Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 344
1.
Front Plant Sci ; 15: 1397274, 2024.
Article En | MEDLINE | ID: mdl-38779062

A recombinant inbred line (RIL) population derived from wheat landrace Qingxinmai and breeding line 041133 exhibited segregation in resistance to powdery mildew and stripe rust in five and three field tests, respectively. A 16K genotyping by target sequencing (GBTS) single-nucleotide polymorphism (SNP) array-based genetic linkage map was used to dissect the quantitative trait loci (QTLs) for disease resistance. Four and seven QTLs were identified for adult-plant resistance (APR) against powdery mildew and stripe rust. QPm.caas-1B and QPm.caas-5A on chromosomes 1B and 5A were responsible for the APR against powdery mildew in line 041133. QYr.caas-1B, QYr.caas-3B, QYr.caas-4B, QYr.caas-6B.1, QYr.caas-6B.2, and QYr.caas-7B detected on the five B-genome chromosomes of line 041133 conferred its APR to stripe rust. QPm.caas-1B and QYr.caas.1B were co-localized with the pleiotropic locus Lr46/Yr29/Sr58/Pm39/Ltn2. A Kompetitive Allele Specific Polymorphic (KASP) marker KASP_1B_668028290 was developed to trace QPm/Yr.caas.1B. Four lines pyramiding six major disease resistance loci, PmQ, Yr041133, QPm/Yr.caas-1B, QPm.caas-2B.1, QYr.caas-3B, and QPm.caas-6B, were developed. They displayed effective resistance against both powdery mildew and stripe rust at the seedling and adult-plant stages.

2.
Front Psychiatry ; 15: 1363547, 2024.
Article En | MEDLINE | ID: mdl-38779544

Background: Schizophrenia (SCZ) is linked to a heightened risk of impulsive aggression and disturbances in sleep patterns. Cognitive and social cognitive impairments have been connected to aggression, with social cognitive deficits appearing to play a more immediate role. In this investigation, we conducted a retrospective analysis of the impact of cognitive training and sleep interventions on aggressive behavior and the quality of sleep among individuals with SCZ who were hospitalized. Methods: This study divided 80 hospitalized patients into two groups according to medical advice, namely the normal group and the study group. The control group received routine drug treatment and education; The research group implemented cognitive training and sleep intervention based on the normal group. Collect basic clinical data, aggressive behavior indicators, and sleep quality indicators. Results: There is no difference in the basic information statistics between the two groups. Both groups can reduce aggressive behavior and improve sleep quality. In the study group, there was a notable decrease in aggressive behavior compared to the control group. Furthermore, the sleep quality in the study group exhibited significant improvement when compared to the control group. Conclusion: Cognitive training and sleep intervention have been proven to be effective nonpharmacological treatments, effectively reducing aggressive behavior and improving sleep quality.

3.
Nat Genet ; 2024 May 22.
Article En | MEDLINE | ID: mdl-38778242

The maize root system has been reshaped by indirect selection during global adaptation to new agricultural environments. In this study, we characterized the root systems of more than 9,000 global maize accessions and its wild relatives, defining the geographical signature and genomic basis of variation in seminal root number. We demonstrate that seminal root number has increased during maize domestication followed by a decrease in response to limited water availability in locally adapted varieties. By combining environmental and phenotypic association analyses with linkage mapping, we identified genes linking environmental variation and seminal root number. Functional characterization of the transcription factor ZmHb77 and in silico root modeling provides evidence that reshaping root system architecture by reducing the number of seminal roots and promoting lateral root density is beneficial for the resilience of maize seedlings to drought.

4.
Langmuir ; 2024 May 17.
Article En | MEDLINE | ID: mdl-38760325

Improving the dispersibility and compatibility of nanomaterials in water-borne epoxy resins is an important means to improve the protection ability and corrosion resistance of coatings. In this study, glycine-functionalized Ti3C2Tx (GT) was used to prepare an epoxy composite coating. The results of Fourier transform infrared spectroscopy and X-ray diffraction showed that glycine was successfully modified. The scanning electron microscopy and transmission electron microscopy results showed that the aggregation of Ti3C2Tx was alleviated. Electrochemical impedance spectroscopy test results show that, after 60 days of immersion, GT coating still shows the best protection performance, and the composite coating |Z|f = 0.01 Hz is 3 orders of magnitude higher than that of the pure epoxy coating. This is mainly because, after adding glycine, the -COOH group on the surface of glycine binds to the -OH group on the surface of Ti3C2Tx, improving the aggregation of Ti3C2Tx itself. At the same time, the -NH group of glycine can also participate in the curing reaction of epoxy resin to strengthen the bonding strength between the coating and the metal. The good dispersion of GT in epoxy resin makes it fill the pores and holes left by epoxy resin curing and strengthen the corrosion resistance. The easy availability and green properties of glycine provide a simple and environmentally friendly method for the modification of Ti3C2Tx.

5.
Nat Commun ; 15(1): 3124, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38600164

Crop wild relatives offer natural variations of disease resistance for crop improvement. Here, we report the isolation of broad-spectrum powdery mildew resistance gene Pm36, originated from wild emmer wheat, that encodes a tandem kinase with a transmembrane domain (WTK7-TM) through the combination of map-based cloning, PacBio SMRT long-read genome sequencing, mutagenesis, and transformation. Mutagenesis assay reveals that the two kinase domains and the transmembrane domain of WTK7-TM are critical for the powdery mildew resistance function. Consistently, in vitro phosphorylation assay shows that two kinase domains are indispensable for the kinase activity of WTK7-TM. Haplotype analysis uncovers that Pm36 is an orphan gene only present in a few wild emmer wheat, indicating its single ancient origin and potential contribution to the current wheat gene pool. Overall, our findings not only provide a powdery mildew resistance gene with great potential in wheat breeding but also sheds light into the mechanism underlying broad-spectrum resistance.


Ascomycota , Triticum , Triticum/genetics , Plant Breeding , Genes, Plant , Ascomycota/genetics , Chromosome Mapping , Disease Resistance/genetics , Plant Diseases/genetics
6.
Adv Healthc Mater ; : e2400031, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38588449

Increasing the penetration and accumulation of antitumor drugs at the tumor site are crucial in chemotherapy. Smaller drug-loaded nanoparticles (NPs) typically exhibit increased tumor penetration and more effective permeation through the nuclear membrane, whereas larger drug-loaded NPs show extended retention at the tumor site. In addition, cancer stem cells (CSCs) have unlimited proliferative potential and are crucial for the onset, progression, and metastasis of cancer. Therefore, a drug-loaded amphiphilic peptide, DDP- and ATRA-loaded Pep1 (DA/Pep1), is designed that self-assembles into spherical NPs upon the encapsulation of cis-diamminedichloroplatinum (DDP) and all-trans retinoic acid (ATRA). In an acidic environment, DA/Pep1 transforms into aggregates containing sheet-like structures, which significantly increases drug accumulation at the tumor site, thereby increasing antitumor effects and inhibiting metastasis. Moreover, although DDP treatment can increase the number of CSCs present, ATRA can induce the differentiation of CSCs in breast cancer to increase the therapeutic effect of DDP. In conclusion, this peptide nanodelivery system that transforms in response to the acidic tumor microenvironment is an extremely promising nanoplatform that suggests a new idea for the combined treatment of tumors.

7.
bioRxiv ; 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38559164

Peripheral tissues become disrupted in Alzheimer's Disease (AD). However, a comprehensive understanding of how the expression of AD-associated toxic proteins, Aß42 and Tau, in neurons impacts the periphery is lacking. Using Drosophila, a prime model organism for studying aging and neurodegeneration, we generated the Alzheimer's Disease Fly Cell Atlas (AD-FCA): whole-organism single-nucleus transcriptomes of 219 cell types from adult flies neuronally expressing human Aß42 or Tau. In-depth analyses and functional data reveal impacts on peripheral sensory neurons by Aß42 and on various non-neuronal peripheral tissues by Tau, including the gut, fat body, and reproductive system. This novel AD atlas provides valuable insights into potential biomarkers and the intricate interplay between the nervous system and peripheral tissues in response to AD-associated proteins.

8.
Biomater Adv ; 160: 213852, 2024 Jun.
Article En | MEDLINE | ID: mdl-38636118

Immunotherapy is an emerging approach for the treatment of solid tumors. Although chemotherapy is generally considered immunosuppressive, specific chemotherapeutic agents can induce tumor immunity. In this study, we developed a targeted, acid-sensitive peptide nanoparticle (DT/Pep1) to deliver doxorubicin (DOX) and triptolide (TPL) to breast cancer cells via the enhanced permeability and retention (EPR) effect and the breast cancer-targeting effect of peptide D8. Compared with administration of the free drugs, treatment with the DT/Pep1 system increased the accumulation of DOX and TPL at the tumor site and achieved deeper penetration into the tumor tissue. In an acidic environment, DT/Pep1 transformed from spherical nanoparticles to aggregates with a high aspect ratio, which successfully extended the retention of the drugs in the tumor cells and bolstered the anticancer effect. In both in vivo and in vitro experiments, DT/Pep1 effectively blocked the cell cycle and induced apoptosis. Importantly, the DT/Pep1 system efficiently suppressed tumor development in mice bearing 4T1 tumors while simultaneously promoting immune system activation. Thus, the results of this study provide a system for breast cancer therapy and offer a novel and promising platform for peptide nanocarrier-based drug delivery.


Antineoplastic Agents , Apoptosis , Diterpenes , Doxorubicin , Peptides , Animals , Apoptosis/drug effects , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Female , Peptides/pharmacology , Peptides/chemistry , Peptides/administration & dosage , Mice , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Cell Line, Tumor , Diterpenes/pharmacology , Diterpenes/chemistry , Diterpenes/administration & dosage , Immunomodulation/drug effects , Epoxy Compounds/pharmacology , Epoxy Compounds/chemistry , Epoxy Compounds/administration & dosage , Nanoparticles/chemistry , Phenanthrenes/pharmacology , Phenanthrenes/chemistry , Phenanthrenes/administration & dosage , Phenanthrenes/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Drug Delivery Systems/methods , Mice, Inbred BALB C
9.
IET Syst Biol ; 18(2): 55-75, 2024 Apr.
Article En | MEDLINE | ID: mdl-38458989

The main objective was to establish a prognostic model utilising long non-coding RNAs associated with disulfidptosis and cuproptosis. The data for RNA-Sequence and clinicopathological information of Colon adenocarcinoma (COAD) were acquired from The Cancer Genome Atlas. A prognostic model was constructed using Cox regression and the Least Absolute Shrinkage and Selection Operator method. The model's predictive ability was assessed through principal component analysis, Kaplan-Meier analysis, nomogram etc. The ability of identifying the rates of overall survival, infiltration of immune cells, and chemosensitivity was also explored. In vitro experiments were conducted for the validation of differential expression and function of lncRNAs. A disulfidptosis and cuproptosis-related lncRNA prognostic model was constructed. The prognostic model exhibits excellent independent predictive capability for patient outcomes. Based on the authors' model, the high-risk group exhibited higher tumour mutation burdened worse survival. Besides, differences in immune cell infiltration and responsiveness to chemotherapeutic medications exist among patients with different risk scores. Furthermore, aberrant expressions in certain lncRNAs have been validated in HCT116 cells. In particular, FENDRR and SNHG7 could affect the proliferation and migration of colorectal cancer cells. Our study developed a novel prognostic signature, providing valuable insights into prognosis, immune infiltration, and chemosensitivity in COAD patients.


Adenocarcinoma , Colonic Neoplasms , RNA, Long Noncoding , Humans , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , RNA, Long Noncoding/genetics , Adenocarcinoma/drug therapy , Adenocarcinoma/genetics , Kaplan-Meier Estimate , Mutation , Tumor Microenvironment
10.
Case Rep Gastrointest Med ; 2024: 6004323, 2024.
Article En | MEDLINE | ID: mdl-38444814

We report a case of a 62-year-old man who was brought in by emergency medical services after a fall and change in mental status. He was found to have severe hyperkalemia, acute kidney injury, and rhabdomyolysis. The hyperkalemia was treated with sodium polystyrene sulfonate (SPS). During hospitalization, he witnessed having black tarry stools along with a significant drop in hemoglobin. Endoscopic evaluation demonstrated nonbleeding large diffuse gastric ulcers with stigmata of recent bleeding, and ulcer biopsy revealed findings consistent with SPS-induced gastric ulceration. No other source of bleeding was localized, suggesting acute upper gastrointestinal bleeding due to SPS mucosal injury.

11.
Vet Microbiol ; 291: 110014, 2024 Apr.
Article En | MEDLINE | ID: mdl-38335675

It is widely known that integrative and conjugative elements (ICEs) play an important role in the transmission of resistance genes and other exogenous genes. The present study aimed to characterize the three novel ICEs including ICEGpa76, ICEGpa44, and ICEGpa11, from Glaesserella parasuis. The ICEs from G. parasuis strains d76, Z44, and XP11 were predicted and identified by whole-genome sequencing (WGS) analysis, ICEfinder, and PCR. Characterization of G. parasuis strains carrying ICEs were determined by conjugation assay, antimicrobial susceptibility testing, WGS, phylogenetic analysis, and comparative sequence analysis.The WGS results showed that three ICEs from G. parasuis have a common genetic backbone belonging to characteristics ofthe ICEHpa1 family. The sequence comparison showed that the ICEHpa1 family has five hot spots (HSs) determined by IS6, IS110, and IS256. Moreover, two variable regions (VRs), VR1 and VR2 were determined by multidrug resistance genes and the rearrangement hotspot (rhs) family, respectively. VR1 consists of multidrug resistance genes, ISApl1s, and other accessory genes, while VR2 is composed of IS4, rhs family, transposase, and hypothetical protein genes. Conjugation experiments and MICs revealed that three ICEs could be transferred to G. parasuis strain IV52, indicating these three ICEs could be transmitted horizontally among G. parasuis strains. Additionally, the difference in resistance genes from ICEs might be due to the insertion function of the ISApl1s in VR1, and the rhs family in VR2 might evolve andthen be stably inherited in G. parasuis. These results further elucidated the transmission mechanism of exogenous genes in G. parasuis.


Conjugation, Genetic , Genes, MDR , Animals , Phylogeny
12.
PLoS One ; 19(2): e0297846, 2024.
Article En | MEDLINE | ID: mdl-38412189

Johnston's organ, the Drosophila auditory organ, is anatomically very different from the mammalian organ of Corti. However, recent evidence indicates significant cellular and molecular similarities exist between vertebrate and invertebrate hearing, suggesting that Drosophila may be a useful platform to determine the function of the many mammalian deafness genes whose underlying biological mechanisms are poorly characterized. Our goal was a comprehensive screen of all known orthologues of mammalian deafness genes in the fruit fly to better understand conservation of hearing mechanisms between the insect and the fly and ultimately gain insight into human hereditary deafness. We used bioinformatic comparisons to screen previously reported human and mouse deafness genes and found that 156 of them have orthologues in Drosophila melanogaster. We used fluorescent imaging of T2A-GAL4 gene trap and GFP or YFP fluorescent protein trap lines for 54 of the Drosophila genes and found 38 to be expressed in different cell types in Johnston's organ. We phenotypically characterized the function of strong loss-of-function mutants in three genes expressed in Johnston's organ (Cad99C, Msp-300, and Koi) using a courtship assay and electrophysiological recordings of sound-evoked potentials. Cad99C and Koi were found to have significant courtship defects. However, when we tested these genes for electrophysiological defects in hearing response, we did not see a significant difference suggesting the courtship defects were not caused by hearing deficiencies. Furthermore, we used a UAS/RNAi approach to test the function of seven genes and found two additional genes, CG5921 and Myo10a, that gave a statistically significant delay in courtship but not in sound-evoked potentials. Our results suggest that many mammalian deafness genes have Drosophila homologues expressed in the Johnston's organ, but that their requirement for hearing may not necessarily be the same as in mammals.


Deafness , Drosophila , Animals , Humans , Mice , Drosophila/genetics , Drosophila melanogaster/genetics , Hearing/genetics , Vertebrates , Mammals
13.
Sci Rep ; 14(1): 5034, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38424211

A large number of burnt rocks in some open-pit mines in Xinjiang, Inner Mongolia and Ningxia have a great influence on the blasting effect. For this kind of rock, through the analysis of physical and chemical changes, combined with ANSYS/LS-DYNA and PFC 2D numerical simulation software, a burnt rock model with multiple joint cracks and irregular distribution is constructed to simulate the blasting process of burnt rock under the combined action of stress wave and detonation gas. The results show that the fracture of rock mass affects the propagation of blasting cracks in the fracture area, resulting in stress concentration and stress hindrance. The action time of stress wave is reduced, and the energy of blasting gas is partially absorbed by the fracture, resulting in uneven stress on the burnt rock bench and seriously affecting the bench blasting effect.

14.
J Affect Disord ; 351: 507-517, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38307135

BACKGROUND: Depressive symptoms are a serious public mental health problem, and dietary intake is often considered to be associated with depressive symptoms. However, the relationship between the quality of dietary carbohydrates and depressive symptoms remains unclear. Therefore, this study aimed to investigate the relationship between high and low-quality carbohydrates and depressive symptoms and to attempt to construct an integrated model using machine learning to predict depressive symptoms. METHODS: A total of 4982 samples from the National Health and Nutrition Examination Survey (NHANES) were included in this study. Carbohydrate intake was assessed by a 24-h dietary review, and depressive symptoms were assessed using the Patient Health Questionnaire-9 (PHQ9). Variance inflation factor (VIF) and Relief-F algorithms were used for variable feature selection. RESULTS: The results of multivariate linear regression showed a negative association between high-quality carbohydrates and depressive symptoms (ß: -0.147, 95 % CI: -0.239, -0.056, p = 0.002) and a positive association between low-quality carbohydrates and depressive symptoms (ß: 0.018, 95 % CI: 0.007, 0.280, p = 0.001). Subsequently, we used the XGboost model to produce a comprehensive depressive symptom evaluation model and developed a corresponding online tool (http://8.130.128.194:5000/) to evaluate depressive symptoms clinically. LIMITATIONS: The cross-sectional study could not yield any conclusions regarding causality, and the model has not been validated with external data. CONCLUSIONS: Carbohydrate quality is associated with depressive symptoms, and machine learning models that combine diet with socioeconomic factors can be a tool for predicting depression severity.


Depression , Diet , Humans , Nutrition Surveys , Depression/diagnosis , Diet/psychology , Socioeconomic Factors , Carbohydrates
15.
Carbohydr Polym ; 331: 121843, 2024 May 01.
Article En | MEDLINE | ID: mdl-38388031

Termites are among the most efficient organisms utilizing polysaccharides from wood and play a significant role in global carbon recycling, especially within tropical and subtropical ecosystems. Yet, the molecular details in polysaccharide degradation by termites remain largely unexplored. In this work, we have elucidated the shared and distinct molecular details in polysaccharides digestion by the higher termite Nasutitermes on poplar and the lower termite Cryptotermes on pine using high resolution solid-state nuclear magnetic resonance spectroscopy. For the first time, structural polymers are partitioned into the minor mobile and dominant rigid phases for individual examination. The mobile polysaccharides receive less structural impacts and exhibit greater digestibility compared to the rigid counterparts. While both termites effectively degrade cellulose, Nasutitermes significantly outperforms Cryptotermes in hemicellulose breakdown. In the rigid phase, cellulose is comprehensively degraded into a fragmented and more dynamically consistent structure; As Nasutitermes breaks down hemicellulose in a similar manner to cellulose, Cryptotermes selectively digests hemicellulose at its interfaces with cellulose. Additionally, crystalline cellulose undergoes selective degradation, and the digestion of amorphous cellulose might involve sugar chain detachment within microfibrils. Overall, our findings offer significant advancements and fresh perspectives on the polysaccharide digestion strategies of different termite lineages.


Isoptera , Animals , Isoptera/metabolism , Wood/metabolism , Ecosystem , Polysaccharides/chemistry , Cellulose/metabolism , Digestion , Magnetic Resonance Spectroscopy/methods
16.
Plant Dis ; : PDIS08231667RE, 2024 May 23.
Article En | MEDLINE | ID: mdl-38173259

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a serious threat to wheat (Triticum aestivum L.) production. Narrow genetic basis of common wheat boosted the demand for diversified donors against powdery mildew. Aegilops tauschii Coss (2n = 2x = DD) and emmer wheat (2n = 4x = AABB), as the ancestor species of common wheat, are important gene donors for genetic improvement of common wheat. In this study, a total of 71 Ae. tauschii and 161 emmer wheat accessions were first evaluated for their powdery mildew resistance using the Bgt isolate E09. Thirty-three Ae. tauschii (46.5%) and 108 emmer wheat accessions (67.1%) were resistant. Then, all these accessions were tested by the diagnostic markers for 21 known Pm genes. The results showed that Pm2 alleles were detected in all the 71 Ae. tauschii and only Pm4 alleles were detected in 20 of 161 emmer wheat accessions. After haplotype analysis, we identified four Pm4 alleles (Pm4a, Pm4b, Pm4d, and Pm4f) in the emmer wheat accessions and three Pm2 alleles (Pm2d, Pm2e, and Pm2g) in the Ae. tauschii. Further resistance spectrum analysis indicated that these resistance accessions displayed different resistance reactions to different Bgt isolates, implying they may have other Pm genes apart from Pm2 and/or Pm4 alleles. Notably, a new Pm2 allele, Pm2S, was identified in Ae. tauschii, which contained a 64-bp deletion in the first exon and formed a new termination site at the 513th triplet of the shifted reading frame compared with reported Pm2 alleles. The phylogenetic tree of Pm2S showed that the kinship of Pm2S was close to Pm2h. To efficiently and accurately detect Pm2S and distinguish with other Pm2 alleles in Ae. tauschii background, a diagnostic marker, YTU-QS-3, was developed, and its effectiveness was verified. This study provided valuable Pm alleles and enriched the genetic diversity of the powdery mildew resistance in wheat improvement.

17.
Nature ; 626(7999): 670-677, 2024 Feb.
Article En | MEDLINE | ID: mdl-38297122

Photosystem II (PSII) catalyses the oxidation of water through a four-step cycle of Si states (i = 0-4) at the Mn4CaO5 cluster1-3, during which an extra oxygen (O6) is incorporated at the S3 state to form a possible dioxygen4-7. Structural changes of the metal cluster and its environment during the S-state transitions have been studied on the microsecond timescale. Here we use pump-probe serial femtosecond crystallography to reveal the structural dynamics of PSII from nanoseconds to milliseconds after illumination with one flash (1F) or two flashes (2F). YZ, a tyrosine residue that connects the reaction centre P680 and the Mn4CaO5 cluster, showed structural changes on a nanosecond timescale, as did its surrounding amino acid residues and water molecules, reflecting the fast transfer of electrons and protons after flash illumination. Notably, one water molecule emerged in the vicinity of Glu189 of the D1 subunit of PSII (D1-E189), and was bound to the Ca2+ ion on a sub-microsecond timescale after 2F illumination. This water molecule disappeared later with the concomitant increase of O6, suggesting that it is the origin of O6. We also observed concerted movements of water molecules in the O1, O4 and Cl-1 channels and their surrounding amino acid residues to complete the sequence of electron transfer, proton release and substrate water delivery. These results provide crucial insights into the structural dynamics of PSII during S-state transitions as well as O-O bond formation.


Oxygen , Photosystem II Protein Complex , Biocatalysis/radiation effects , Calcium/metabolism , Crystallography , Electron Transport/radiation effects , Electrons , Manganese/metabolism , Oxidation-Reduction/radiation effects , Oxygen/chemistry , Oxygen/metabolism , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/radiation effects , Protons , Time Factors , Tyrosine/metabolism , Water/chemistry , Water/metabolism
18.
Mol Biol Rep ; 51(1): 197, 2024 Jan 25.
Article En | MEDLINE | ID: mdl-38270746

Cancer metastasis is the leading cause of cancer-related death. Metastasis occurs at all stages of tumor development, with unexplored changes occurring at the primary site and distant colonization sites. The growing understanding of the metastatic process of tumor cells has contributed to the emergence of better treatment options and strategies. This review summarizes a range of features related to tumor cell metastasis and nanobased drug delivery systems for inhibiting tumor metastasis. The mechanisms of tumor metastasis in the ideal order of metastatic progression were summarized. We focus on the prominent role of nanocarriers in the treatment of tumor metastasis, summarizing the latest applications of nanocarriers in combination with drugs to target important components and processes of tumor metastasis and providing ideas for more effective nanodrug delivery systems.


Drug Delivery Systems , Neoplasms , Humans , Neoplasms/drug therapy
19.
Scand J Gastroenterol ; 59(1): 70-77, 2024.
Article En | MEDLINE | ID: mdl-37647217

BACKGROUND: The present study aimed to develop and validate a new nomogram for predicting the incidence of hepatocellular carcinoma (HCC) among chronic hepatitis B (CHB) patients receiving antiviral therapy from real-world data. METHODS: The nomogram was established based on a real-world retrospective study of 764 patients with HBV from October 2008 to July 2020. A predictive model for the incidence of HCC was developed by multivariable Cox regression, and a nomogram was constructed. The predictive accuracy and discriminative ability of the nomogram were assessed by the concordance index (C-index), calibration curves, and decision curve analysis (DCA). Risk group stratification was performed to assess the predictive capacity of the nomogram. The nomogram was compared to three current commonly used predictive models. RESULTS: A total of 764 patients with HBV were recruited for this study. Age, family history of HCC, alcohol consumption, and Aspartate aminotransferase-to-Platelet Ratio Index (APRI) were all independent risk predictors of HCC in CHB patients. The constructed nomogram had good discrimination with a C-index of 0.811. The calibration curve and DCA also proved the reliability and accuracy of the nomogram. Three risk groups (low, moderate, and high) with significantly different prognoses were identified (p < 0.001). The model's performance was significantly better than that of other risk models. CONCLUSIONS: The nomogram was superior in predicting HCC risk among CHB patients who received antiviral treatment. The model can be utilized in clinical practice to aid decision-making on the strategy of long-term HCC surveillance, especially for moderate- and high-risk patients.


Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/epidemiology , Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/pathology , Hepatitis B virus/genetics , Nomograms , Liver Neoplasms/pathology , Retrospective Studies , Reproducibility of Results
20.
Nat Neurosci ; 27(1): 48-62, 2024 Jan.
Article En | MEDLINE | ID: mdl-37985800

Transcription factor EB (TFEB) mediates gene expression through binding to the coordinated lysosome expression and regulation (CLEAR) sequence. TFEB targets include subunits of the vacuolar ATPase (v-ATPase), which are essential for lysosome acidification. Single-nucleus RNA sequencing of wild-type and PS19 (Tau) transgenic mice expressing the P301S mutant tau identified three unique microglia subclusters in Tau mice that were associated with heightened lysosome and immune pathway genes. To explore the lysosome-immune relationship, we specifically disrupted the TFEB-v-ATPase signaling by creating a knock-in mouse line in which the CLEAR sequence of one of the v-ATPase subunits, Atp6v1h, was mutated. CLEAR mutant exhibited a muted response to TFEB, resulting in impaired lysosomal acidification and activity. Crossing the CLEAR mutant with Tau mice led to higher tau pathology but diminished microglia response. These microglia were enriched in a subcluster low in mTOR and HIF-1 pathways and were locked in a homeostatic state. Our studies demonstrate a physiological function of TFEB-v-ATPase signaling in maintaining lysosomal homeostasis and a critical role of the lysosome in mounting a microglia and immune response in tauopathy and Alzheimer's disease.


Tauopathies , Vacuolar Proton-Translocating ATPases , Animals , Mice , Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Lysosomes/metabolism , Mice, Transgenic , Microglia/metabolism , Signal Transduction/physiology , Tauopathies/metabolism , Vacuolar Proton-Translocating ATPases/genetics
...