Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Org Chem ; 89(12): 8734-8744, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38814709

RESUMEN

A gold-catalyzed oxidative rearrangement of propargyl alcohols, derived from commercially available cyclohex-2-en-1-ones and alkynes, was successfully developed for the efficient synthesis of seven-membered rings. Thorough investigations were conducted to optimize the reaction conditions and evaluate its compatibility with various functional groups. Additionally, this methodology was applied to the formal total synthesis of guanacastepene A, demonstrating its practical utility in complex natural product synthesis. This versatile and efficient approach opens up new possibilities for the construction of diverse seven-membered ring systems, providing valuable building blocks for further exploration in drug discovery and the synthesis of intricate molecules.

2.
Sci Adv ; 10(15): eadn1305, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38608021

RESUMEN

The structural identification and efficient synthesis of bioactive 2,6-dideoxyglycosides are daunting challenges. Here, we report the total synthesis and structural revision of a series of 2,6-dideoxyglycosides from folk medicinal plants Ecdysanthera rosea and Chonemorpha megacalyx, which feature pregnane steroidal aglycones bearing an 18,20-lactone and glycans consisting of 2,6-dideoxy-3-O-methyl-ß-pyranose residues, including ecdysosides A, B, and F and ecdysantheroside A. All the eight possible 2,6-dideoxy-3-O-methyl-ß-pyranoside stereoisomers (of the proposed ecdysantheroside A) have been synthesized that testify the effective gold(I)-catalyzed glycosylation methods for the synthesis of various 2-deoxy-ß-pyranosidic linkages and lays a foundation via nuclear magnetic resonance data mapping to identify these sugar units which occur promiscuously in the present and other natural glycosides. Moreover, some synthetic natural compounds and their isomers have shown promising anticancer, immunosuppressive, anti-inflammatory, and anti-Zika virus activities.


Asunto(s)
Oro , Imagen por Resonancia Magnética , Glicosilación , Tecnología , Espectroscopía de Resonancia Magnética
3.
J Org Chem ; 89(5): 3331-3344, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38363745

RESUMEN

A gold(I)-catalyzed hydroamination/cycloisomerization cascade reaction was developed to yield indolizino[8,7-b]indole and indolo[2,3-a]-quinolizine derivatives from 2-ethynyltryptamides. The optimal conditions were determined by condition screening, and the functional group tolerances of these reactions were explored based on synthetic substrates. An insight into the explanation on the selectivity of the ring closure was obtained by density functional theory calculations. A plausible mechanism for the cascade reactions was proposed. Derivatization of the indolizino[8,7-b]indole and total synthesis of nauclefidine demonstrated the practicality of this strategy.

4.
J Org Chem ; 88(15): 10586-10598, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37449800

RESUMEN

Spiro[indoline-3,3'-pyrrolidine] and spiro[indoline-3,3'-piperidine] derivatives were synthesized in a substitution-controlled manner under the catalysis of cationic gold(I) species in the presence of Hantzsch ester (HEH). The optimal reaction condition was determined by screening, and the functional group tolerances of these two pathways were examined by readily synthetic substrates. The endo and exo selectivities of these cyclizations were elucidated by density functional theory calculations, and a plausible mechanism for these transformations was proposed.

5.
Opt Lett ; 48(7): 1638-1641, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37221729

RESUMEN

Transport-of-intensity diffraction tomography (TIDT) is a recently developed label-free computational microscopy technique that retrieves high-resolution three-dimensional (3D) refractive index (RI) distribution of biological specimens from 3D intensity-only measurements. However, the non-interferometric synthetic aperture in TIDT is generally achieved sequentially through the acquisition of a large number of through-focus intensity stacks captured at different illumination angles, resulting in a very cumbersome and redundant data acquisition process. To this end, we present a parallel implementation of a synthetic aperture in TIDT (PSA-TIDT) with annular illumination. We found that the matched annular illumination provides a mirror-symmetric 3D optical transfer function, indicating the analyticity in the upper half-plane of the complex phase function, which allows for recovery of the 3D RI from a single intensity stack. We experimentally validated PSA-TIDT by conducting high-resolution tomographic imaging of various unlabeled biological samples, including human breast cancer cell lines (MCF-7), human hepatocyte carcinoma cell lines (HepG2), Henrietta Lacks (HeLa) cells, and red blood cells (RBCs).

6.
Opt Express ; 31(6): 9196-9210, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-37157494

RESUMEN

The reference-frame-independent quantum key distribution (RFI-QKD) has the advantage of tolerating reference frames that slowly vary. It can generate secure keys between two remote users with slowly drifted and unknown reference frames. However, the drift of reference frames may inevitably compromise the performance of QKD systems. In the paper, we employ the advantage distillation technology (ADT) to the RFI-QKD and the RFI measurement-device-independent QKD (RFI MDI-QKD), and we then analyze the effect of ADT on the performance of decoy-state RFI-QKD and RFI MDI-QKD in both asymptotic and nonasymptotic cases. The simulation results show that ADT can significantly improve the maximum transmission distance and the maximum tolerable background error rate. Furthermore, the performance of RFI-QKD and RFI MDI-QKD in terms of the secret key rate and maximum transmission distance are still greatly improved when statistical fluctuations are taken into account. Our work combines the merits of the ADT and RFI-QKD protocols, which further enhances the robustness and practicability of QKD systems.

7.
J Org Chem ; 88(9): 5483-5496, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37043684

RESUMEN

Density functional theory calculations were applied to predict the pathways of gold(I)-catalyzed cycloisomerization of the indole substrates with 1,6-enynes, which were consistent with the ensuing experimental results. The substitution-controlled synthesis led to the formation of 1H-pyrido[4,3-b]indole and spiro[indoline-3,3'-pyridine] derivatives in a tunable way. The reactions had good functional group tolerances, and a possible mechanism was proposed based on the computational and experimental results.

8.
Vaccines (Basel) ; 11(2)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36851181

RESUMEN

INTRODUCTION: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread around the world, caused millions of deaths and a severe illness which poses a serious threat to human health. OBJECTIVE: To develop an antigen detection kit that can identify Omicron novel coronavirus mutants. METHODS: BALB/c mice were immunized with the nucleocapsid protein of SARS-CoV-2 Omicron mutant treated with ß-propiolactone. After fusion of myeloma cells with immune cells, Elisa was used to screen the cell lines capable of producing monoclonal antibodies. The detection kit was prepared by colloidal gold immunochromatography. Finally, the sensitivity, specificity and anti-interference of the kit were evaluated by simulating positive samples. RESULTS: The sensitivity of the SARS-CoV-2 antigen detection kit can reach 62.5 TCID50/mL, and it has good inclusiveness for different SARS-CoV-2 strains. The kit had no cross-reaction with common respiratory pathogens, and its sensitivity was still not affected under the action of different concentrations of interferences, indicating that it had good specificity and stability. CONCLUSION: In this study, monoclonal antibodies with high specificity to the N protein of the Omicron mutant strain were obtained by monoclonal antibody screening technology. Colloidal gold immunochromatography technology was used to prepare an antigen detection kit with high sensitivity to detect and identify the mutant Omicron strain.

9.
Nature ; 614(7948): 463-470, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36792743

RESUMEN

Aerial seeding can quickly cover large and physically inaccessible areas1 to improve soil quality and scavenge residual nitrogen in agriculture2, and for postfire reforestation3-5 and wildland restoration6,7. However, it suffers from low germination rates, due to the direct exposure of unburied seeds to harsh sunlight, wind and granivorous birds, as well as undesirable air humidity and temperature1,8,9. Here, inspired by Erodium seeds10-14, we design and fabricate self-drilling seed carriers, turning wood veneer into highly stiff (about 4.9 GPa when dry, and about 1.3 GPa when wet) and hygromorphic bending or coiling actuators with an extremely large bending curvature (1,854 m-1), 45 times larger than the values in the literature15-18. Our three-tailed carrier has an 80% drilling success rate on flat land after two triggering cycles, due to the beneficial resting angle (25°-30°) of its tail anchoring, whereas the natural Erodium seed's success rate is 0%. Our carriers can carry payloads of various sizes and contents including biofertilizers and plant seeds as large as those of whitebark pine, which are about 11 mm in length and about 72 mg. We compare data from experiments and numerical simulation to elucidate the curvature transformation and actuation mechanisms to guide the design and optimization of the seed carriers. Our system will improve the effectiveness of aerial seeding to relieve agricultural and environmental stresses, and has potential applications in energy harvesting, soft robotics and sustainable buildings.


Asunto(s)
Materiales Biomiméticos , Semillas , Agricultura/métodos , Germinación , Semillas/química , Semillas/metabolismo , Suelo , Luz Solar , Madera/análisis , Madera/química , Humectabilidad , Fertilizantes , Materiales Biomiméticos/análisis , Materiales Biomiméticos/química , Tamaño de la Partícula
10.
BMC Vet Res ; 18(1): 321, 2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-35987654

RESUMEN

BACKGROUND: African swine fever virus (ASFV) is a highly contagious hemorrhagic disease and often lethal, which has significant economic consequences for the swine industry. Due to lacking of commercial vaccine, the prevention and control of ASF largely depend on early large-scale detection and screening. So far, the commercial ELISA kits have a long operation time and are expensive, making it difficult to achieve large-scale clinical applications. Nanobodies are single-domain antibodies produced by camelid animals, and have unique advantages such as smaller molecular weight, easy genetic engineering modification and low-costing of mass production, thus exhibiting good application prospects. RESULTS: The present study developed a new method for detection of ASFV specific antibodies using nanobody-horseradish peroxidase (Nb-HRP) fusion proteins as probe. By using camel immunization, phage library construction and phage display technology, five nanobodies against K205R protein were screened. Then, Nb-HRP fusion proteins were produced using genetic modification technology. Based on the Nb-HRP fusion protein as specific antibodies against K205R protein, a new type of cELISA was established to detect ASFV antibodies in pig serum. The cut-off value of the cELISA was 34.8%, and its sensitivity, specificity, and reproducibility were good. Furthermore, the developed cELISA exhibited 99.3% agreement rate with the commercial available ELISA kit (kappa value = 0.98). CONCLUSIONS: The developed cELISA method has the advantages of simple operation, rapid and low-costing, and can be used for monitoring of ASFV infection in pigs, thus providing a new method for the prevention and control of ASF.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Anticuerpos de Dominio Único , Enfermedades de los Porcinos , Virus de la Fiebre Porcina Africana/genética , Animales , Camelus , Ensayo de Inmunoadsorción Enzimática/métodos , Ensayo de Inmunoadsorción Enzimática/veterinaria , Peroxidasa de Rábano Silvestre , Indicadores y Reactivos , Reproducibilidad de los Resultados , Porcinos
11.
Light Sci Appl ; 11(1): 154, 2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35650186

RESUMEN

We present a new label-free three-dimensional (3D) microscopy technique, termed transport of intensity diffraction tomography with non-interferometric synthetic aperture (TIDT-NSA). Without resorting to interferometric detection, TIDT-NSA retrieves the 3D refractive index (RI) distribution of biological specimens from 3D intensity-only measurements at various illumination angles, allowing incoherent-diffraction-limited quantitative 3D phase-contrast imaging. The unique combination of z-scanning the sample with illumination angle diversity in TIDT-NSA provides strong defocus phase contrast and better optical sectioning capabilities suitable for high-resolution tomography of thick biological samples. Based on an off-the-shelf bright-field microscope with a programmable light-emitting-diode (LED) illumination source, TIDT-NSA achieves an imaging resolution of 206 nm laterally and 520 nm axially with a high-NA oil immersion objective. We validate the 3D RI tomographic imaging performance on various unlabeled fixed and live samples, including human breast cancer cell lines MCF-7, human hepatocyte carcinoma cell lines HepG2, mouse macrophage cell lines RAW 264.7, Caenorhabditis elegans (C. elegans), and live Henrietta Lacks (HeLa) cells. These results establish TIDT-NSA as a new non-interferometric approach to optical diffraction tomography and 3D label-free microscopy, permitting quantitative characterization of cell morphology and time-dependent subcellular changes for widespread biological and medical applications.

12.
BMC Cancer ; 22(1): 279, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35291954

RESUMEN

BACKGROUND: Among the most aggressive and rapidly lethal types of lung cancer, lung adenocarcinoma is the most common type. Exosomes, as a hot area, play an influential role in cancer. By using proteomics analysis, we aimed to identify potential markers of lung adenocarcinoma in serum. METHODS: In our study, we used the ultracentrifugation method to isolate serum exosomes. The Liquid chromatography-mass spectrometry (LC-MS) and bioinformatics analysis were used to identify potential serum exosomal proteins with altered expression among patients with advanced lung adenocarcinoma, early lung adenocarcinoma, and healthy controls. A western blot (WB) was performed to confirm the above differential expression levels in a separate serum sample-isolated exosome, and immunohistochemistry (IHC) staining was conducted to detect expression levels of the above differential proteins of serum exosomes in lung adenocarcinoma tissues and adjacent tissues. Furthermore, we compared different expression models of the above differential proteins in serum and exosomes. RESULT: According to the ITGAM (Integrin alpha M chain) and CLU (Clusterin) were differentially expressed in serum exosomes among different groups as well as tumor tissues and adjacent tissues. ITGAM was significantly and specifically enriched in exosomes. As compared to serum, CLU did not appear to be significantly enriched in exosomes. ITGAM and CLU were identified as serum exosomal protein markers of lung adenocarcinoma. CONCLUSIONS: This study can provide novel ideas and a research basis for targeting lung adenocarcinoma treatment as a preliminary study.


Asunto(s)
Adenocarcinoma del Pulmón , Exosomas , Neoplasias Pulmonares , Adenocarcinoma del Pulmón/patología , Biomarcadores de Tumor/metabolismo , Exosomas/metabolismo , Humanos , Neoplasias Pulmonares/patología , Proteómica
13.
Opt Lett ; 47(4): 969-972, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35167571

RESUMEN

We present a 3D label-free refractive index (RI) imaging technique based on single-exposure intensity diffraction tomography (sIDT) using a color-multiplexed illumination scheme. In our method, the chromatic light-emitting diodes (LEDs) corresponding R/G/B channels in an annular programmable ring provide oblique illumination geometry that precisely matches the objective's numerical aperture. A color intensity image encoding the scattering field of the specimen from different directions is captured, and monochromatic intensity images concerning three color channels are separated and then used to recover the 3D RI distribution of the object following the process of IDT. In addition, the axial chromatic dispersion of focal lengths at different wavelengths introduced by the chromatic aberration of the objective lens and the spatial position misalignment of the ring LED source in the imaging system's transfer functions modeling are both corrected to significantly reduce the artifacts in the slice-based deconvolution procedure for the reconstruction of 3D RI distribution. Experimental results on MCF-7, Spirulina algae, and living Caenorhabditis elegans samples demonstrate the reliable performance of the sIDT method in label-free, high-throughput, and real-time (∼24 fps) 3D volumetric biological imaging applications.


Asunto(s)
Microscopía , Tomografía , Artefactos , Imagenología Tridimensional , Refractometría
14.
J Biophotonics ; 15(3): e202100272, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34846795

RESUMEN

Fourier ptychographic diffraction tomography (FPDT) is a recently developed label-free computational microscopy technique that retrieves high-resolution and large-field three-dimensional (3D) tomograms by synthesizing a set of low-resolution intensity images obtained with a low numerical aperture (NA) objective. However, in order to ensure sufficient overlap of Ewald spheres in 3D Fourier space, conventional FPDT requires thousands of intensity measurements and consumes a significant amount of time for stable convergence of the iterative algorithm. Herein, we present accelerated Fourier ptychographic diffraction tomography (aFPDT), which combines sparse annular light-emitting diode (LED) illuminations and multiplexing illumination to significantly decrease data amount and achieve computational acceleration of 3D refractive index (RI) tomography. Compared with existing FPDT technique, the equivalent high-resolution 3D RI results are obtained using aFPDT with reducing data requirement by more than 40 times. The validity of the proposed method is experimentally demonstrated on control samples and various biological cells, including polystyrene beads, unicellular algae and clustered HeLa cells in a large field of view. With the capability of high-resolution and high-throughput 3D imaging using small amounts of data, aFPDT has the potential to further advance its widespread applications in biomedicine.


Asunto(s)
Iluminación , Tomografía , Células HeLa , Humanos , Microscopía , Refractometría
15.
Entropy (Basel) ; 24(10)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37420359

RESUMEN

Sending-or-not sending twin-field quantum key distribution (SNS TF-QKD) has the advantage of tolerating large amounts of misalignment errors, and its key rate can exceed the linear bound of repeaterless quantum key distribution. However, the weak randomness in a practical QKD system may lower the secret key rate and limit its achievable communication distance, thus compromising its performance. In this paper, we analyze the effects of the weak randomness on the SNS TF-QKD. The numerical simulation shows that SNS TF-QKD can still have an excellent performance under the weak random condition: the secret key rate can exceed the PLOB boundary and achieve long transmission distances. Furthermore, our simulation results also show that SNS TF-QKD is more robust to the weak randomness loopholes than the BB84 protocol and the measurement-device-independent QKD (MDI-QKD). Our results emphasize that keeping the randomness of the states is significant to the protection of state preparation devices.

16.
Opt Express ; 26(21): 27599-27614, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30469823

RESUMEN

The transport-of-intensity equation (TIE) is a well-established non-interferometric phase retrieval approach, which enables quantitative phase imaging (QPI) of transparent sample simply by measuring the intensities at multiple axially displaced planes. Nevertheless, it still suffers from two fundamentally limitations. First, it is quite susceptible to low-frequency errors (such as "cloudy" artifacts), which results from the poor contrast of the phase transfer function (PTF) near the zero frequency. Second, the reconstructed phase tends to blur under spatially low-coherent illumination, especially when the defocus distance is beyond the near Fresnel region. Recent studies have shown that the shape of the illumination aperture has a significant impact on the resolution and phase reconstruction quality, and by simply replacing the conventional circular illumination aperture with an annular one, these two limitations can be addressed, or at least significantly alleviated. However, the annular aperture was previously empirically designed based on intuitive criteria related to the shape of PTF, which does not guarantee optimality. In this work, we optimize the illumination pattern to maximize TIE's performance based on a combined quantitative criterion for evaluating the "goodness" of an aperture. In order to make the size of the solution search space tractable, we restrict our attention to binary-coded axis-symmetric illumination patterns only, which are easier to implement and can generate isotropic TIE PTFs. We test the obtained optimal illumination by imaging both a phase resolution target and HeLa cells based on a small-pitch LED array, suggesting superior performance over other suboptimal patterns in terms of both signal-to-noise ratio (SNR) and spatial resolution.

17.
Biomed Opt Express ; 9(6): 2526-2542, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30258670

RESUMEN

We demonstrate a three-dimensional (3D) optical diffraction tomographic technique with multi-frequency combination (MFC-ODT) for the 3D quantitative phase imaging of unlabeled specimens. Three sets of through-focus intensity images are captured under an annular aperture and two circular apertures with different coherence parameters. The 3D phase optical transfer functions (POTF) corresponding to different illumination apertures are combined to obtain a synthesized frequency response, achieving high-quality, low-noise 3D reconstructions with imaging resolution up to the incoherent diffraction limit. Besides, the expression of 3D POTF for arbitrary illumination pupils is derived and analyzed, and the 3D imaging performance of annular illumination is explored. It is shown that the phase-contrast washout effect in high-NA circular apertures can be effectively addressed by introducing a complementary annular aperture, which strongly boosts the phase contrast and improves the imaging resolution. By incorporating high-NA illumination as well as high-NA detection, MFC-ODT can achieve a theoretical transverse resolution up to 200 nm and an axial resolution of 645 nm. To test the feasibility of the proposed MFC-ODT technique, the 3D refractive index reconstruction results are based on a simulated 3D resolution target and experimental investigations of micro polystyrene bead and unstained biological samples are presented. Due to its capability for high-resolution 3D phase imaging as well as the compatibility with a widely available commercial microscope, the MFC-ODT is expected to find versatile applications in biological and biomedical research.

18.
Opt Lett ; 43(15): 3714-3717, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30067662

RESUMEN

In this Letter, we present a new active micro-scanning-based imaging platform and associated super-resolution (SR) phase retrieval method in lensfree microscopy to achieve SR dynamic phase imaging. The samples are illuminated by a nearly coherent illumination system, where two orthogonal parallel plates are inserted into the light path and rotate to achieve controllable source micro-scanning, permitting sub-pixel shifts of the holograms on x- and y-axis directions independently. Then sequential low-resolution sub-pixel-shifted holograms are processed to enhance spatial resolution and reconstruct quantitative phase images of the sample simultaneously. The reconstruction result of the benchmark quantitative phase microscopy target (QPTTM) demonstrates a half-pitch lateral resolution of 775 nm across a large field-of-view of ∼29.84 mm2, surpassing 2.15 times that of the theoretical Nyquist-Shannon sampling resolution limit imposed by the pixel size of the imaging sensor (1.67 µm). The proposed approach is also evaluated by imaging unstained HeLa cells, suggesting it is a promising toolset for high-throughput monitoring and quantitative analysis of unlabeled biological samples.


Asunto(s)
Microtecnología/instrumentación , Dispositivos Ópticos , Relación Señal-Ruido
19.
Sheng Wu Gong Cheng Xue Bao ; 34(1): 102-109, 2018 Jan 25.
Artículo en Chino | MEDLINE | ID: mdl-29380575

RESUMEN

To prepare polyclonal antibodies (PcAb) against UspA1 of Moraxella catarrhalis (Mc), we used bioinformatic analysis to determine the surface exposed region in this protein that holds the antigen epitopes. Then the corresponding coding sequences for this fragment was artificially synthesized according to the codon usage of Escherichia coli. The gene fragment was then subcloned into the prokaryotic expression vector pET-28a(+) and expressed in E. coli rosseta (DE3), and then the recombinant UspA1-His proteins were purified. Two New Zealand white rabbits were immunized with this protein to prepare antiserum. The resulting PcAb was then purified from the antiserum with Protein A affinity column. The results of fluorescence antibody assay, enzyme linked immunosorbent assay and Western blotting analysis showed that the PcAb could specifically recognize the surface exposed region of UspA1 on Mc. The preparation of the PcAb laid a foundation of further development of rapid detection technique for M. catarrhalis.


Asunto(s)
Anticuerpos/inmunología , Proteínas de la Membrana Bacteriana Externa/inmunología , Moraxella catarrhalis/inmunología , Animales , Western Blotting , Biología Computacional , Ensayo de Inmunoadsorción Enzimática , Epítopos/inmunología , Escherichia coli , Técnica del Anticuerpo Fluorescente , Conejos
20.
Biomed Opt Express ; 8(10): 4687-4705, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29082095

RESUMEN

In this work, we present an efficient quantitative phase imaging (QPI) approach using programmable annular LED illumination. As a new type of coded light source, the LED array provides flexible illumination control for noninterferometric QPI based on a traditional microscopic configurations. The proposed method modulates the transfer function of system by changing the LED illumination pattern, which provides noise-robust response of transfer function and achieves twice resolution limit of objective NA. The quantitative phase can be recovered from slightly defocused intensity images through inversion of transfer function. Moreover, the weak object transfer function (WOTF) of axis-symmetric oblique source is derived, and the noise-free and noisy simulation results validate the predicted theory. Finally, we experimentally confirm accurate and repeatable performance of our method by imaging calibrated phase samples and cellular specimens with different NA objectives.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA