanism in regulating their bioaccumulation processes. ENVIRONMENTAL IMPLICATION: The internal concentration of a pollutant in the body determines its toxicity to organisms, while bioaccumulation and trophic transfer play important roles in elucidating its risks to ecosystems. Tetrabromobisphenol A (TBBPA) analogues have been extensively investigated for their adverse effects on humans and wildlife; however, there is still limited knowledge regarding their toxicokinetics and trophic transfer in aquatic food chains. This study investigated the bioaccumulation, biotransformation and trophic transfer of TBBPS and TBBPA-DAE in a simulated di-trophic food chain. This state-of-art study will provide a reference for further research on this kind of emerging pollutant in aquatic environments.


Asunto(s)
Contaminantes Ambientales , Perciformes , Bifenilos Polibrominados , Contaminantes Químicos del Agua , Animales , Humanos , Cadena Alimentaria , Bioacumulación , Ecosistema , Pez Cebra/metabolismo , Biotransformación , Perciformes/metabolismo , Contaminantes Ambientales/análisis , Éteres , Contaminantes Químicos del Agua/análisis
5.
J Hazard Mater ; 465: 133088, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38016320

RESUMEN

The substantial utilization of antibiotics causes their "pseudo-persistence" in offshore environments. Published studies on antibiotic surveillance in food webs have primarily emphasized on parent forms; however, the compositions and concentrations of conjugated antibiotics in aquatic organisms remain largely unexplored. This study systematically examined the distribution characteristics and trophodynamics of free antibiotics and their conjugated forms in an estuarine food web. Total antibiotic levels differed insignificantly between the surface and bottom waters. The total mean values of free antibiotics in crabs, fish, shrimps, sea cucumbers, and snails varied from 0.77 to 1.4 ng/g (wet weight). The numbers and values of antibiotics rose in these biological samples after enzymatic hydrolysis. Conjugated antibiotics accounted for 23.8-76.9% of the total antibiotics in the biological samples, revealing that conjugated forms play a non-negligible role in aquatic organisms. More number of antibiotics exhibited bioaccumulation capabilities after enzymatic hydrolysis. In the food web, the free forms of anhydroerythromycin and conjugated forms of trimethoprim and ciprofloxacin underwent trophic dilution, whereas the free forms of trimethoprim and conjugated forms of ofloxacin underwent trophic amplification. The present work provides new insights into the bioaccumulation and trophic transfer of free and conjugated antibiotics in food webs.


Asunto(s)
Cadena Alimentaria , Contaminantes Químicos del Agua , Animales , Antibacterianos/análisis , Bioacumulación , Multimedia , Contaminantes Químicos del Agua/análisis , Organismos Acuáticos , Peces , Trimetoprim , Monitoreo del Ambiente , China
6.
J Colloid Interface Sci ; 647: 306-317, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37262993

RESUMEN

Emerging aqueous zinc-ion hybrid capacitors (AZICs) are considered a promising energy storage because of their superior electrochemical performance. The pore structure, suitable heteroatom content, and graphitization degree (GD) of carbon-based cathodes significantly influence the electrochemical performance of AZICs. The N, S dual-doped porous graphitic carbon materials (LC-750) with the combined characteristics of high GD (1.11) and large specific surface area (1678.38 m2 g-1) are successfully developed by a facile "killing two birds with one stone" strategy using K3Fe(C2O4)3·3H2O as the activating and graphitizing agent, and waste sponge (WS) and coal tar pitch (CTP) as the heteroatom and carbon resource, respectively. Results show that the LC-750 cathode displays high capacities of 185.3 and 95.2 mAh g-1 at 0.2 and 10 A g-1. Specifically, the assembled LC-750//Zn capacitor can offer a maximal energy density of 119.5 Wh kg-1, a power density of 20.3 kW kg-1, and a capacity retention of 87.8% after 15,000 cycles at 10 A g-1. Density functional theory simulations demonstrate that N and S dual-doping can promote the adsorption kinetics of Zn ions. This design strategy is a feasible and cost-effective method for the preparation of dual heteroatom-doped graphitic carbon electrodes, which enables recycling of WS and CTP into high-valued products.

7.
Sci Total Environ ; 895: 165190, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37385506

RESUMEN

The distribution and transport of atmospheric microplastics (AMPs) have raised concerns regarding their potential effects on the environment and human health. Although previous studies have reported the presence of AMPs at ground level, there is a lack of comprehensive understanding of their vertical distribution in urban environments. To gain insight into the vertical profile of AMPs, field observations were conducted at four different heights (ground level, 118 m, 168 m and 488 m) of the Canton Tower in Guangzhou, China. Results showed that the profiles of AMPs and other air pollutants had similar layer distribution patterns, although their concentrations differed. The majority of AMPs were composed of polyethylene terephthalate and rayon fibers ranging from 30 to 50 µm. As a result of atmospheric thermodynamics, AMPs generated at ground level were only partially transported upward, leading to a decrease in their abundance with increasing altitude. The study found that the stable atmospheric stability and lower wind speed between 118 m and 168 m resulted in the formation of a fine layer where AMPs tended to accumulate instead of being transported upward. This study for the first time delineated the vertical profile of AMPs within the atmospheric boundary layer, providing valuable data for understanding the environmental fate of AMPs.

8.
Environ Pollut ; 326: 121499, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36972813

RESUMEN

Steroids have attracted concern worldwide because of their potential carcinogenicity and severe adverse effects on aquatic organisms. However, the contamination status of various steroids, particularly their metabolites, at the watershed level remains unknown. This was the first study to employ field investigations to elucidate the spatiotemporal patterns, riverine fluxes, and mass inventories, and conduct a risk assessment of 22 steroids and their metabolites. This study also developed an effective tool for predicting the target steroids and their metabolites in a typical watershed based on the fugacity model combined with a chemical indicator. Thirteen steroids in the river water and seven steroids in sediments were identified with total concentrations of 1.0-76 ng/L and

Asunto(s)
Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Estaciones del Año , Agua , Organismos Acuáticos , Ríos/química , Esteroides , China , Sedimentos Geológicos/química
9.
Water Res ; 235: 119913, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36996753

RESUMEN

Steroids have attracted particular attention as environmental contaminants because of their severe endocrine-disrupting effects. Previous studies have predominantly focused on parent steroids; however, the levels and proportions of the free and conjugated forms of their metabolites remain largely unclear, especially in food webs. Here, we first characterized the free and conjugated forms of parent steroids and their metabolites in 26 species in an estuarine food web. The steroids were dominated by their metabolites in water samples, whereas parent compounds were predominant in sediment samples. The total mean steroid concentrations in the biota samples that underwent non-enzymatic hydrolysis decreased in the following order: crabs (27 ng/g) > fish (5.9 ng/g) > snails (3.4 ng/g) > shrimps and sea cucumbers (1.2 ng/g); and those in the biota samples that underwent enzymatic hydrolysis decreased in the following order: crabs (57 ng/g) > snails (9.2 ng/g) > fish (7.9 ng/g) > shrimps and sea cucumbers (3.5 ng/g). The proportion of metabolites in the enzymatic hydrolysis biota samples was higher (38-79%) than that (2.9-65%) in non-enzymatic ones, indicating that the free and conjugated forms of metabolites in aquatic organisms were not negligible. Most synthetic steroids were either bioaccumulative or highly bioaccumulative. Importantly, in the invertebrate food web, 17α-methyltestosterone was biomagnified, while 17ß-boldenone underwent trophic dilution. Although the estuarine water had a median ecological risk level, the health risks via aquatic product consumption were very low. This study provides novel insights into the composition and trophic transfer of steroids in an estuarine food web for the first time and highlights that free and conjugated metabolites should receive more attention, particularly in biota samples.


Asunto(s)
Cadena Alimentaria , Contaminantes Químicos del Agua , Animales , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Peces , Esteroides/metabolismo , Agua , China
10.
Environ Pollut ; 322: 121158, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36716949

RESUMEN

In recent years, microplastics (MPs) as emerging carriers for environmental pollutants have attracted increasing worldwide attention. However, the adsorption of heavy metals on MPs, especially for biodegradable MPs, has been still poorly understood in estuarine environments. In this study, we investigated the aging of biodegradable and conventional MPs in the Pearl River Estuary after long-term exposure and their impacts on the adsorption of heavy metals from seawater. The results showed that the changes in surface characteristics were more prominent on biodegradable MPs than on conventional MPs after aging. Both biodegradable and conventional MPs could adsorb heavy metals, and their adsorption capacities fluctuated greatly on different MPs and different exposure times. The adsorption capacities of Cu, Pb, and As on biodegradable MPs were higher than those on conventional MPs, whereas Mn, Cr, and Co had lower adsorption on biodegradable MPs after 9-12 months by inductively coupled plasma-mass spectrometry (ICP-MS). The aging characteristics (CI, O/C, and Xc) of MPs accounted for a contribution of 51.0% on heavy metal adsorption, while the environmental factors (temperature, salinity, pH, and heavy metal concentration) only contributed to 13.2%. Therefore, the present study can provide important evidence on the environmental behaviors and ecological risks of biodegradable and conventional MPs in estuarine systems.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Microplásticos/química , Plásticos , Adsorción , Ríos , Estuarios , Contaminantes Químicos del Agua/análisis , Metales Pesados/análisis , China
11.
Environ Pollut ; 318: 120920, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36565907

RESUMEN

The production and use of hexabromocyclododecanes (HBCDs) have been strictly limited due to their persistence, toxicity and bioaccumulation. However, the release of HBCDs from related products and wastes would continue for a long time, which may cause many environmental problems. In this study, we investigated the occurrence and distribution of HBCDs and microplastics (MPs) in aquatic organisms inhabiting different substrates. HBCDs were measurable in the seawater, sediment, expanded polystyrene (EPS) substrates and organism samples. Mostly, the concentrations of HBCDs in organisms inhabiting EPS buoys were significantly higher than those of the same species inhabiting other substrates. Meanwhile, the diastereomeric ratio (α/γ) of HBCDs in organisms inhabiting EPS buoys was closer to that in EPS buoys. The fugacity values of HBCDs in EPS buoys were much higher than those in other media, implying that HBCDs can be transferred from EPS buoys to other media. Additionally, MPs derived from EPS buoys would be mistaken as food and ingested by aquatic organisms. The transfer of HBCDs from EPS buoys to aquatic organisms can be achieved by aqueous and dietary exposures. In combination, the contribution of MP ingestion to HBCDs for aquatic organisms should be very limited. These results supported EPS buoys as an important source of HBCDs for the aquatic ecosystem. To effectively control HBCDs pollution, it is necessary to discontinue or reduce the use of EPS buoys.


Asunto(s)
Hidrocarburos Bromados , Contaminantes Químicos del Agua , Poliestirenos/análisis , Ecosistema , Plásticos , Monitoreo del Ambiente , Hidrocarburos Bromados/análisis , Organismos Acuáticos , Contaminantes Químicos del Agua/análisis
12.
Sci Total Environ ; 841: 156749, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35718172

RESUMEN

Microplastic contamination is an emerging global threat for various marine organisms. Marine invertebrates such as bivalve mollusks are more susceptible to the widespread presence of microplastics due to their limited abilities to escape from pollution exposure and they can readily ingest environmental pollutants like microplastics through their filter-feeding behaviors. In this study, microplastic contamination in bivalves related to species, spatial, and temporal variability were conducted. Results showed that the frequency of microplastic occurrence varied from 86.7 % to 93.3 % in six species of bivalves, and the average abundance of microplastics ranged from 3.5 to 8.6 items per individual or from 0.2 to 3.1 items per gram tissues wet weight. No significant difference was observed in microplastic abundances of bivalves collected from different research regions and sampling seasons. However, the sediment-dwelling bivalves had higher microplastics abundances than the water-dwelling bivalves. Microplastic features with various shapes, colors, sizes, and polymer types detected in bivalves were similar with those in seawater and sediment environments that they are living in. The potential risk assessment of microplastics in bivalves basing on polymer hazard index (PHI) was in the risk levels of II-III, implying that microplastic contamination in bivalves may pose health risk to human via seafood consumption.


Asunto(s)
Bivalvos , Contaminantes Químicos del Agua , Animales , Organismos Acuáticos , Bahías , Monitoreo del Ambiente/métodos , Humanos , Microplásticos , Plásticos , Contaminantes Químicos del Agua/análisis
13.
Sci Total Environ ; 827: 154281, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35247408

RESUMEN

Microplastics are ubiquitous in the aquatic environment. However, the occurrence of microplastics in farmed fish is under-researched. Herein, microplastic abundance in the stomach and intestine of marine-cultured hybrid groupers (Epinephelus fuscoguttatus × Epinephelus lanceolatus) in the Pearl River Estuary (PRE) was examined. Microplastics were detected in all fish samples, with an average abundance of 35.36 n/individual or 0.62 n/g. The fish intestine contained more microplastics (23.91 n/individual, i.e., 1.10 n/g) than the stomach (12.80 n/individual, i.e., 0.37 n/g). In addition, the ingested microplastics were predominantly fibre-shaped (70.1%), and nearly 70% were smaller than 1 mm in diameter. Potential factors affecting the ingestion of microplastics by farmed hybrid groupers include fish diet and the availability of microplastics in their feeding habitat.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , China , Monitoreo del Ambiente , Estuarios , Peces , Plásticos , Ríos , Contaminantes Químicos del Agua/análisis
14.
Sci Total Environ ; 822: 153604, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35114230

RESUMEN

The prevalence of microplastics in the marine environment has attracted extensive attention. So far, no information is known regarding the temporal and spatial variations of microplastics in Zhongsha Atoll. This study, for the first time, comprehensively investigated the occurrence and distribution of microplastics in the surface seawater in Zhongsha Atoll based on two ocean cruises. The abundances of microplastics measured in the surface seawater of Zhongsha Atoll were in the ranges of not detected (ND) to 67 items/m3, and ND to 160 items/m3 in 2019 and 2020, respectively. All microplastics detected in Zhongsha Atoll were fibers, most of which were transparent and less than 2 mm. Polyethylene terephthalate was the dominating composition of microplastics. These results suggested that sewage, surface runoff, atmospheric deposition by neighboring land, and fishing activities may be the primary pollution sources. This study provides critical information on microplastic pollution in Zhongsha Atoll for the first time, calling for more research in the management of marine plastic debris in the future.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente , Plásticos , Agua de Mar , Contaminantes Químicos del Agua/análisis
15.
Sci Total Environ ; 807(Pt 1): 150814, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34626635

RESUMEN

Due to strong endocrine disrupting effects, steroids in the environment have attracted substantial attention, with studies mostly focusing on the parent steroids. Here, we conducted the first investigation on the contamination profiles, possible sources, mass inventories, and ecological risks of 27 steroids and their metabolites in 15 typical fishing ports in Southeast China. Twelve steroids were detectable in the sediment samples with the total mean concentrations of 4.6-35 ng/g. High proportions of steroid metabolites were measured in the sediments and five metabolites were newly observed. Untreated municipal sewage and aquaculture wastes constitute the possible steroid sources in the studied fishing ports. The total inventories of steroids in fishing ports ranged from 2.1-16 mg/m2, with their metabolites being important contributors. The ecological risk analysis indicated high risks across all sampling sites mainly due to the contributions of parent steroids. Furthermore, our results found that progesterone is an acceptable chemical indicator for various steroids in sediments. This study provides the first evidence of steroid metabolites in the marine environment, calling for more studies in environmental behavior and ecotoxicology of steroid metabolites.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua , Acuicultura , China , Sedimentos Geológicos , Esteroides/análisis , Contaminantes Químicos del Agua/análisis
16.
Ecotoxicology ; 30(8): 1632-1643, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33420883

RESUMEN

While expanded polystyrene (EPS) microplastics have been widely recognized as one of the most important components of plastic litter in the intertidal zones of the global ocean, our understanding of their environmental fate on island beaches is insufficient. In this study, we intended to reveal that the latest EPS microplastic pollution status on 5 island beaches in the Pearl River Estuary, China, by comprehensively assessing the abundance, distribution, size, surface texture and carrying capacity of heavy metals (Cd, As, Cr, Ni, Cu, Pb, Mn, Fe, Al). High level of EPS microplastic abundance ranged from 328 to 82,276 particles m-2 was found, with the highest abundance at Guishan Island and the lowest at Dong'ao Island. Spatial distribution of EPS microplastic abundance was significantly different among different islands. EPS microplastics in the size range of 1-2 mm were the most abundant. The content of heavy metals in EPS microplastics collected on the beaches was greater than that in the new EPS products. The average concentrations of heavy metals in EPS microplastics from 5 islands are Cd (0.27 ± 0.19 µg g-1), As (5.50 ± 3.84 µg g-1), Cr (14.9 ± 8.25 µg g-1), Cu (15.0 ± 7.66 µg g-1), Ni (17.2 ± 17.6 µg g-1), Pb (24.8 ± 7.39 µg g-1), Mn (730 ± 797 µg g-1), Fe (8340 ± 4760 µg g-1), and Al (9624 ± 6187 µg g-1), respectively. The correlation between heavy metals in EPS microplastics and sediments was better than that between heavy metals in EPS microplastics and seawater. The study results indicated that EPS microplastics could act as a carrier for the transport of heavy metals, which might pose a threat to biological and human health.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , China , Conservación de los Recursos Naturales , Monitoreo del Ambiente , Estuarios , Sedimentos Geológicos , Humanos , Metales Pesados/análisis , Microplásticos , Plásticos , Poliestirenos/análisis , Ríos , Contaminantes Químicos del Agua/análisis
17.
Mar Pollut Bull ; 160: 111650, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32920257

RESUMEN

Microplastic accumulation in estuarine environments is considered the dominant input of land-based plastics into the oceans. In this study, the level of microplastic contamination was evaluated in 26 species of wild fish from the Pearl River Estuary, South China. Results showed that microplastics abundance ranged from 0.17 items individual-1 (Boleophthalmus pectinirostris & Acanthogobius flavimanus) to 1.33 items individual-1 (Plectorhynchus cinctus) among different species. The distribution of microplastic abundance in the gills and gastrointestinal tracts was not significantly different. Microplastics in gills are strongly related to the filtration area of gills in 15 fish species. Fibers were the dominant shapes accounting for 93.45% of the total shapes. The majority of microplastics were <3 mm in size. The most common polymer composition was polyethylene terephthalate (38.2%) and the most common color was black (30.36%). The findings of this study provide baseline data for microplastic contamination in wild fish from an urban estuary.


Asunto(s)
Estuarios , Contaminantes Químicos del Agua , Animales , China , Monitoreo del Ambiente , Microplásticos , Océanos y Mares , Plásticos , Contaminantes Químicos del Agua/análisis
18.
Mar Pollut Bull ; 158: 111383, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32753173

RESUMEN

The estuaries of populated catchments have been documented as hotspots of plastic pollution. In this study, microplastics (0.355-5.0 mm) and large plastic debris (>5.0 mm) of surface water collected from the Inner Lingding Bay of the Pearl River Estuary (PRE) were quantified and categorized according to their size, shape, colour and composition. Both microplastics and large plastic debris were detected at all sampling sites with mean abundances of 2.376 ± 0.700 n/m3 and 0.110 ± 0.039 n/m3, respectively. Microplastics constitute 95.4% of the total abundance by number. The average microplastic concentration in the inner PRE was almost 3.5 times higher than that in the central PRE, indicating a positive correlation between plastic concentration and proximity to the river mouth. This result reveals the important role of rivers in transporting plastic debris from land to the oceans.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua/análisis , China , Monitoreo del Ambiente , Estuarios , Microplásticos , Océanos y Mares , Ríos
19.
Chemosphere ; 246: 125771, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31918091

RESUMEN

Chemical pollution in the plastic debris is an increasing global concern as most pollutants might transfer from the environment to living organisms via plastic debris. In this study, biocides in the plastic debris floating on the surface water of the Pearl River system were investigated. The abundances of large plastic debris and microplastics in the surface water were 0.07 ± 0.13 and 0.94 ± 1.87 items/m3, respectively. Totally, 15 and 16 out of 19 biocides were detected in the large plastic debris and microplastics, with the concentration of each biocide in the ranges of 22.6-2460 ng/g and 16.9-2890 ng/g, respectively. Meanwhile, the concentration ranges of the detected biocides were 0.01-215 ng/L in surface water. Triclosan, triclocarban, methylparaben, and N,N-diethyl-3-methylbenzamide (DEET) were the frequently detected compounds in the plastic samples and surface water. The partition coefficients (Kd) of biocides between the plastic debris and surface water showed a weak positive correlation with Kow values. Biocides were also detected on the natural floats (tree leaves and branches) at concentrations of 13.7-786 ng/g. The annual mass load of biocides in plastic debris at each site was up to 265 g/y, thereby suggesting that plastic debris might be an important carrier for the emerging contaminants, such as biocides.


Asunto(s)
Desinfectantes/análisis , Monitoreo del Ambiente , Plásticos/análisis , Contaminantes Químicos del Agua/análisis , Carbanilidas , China , Parabenos , Ríos/química , Triclosán/análisis , Residuos/análisis
20.
Chemosphere ; 246: 125708, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31911330

RESUMEN

Considering the magnitude of pollution caused by marine plastics, the present study assessed their abundance, distribution, surface morphology and polymer type in ten sandy beaches spread across three states (Maharashtra, Karnataka and Goa) along the west coast of India (WCI). The total abundance of plastics (∼1-100 mm) in the studied beaches ranged from 4.1 to 23.4% (19±1-346 ± 2 items/m2). Location-wise, the abundances of both micro (43.6 ± 1.1-346 ± 2 items/m2) and macroplastics (21.6±3-195 ± 6 items/m2) were relatively higher in beaches along the Maharashtra coast. Surface morphology-wise, fragments were predominantly abundant in both micro (76±2-346 ± 2 items/m2) and macroplastics (50.6 ± 1.5-195 ± 6 items/m2) followed by pellets (43.3 ± 2.5-245.6 ± 2 items/m2). Fourier-transform infrared spectroscopy (FT-IR) analysis of plastics revealed a dominance of polyethylene (PE) followed by polypropylene (PP). IR spectra of the collected plastics at absorption band at 1750-1700 cm-1 reflect minimal surface oxidation. White-colored plastics were observed most frequently, followed by pale-yellow, dark-brown, green, blue, transparent and red. A short-term (72 h) experimental study to assess the toxicity of PE microbeads (∼1 mm) in a commercially important shrimp species, Litopenaeus vannamei revealed toxicological changes. An elevated level of lipid peroxidation (LPX)-the tagged biochemical marker, was recorded only at the maximum dose (0.15 mg/L) of PE microbeads. A moderate increase in the levels of enzymatic antioxidants (catalase and glutathione S-transferase) was also recorded at the same dose. Comprehensive information on marine plastics, including ecotoxicity provided in this study, would help in evolving strategies in minimizing plastic pollution along the WCI.


Asunto(s)
Monitoreo del Ambiente , Plásticos/análisis , Contaminantes Químicos del Agua/análisis , Contaminación Ambiental/análisis , Contaminación Ambiental/estadística & datos numéricos , India , Microplásticos , Polietileno/análisis , Polímeros , Polipropilenos , Espectroscopía Infrarroja por Transformada de Fourier , Residuos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA