Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 41
1.
Exp Neurol ; 377: 114784, 2024 Jul.
Article En | MEDLINE | ID: mdl-38642665

Inflammation is one of the key injury factors for spinal cord injury (SCI). Exosomes (Exos) derived from M2 macrophages have been shown to inhibit inflammation and be beneficial in SCI animal models. However, lacking targetability restricts their application prospects. Considering that chemokine receptors increase dramatically after SCI, viral macrophage inflammatory protein II (vMIP-II) is a broad-spectrum chemokine receptor binding peptide, and lysosomal associated membrane protein 2b (Lamp2b) is the key membrane component of Exos, we speculated that vMIP-II-Lamp2b gene-modified M2 macrophage-derived Exos (vMIP-II-Lamp2b-M2-Exo) not only have anti-inflammatory properties, but also can target the injured area by vMIP-II. In this study, using a murine contusive SCI model, we revealed that vMIP-II-Lamp2b-M2-Exo could target the chemokine receptors which highly expressed in the injured spinal cords, inhibit some key chemokine receptor signaling pathways (such as MAPK and Akt), further inhibit proinflammatory factors (such as IL-1ß, IL-6, IL-17, IL-18, TNF-α, and iNOS), and promote anti-inflammatory factors (such as IL-4 and Arg1) productions, and the transformation of microglia/macrophages from M1 into M2. Moreover, the improved histological and functional recoveries were also found. Collectively, our results suggest that vMIP-II-Lamp2b-M2-Exo may provide neuroprotection by targeting the injured spinal cord, inhibiting some chemokine signals, reducing proinflammatory factor production and modulating microglia/macrophage polarization.


Exosomes , Macrophages , Mice, Inbred C57BL , Microglia , Spinal Cord Injuries , Animals , Spinal Cord Injuries/pathology , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/genetics , Exosomes/metabolism , Exosomes/transplantation , Mice , Macrophages/metabolism , Microglia/metabolism , Microglia/drug effects , Microglia/pathology , Lysosomal-Associated Membrane Protein 2/metabolism , Lysosomal-Associated Membrane Protein 2/genetics , Cell Polarity/drug effects , Cell Polarity/physiology , Female , Neuroprotection/physiology , Signal Transduction/drug effects , Chemokines/metabolism
2.
J Appl Microbiol ; 135(5)2024 May 01.
Article En | MEDLINE | ID: mdl-38544327

AIMS: Carbapenem-resistant Klebsiella pneumoniae (CRKP) infections poses a significant threat to human health, necessitating urgent development of new antimicrobial agents. Silver nanoparticles (AgNPs), which are among the most widely used engineered nanomaterials, have been extensively studied. However, the impact of AgNPs on CRKP and the potential for drug resistance development remain inadequately explored. METHODS AND RESULTS: In this study, broth dilution method was used to determine the minimum inhibitory concentration (MIC) was determined using the broth dilution method. Results indicated MIC values of 93.1 ± 193.3 µg ml-1 for AgNPs, 2.3 ± 5.1 µg ml-1 for AgNO3, and 25.1 ± 48.3 µg ml-1 for imipenem (IMI). The combined inhibitory effect of AgNPs and IMI on CRKP was assessed using the checkerboard method. Moreover, after 6-20 generations of continuous culture, the MIC value of AgNPs increased 2-fold. Compared to IMI, resistance of Kl. pneumoniae to AgNPs developed more slowly, with a higher fold increase in MIC observed after 20 generations. Whole-genome sequencing revealed four nonsynonymous single nucleotide polymorphism mutations in CRKP after 20 generations of AgNP treatment. CONCLUSION: We have demonstrated that AgNPs significantly inhibit CRKP isolates and enhance the antibacterial activity of imipenem against Kl. pneumoniae. Although the development of AgNP resistance is gradual, continued efforts are necessary for monitoring and studying the mechanisms of AgNP resistance.


Anti-Bacterial Agents , Carbapenems , Imipenem , Klebsiella pneumoniae , Metal Nanoparticles , Microbial Sensitivity Tests , Silver , Imipenem/pharmacology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Silver/pharmacology , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy , Humans , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/genetics , Drug Resistance, Bacterial/genetics
3.
Ecotoxicol Environ Saf ; 273: 116137, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38417314

Silver nanoparticles (AgNPs) have wide clinical applications because of their excellent antibacterial properties; however, they can cause liver inflammation in animals. Macrophages are among the main cells mediating inflammation and are also responsible for the phagocytosis of nanomaterials. The NLRP3 inflammasome is a major mechanism of inflammation, and its activation both induces cytokine release and triggers inflammatory cell death (i.e., pyroptosis). In previous studies, we demonstrated that mitophagy activation plays a protective role against AgNP-induced hepatotoxicity. However, the exact molecular mechanisms underlying these processes are not fully understood. In this study, we demonstrate that AgNP exposure induces NLRP3 inflammasome activation, mitochondrial damage and pyroptosis in vivo and in vitro. NLRP3 silencing or inhibiting mitochondrial reactive oxygen species (ROS) overproduction reduces PINK1-Parkin-mediated mitophagy. Meanwhile, the inhibition of mitophagy ROS production, mitochondrial, NLRP3-mediated inflammation, and pyroptosis in RAW264.7 cells were more pronounced than in the control group. These results suggest that PINK1-Parkin-mediated mitophagy plays a protective role by reducing AgNP-induced mitochondrial ROS and subsequent NLRP3 inflammasome activation.


Chemical and Drug Induced Liver Injury , Metal Nanoparticles , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/metabolism , Metal Nanoparticles/toxicity , Silver/toxicity , Mitophagy , Inflammation , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Protein Kinases
4.
Ther Adv Respir Dis ; 17: 17534666231208632, 2023.
Article En | MEDLINE | ID: mdl-37941347

BACKGROUND: The differential diagnosis of malignant pleural effusion (MPE) and benign pleural effusion (BPE) presents a clinical challenge. In recent years, the use of artificial intelligence (AI) machine learning models for disease diagnosis has increased. OBJECTIVE: This study aimed to develop and validate a diagnostic model for early differentiation between MPE and BPE based on routine laboratory data. DESIGN: This was a retrospective observational cohort study. METHODS: A total of 2352 newly diagnosed patients with pleural effusion (PE), between January 2008 and March 2021, were eventually enrolled. Among them, 1435, 466, and 451 participants were randomly assigned to the training, validation, and testing cohorts in a ratio of 3:1:1. Clinical parameters, including age, sex, and laboratory parameters of PE patients, were abstracted for analysis. Based on 81 candidate laboratory variables, five machine learning models, namely extreme gradient boosting (XGBoost) model, logistic regression (LR) model, random forest (RF) model, support vector machine (SVM) model, and multilayer perceptron (MLP) model were developed. Their respective diagnostic performances for MPE were evaluated by receiver operating characteristic (ROC) curves. RESULTS: Among the five models, the XGBoost model exhibited the best diagnostic performance for MPE (area under the curve (AUC): 0.903, 0.918, and 0.886 in the training, validation, and testing cohorts, respectively). Additionally, the XGBoost model outperformed carcinoembryonic antigen (CEA) levels in pleural fluid (PF), serum, and the PF/serum ratio (AUC: 0.726, 0.699, and 0.692 in the training cohort; 0.763, 0.695, and 0.731 in the validation cohort; and 0.722, 0.729, and 0.693 in the testing cohort, respectively). Furthermore, compared with CEA, the XGBoost model demonstrated greater diagnostic power and sensitivity in diagnosing lung cancer-induced MPE. CONCLUSION: The development of a machine learning model utilizing routine laboratory biomarkers significantly enhances the diagnostic capability for distinguishing between MPE and BPE. The XGBoost model emerges as a valuable tool for the diagnosis of MPE.


Pleural Effusion, Malignant , Pleural Effusion , Humans , Pleural Effusion, Malignant/diagnosis , Pleural Effusion, Malignant/etiology , Carcinoembryonic Antigen/analysis , Biomarkers, Tumor , Artificial Intelligence , Diagnosis, Differential , Cohort Studies , Pleural Effusion/diagnosis , Machine Learning
5.
Redox Biol ; 63: 102739, 2023 07.
Article En | MEDLINE | ID: mdl-37187014

Silver nanoparticles (AgNPs) have widely used in industrial and medical applications for their excellent antibacterial activities. AgNPs can penetrate into the brain and cause neuronal death, but limited evidence focused on toxic effects and mechanic study in hippocampal neuron. This study aimed to investigate the molecular mechanisms of mitochondrial damage and apoptosis in mouse hippocampal HT22 cells and further to explore role of reactive oxygen species (ROS) and GTPase dynamin-related protein 1 (Drp1) in AgNPs-induced neurotoxicity. Our results showed that acute exposure to AgNPs at low doses (2-8 µg/mL) increased ROS generation, decreased mitochondrial membrane potential (MMP) and ATP synthesis in HT22 cells. In addition, AgNPs promoted mitochondrial fragmentation and mitochondria-dependent apoptosis via excessive mitochondrial fission/fusion by 8 µg/mL AgNPs treatment for 24 h. The mechanism was involved in increased protein expression of Drp1, mitochondrial fission protein 1 (Fis1), mitofusin 1/2 (Mfn1/2) and inhibited optic atrophy 1 (OPA1), and mainly mediated by phosphorylation of Drp1 Ser616. The AgNPs-induced mitochondrial impairment and apoptosis was mainly due to their particle-specific effect rather than silver ions release. Furthermore Drp1-mediated mitochondrial fission contributed to mitochondria-dependent apoptosis induced by AgNPs, all aforementioned changes were significantly rescued by N-acetyl-l-cysteine (NAC) and Mdivi-1 except for OPA1 protein expression. Hence, our results provide a novel neurotoxic mechanism to AgNPs-induced neurotoxicity and revealed that the mechanism of mitochondria-dependent apoptosis in HT22 cells was mediated by excessive activation of ROS-Drp1-mitochondrial fission axis. These findings can deepen current evidences on neurotoxicological evaluation of AgNPs and aid in guiding their proper applications in different areas, especially in biomedical use.


Metal Nanoparticles , Silver , Mice , Animals , Reactive Oxygen Species/metabolism , Silver/toxicity , Metal Nanoparticles/toxicity , Dynamins/genetics , Dynamins/metabolism , Apoptosis , Mitochondria/metabolism , Hippocampus/metabolism , Mitochondrial Dynamics
6.
J Clin Lab Anal ; 37(1): e24808, 2023 Jan.
Article En | MEDLINE | ID: mdl-36525342

BACKGROUND: A wave of the Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has rapidly spread in Shanghai, China. Hematological abnormalities have been reported in coronavirus disease 2019 (COVID-19) patients; however, the difference in hematological parameters between COVID-19 patients with fever and patients who are febrile from other causes remains unexplored. METHODS: This retrospective cohort study enrolled 663 SARS-CoV-2 positive patients identified by RT-PCR. Clinical parameters, including age, sex, and threshold cycle values of all COVID-19 patients, and hematological parameters of COVID-19 patients in the fever clinic were abstracted for analysis. RESULTS: Overall, 60.8% of COVID-19 patients were male, and the median age was 45 years. Most of COVID-19 patients were asymptomatic, while 25.8% of patients showed fever and 10.9% of patients had other emergencies. COVID-19 patients with fever had significantly lower white blood cells (WBCs), neutrophils, lymphocytes, platelets and C-reactive protein (CRP), and significantly higher monocyte-to-lymphocyte ratio (MLR), platelet-to-lymphocyte ratio (PLR), mean platelet volume (MPV), and mean platelet volume-to-platelet ratio (MPR) levels, compared with those in SARS-CoV-2 negative patients with fever from other causes (p < 0.05). Neutrophil-to-lymphocyte ratio (NLR), PLR, and systemic inflammatory index (SII) levels were significantly higher in COVID-19 patients with emergencies (p < 0.05). WBCs showed the best performance with an area under the curve (0.756), followed by neutrophils (0.730) and lymphocytes (0.694) in the diagnosis of COVID-19 in the fever clinic. CONCLUSION: WBCs, neutrophils, lymphocytes, platelets, CRP and MLR, PLR, and MPR may be useful in early diagnosis of COVID-19 in the fever clinic.


COVID-19 , Humans , Male , Middle Aged , Female , COVID-19/epidemiology , SARS-CoV-2 , Retrospective Studies , Emergencies , China/epidemiology , Lymphocytes , Blood Platelets/chemistry , C-Reactive Protein/analysis , Neutrophils/chemistry
7.
Food Chem Toxicol ; 170: 113469, 2022 Dec.
Article En | MEDLINE | ID: mdl-36243218

Silver nanoparticles (AgNPs) have been incorporated in many consumer and biomedical products. Serious concerns have been expressed about the environmental and public health risks caused by nanoparticles. In previous studies, we found that AgNPs induced microglia polarization of the inflammatory phenotype. Autophagy was a critical for AgNPs-induced neuroinflammation. In the present study, we evaluated in detail the effects of AgNPs in different stages of the autophagy process, and we found that AgNPs induced neuroinflammatory responses and autophagic flux blockage both in the mouse brain and BV2 cells. AgNPs inhibited autophagosome-lysosome fusion and impaired the lysosomal functions by reducing the levels of lysosomal-associated membrane proteins, promoting lysosome membrane permeability and altering the lysosomal acidic microenvironment. These changes resulted in the defects in autophagic substrate clearance and subsequently led neuroinflammation. In addition, the elevation of autophagy could prevent the neuroinflammation induced by AgNPs. As a result, AgNPs hindered autophagic flux by inhibiting autophagosome fusion with lysosomes, thus aggravating the AgNPs-induced neurotoxicity. These findings will provide new insights to investigate the molecular mechanisms of neurotoxicity caused by AgNPs.


Metal Nanoparticles , Silver , Mice , Animals , Silver/chemistry , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Microglia , Lysosomes , Autophagy , Inflammation/chemically induced , Inflammation/metabolism
8.
Food Chem Toxicol ; 166: 113227, 2022 Aug.
Article En | MEDLINE | ID: mdl-35697184

Silver nanoparticles (AgNPs) could accumulate in the central nervous system (CNS) and induce neurotoxicity for their widespread use in industry and medicine. Mitochondria are vulnerable to toxicity of AgNPs, however, their role in the neurotoxicity remains unclear. This study aimed to evaluate AgNPs-induced synaptic degeneration in mouse hippocampal neurons (at a dose of 12-120 mg/kg BW via intravenous injection), and to further investigate mechanism of mitophagy, mitochondrial biogenesis process in the neurotoxicity. The results indicated that AgNPs accumulated in mouse hippocampal neurons and induced neurological deficits of learning and memory, which involved in synaptic degeneration accompanied with mitochondrial damage. Mechanistically, AgNPs exposure increased protein expression of PTEN-induced kinase 1 (PINK1), Parkin and inhibited peroxisome proliferator-activated receptor coactivator 1 alpha (PGC-1α) protein expression, caused disturbed mitophagy and mitochondrial biogenesis. AgNPs also induced synaptic damage by increasing the protein expression of synaptophysin and decreasing PSD95, MAP2 protein expression. AgNPs exposure even promoted protein expression of amyloid precursor protein (APP) using in amyloid-ß (Aß) cleavage. Furthermore, AgNPs induced hippocampal neuronal synaptic degeneration, mitophagy and mitochondrial biogenesis is dependent on particle-specific AgNPs rather than released silver ions. Our research could provide insights into the regulatory mechanisms of AgNPs-induced neurotoxicity. This study will shed the light of neurotoxicological evaluation of nanoparticles and possible early warning of biomedical applications.


Metal Nanoparticles , Neurotoxicity Syndromes , Animals , Hippocampus/metabolism , Metal Nanoparticles/toxicity , Mice , Mitophagy , Neurons/metabolism , Neurotoxicity Syndromes/metabolism , Organelle Biogenesis , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Silver/metabolism , Silver/toxicity
9.
Parasit Vectors ; 15(1): 192, 2022 Jun 06.
Article En | MEDLINE | ID: mdl-35668501

BACKGROUND: Colon cancer is a common gastrointestinal tumor with a poor prognosis, and thus new therapeutic strategies are urgently needed. The antitumor effect of Plasmodium infection has been reported in some murine models, but it is not clear whether it has an anti-colon cancer effect. In this study, we investigated the anti-colon cancer effect of Plasmodium infection and its related mechanisms using a mouse model of colon cancer. METHODS: An experimental model was established by intraperitoneal injection of Plasmodium yoelii 17XNL-infected erythrocytes into mice with colon cancer. The size of tumors was observed dynamically in mice, and the expression of Ki67 detected by immunohistochemistry was used to analyze tumor cell proliferation. Apoptosis was assessed by terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) staining, and the expression of apoptosis-related proteins including Bax, Bcl-2, caspase-9, and cleaved caspase-3 was detected by western blot and immunohistochemistry, respectively. Transmission electron microscopy (TEM) was used to observe the ultrastructural change in colon cancer cells, and the expression of mitochondrial biogenesis correlative central protein, PGC-1α, and mitophagy relevant crucial proteins, PINK1/Parkin, were detected by western blot. RESULTS: We found that Plasmodium infection reduced the weight and size of tumors and decreased the expression of Ki67 in colon cancer-bearing mice. Furthermore, Plasmodium infection promoted mitochondria-mediated apoptosis in colon cancer cells, as evidenced by the increased proportion of TUNEL-positive cells, the upregulated expression of Bax, caspase-9, and cleaved caspase-3 proteins, and the downregulated expression of Bcl-2 protein. In colon cancer cells, we found destroyed cell nuclei, swollen mitochondria, missing cristae, and a decreased number of autolysosomes. In addition, Plasmodium infection disturbed mitochondrial biogenesis and mitophagy through the reduced expression of PGC-1α, PINK1, and Parkin proteins in colon cancer cells. CONCLUSIONS: Plasmodium infection can play an anti-colon cancer role in mice by inhibiting proliferation and promoting mitochondria-mediated apoptosis in colon cancer cells, which may relate to mitochondrial biogenesis and mitophagy.


Colonic Neoplasms , Malaria , Animals , Apoptosis , Apoptosis Regulatory Proteins/metabolism , Caspase 3/metabolism , Caspase 9/metabolism , Caspase 9/pharmacology , Cell Proliferation , Ki-67 Antigen/metabolism , Mice , Mitophagy , Organelle Biogenesis , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/pharmacology , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/pharmacology
10.
Nanoscale ; 13(28): 12356-12369, 2021 Jul 28.
Article En | MEDLINE | ID: mdl-34254625

Previous studies have revealed that the liver is the main target organ of deposition for engineered nanoparticles. The hepatotoxicity of silver nanoparticles (AgNPs), the widely used antimicrobial nanoparticles, has been of great interest. However, little is known about the regulatory mechanism of the mitochondria in AgNP-induced hepatotoxicity. In the present study, we found that AgNPs, rather than silver ions, induced mitochondrial dynamics disorders, oxidative stress, and mitochondria-dependent hepatocyte apoptosis in mice. Using human hepatocellular carcinoma (HepG2) cells, we confirmed that the interaction between dynamin-related protein 1 (DRP1)-dependent mitochondrial fission and oxidative stress promoted mitochondrial damage and mitochondria-dependent apoptosis induced by AgNPs, as determined by the elimination of DRP1 or addition of N-acetylcysteine (NAC). Interestingly, the crosstalk between DRP1-dependent mitochondrial fission and oxidative stress also activated mitophagy and autophagy flux blocking. Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) gene silencing contributed to the aggravation of mitochondrial damage, oxidative stress, and apoptosis. These results revealed that the interplay between mitochondrial fission and oxidative stress induced mitophagy defects and triggered AgNP-induced mitochondria-dependent apoptosis in liver cells both in vivo and in vitro. Our findings provide a perspective for the mechanism of hepatotoxicity induced by exposure to metal NPs.


Metal Nanoparticles , Mitochondrial Dynamics , Animals , Apoptosis , Dynamins/metabolism , Hepatocytes/metabolism , Metal Nanoparticles/toxicity , Mice , Oxidative Stress , Silver/toxicity
11.
Food Chem Toxicol ; 154: 112324, 2021 Aug.
Article En | MEDLINE | ID: mdl-34111491

As the release of silver nanoparticles (AgNPs) in the environment continues to increase, great concerns have been raised about their potential toxicity to humans. It is urgent to assess the possible toxicity of AgNPs to the immune cells of the central nervous system due to the continuous accumulation of AgNPs in the brain. This study aimed to evaluate the neurotoxicity of AgNPs and the regulatory mechanism of autophagy in AgNPs-induced inflammation by using mouse microglia BV2 cell lines. AgNPs decreased the microglia cell activity in a concentration and time-dependent manner. The exposure of BV2 cells to AgNPs at a non-cytotoxic level of 5 µg/mL resulted in increase of pro-inflammatory cytokines and decrease of mRNA expression of anti-inflammatory cytokines. AgNPs exposure increased M1 markers of iNOS expression and decreased the expression of M2 markers of CD206 in a time-dependent manner. Meanwhile, the expression of inflammatory proteins IL-1ß and NF-κB increased significantly. Additionally, AgNPs induced an increase in autophagosome and upregulation of LC3II, Beclin1, and p62 expression levels. Pretreatment by an autophagy inhibitor, 3-Methyladenine, caused more AgNPs-treated microglia to polarized into pro-inflammatory phenotypes. Inhibition of autophagy also increased the expression of inflammation-associated mRNA and proteins in BV2 cells. These results indicated that AgNPs could induce pro-inflammatory phenotypic polarization of microglia and the autophagy could play a key regulatory role in the pro-inflammatory phenotypic polarization of microglia induced by AgNPs.


Autophagy/physiology , Cell Polarity/drug effects , Metal Nanoparticles/chemistry , Microglia/drug effects , Silver/chemistry , Animals , Cell Line , Inflammation/immunology , Mice
12.
J Appl Toxicol ; 41(12): 2055-2067, 2021 12.
Article En | MEDLINE | ID: mdl-33993517

Silver nanoparticles (AgNPs) have become widespread in the environment with increasing industrial applications. But the studies about their potential health risks are far from enough, especially in neurotoxic effects. This study aimed to investigate the neurotoxic effects of longer-term exposure (prolonged exposure for 48 h and chronic exposure for 6 days) of 20nm AgNPs with/without polyvinylpyrrolidone (PVP) coating at low concentrations (0.01-10 mg·L-1 ) to Caenorhabditis elegans. The results suggested that exposure to AgNPs induced damage to nematode survival, with the longest and relative average life span reduced. Exposure to AgNPs caused neurotoxicity on locomotion behaviors (head thrashes, body bends, pharyngeal pumping frequency, and defecation interval) and sensory perception behaviors (chemotaxis assay and thermotaxis assay), as well as impaired dopaminergic, GABAergic, and cholinergic neurons, except for glutamatergic, based on the alters fluorescence intensity, in a dose- and time-dependent manner. Further investigations suggested that the low-dose AgNPs (0.01-0.1 mg·L-1 ) exposure raises receptors of GABAergic and dopamine in C. elegans at the genetic level, whereas opposite results were observed at higher doses (1-10 mg·L-1 ), which implied that AgNPs could cause neurotoxicity by impairing neurotransmitter delivery. The PVP-AgNPs could cause a higher fatality rate and neurotoxicity at the same dose. Notably, AgNPs did not cause any deleterious effect on nematodes at the lowest dose of 0.01 mg·L-1 . In general, these results suggested that AgNPs possess the neurotoxic potential in C. elegans and provided useful information to understand the neurotoxicity of AgNPs, which would offer an inspiring perspective on the safe application.


Caenorhabditis elegans/drug effects , Metal Nanoparticles/toxicity , Neurons/drug effects , Povidone/toxicity , Silver/toxicity , Animals , Caenorhabditis elegans/physiology , Neurons/physiology , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/physiopathology , Pharmaceutic Aids/toxicity , Plasma Substitutes/toxicity
13.
Ecotoxicol Environ Saf ; 208: 111696, 2021 Jan 15.
Article En | MEDLINE | ID: mdl-33396027

With the widespread application and inevitable environmental exposure, silver nanoparticles (AgNPs) can be accumulated in various organs. More serious concerns are raised on the biological safety and potential toxicity of AgNPs in the central nervous system (CNS), especially in the hippocampus. This study aimed to investigate the biological effects and the role of PI3K/AKT/mTOR signaling pathway in AgNPs mediated cytotoxicity using the mouse hippocampal neuronal cell line (HT22 cells). AgNPs reduced cell viability and induced membrane leakage in a dose-dependent manner, determined by the MTT and LDH assay. In doses of 25, 50, 100 µg mL-1 for 24 h, AgNPs promoted the excessive production of reactive oxygen species (ROS) and caused the oxidative stress in HT22 cells. AgNPs induced autophagy, determined by the transmission electron microscopy observation, upregulation of LC3 II/I and downregulation of p62 expression levels. The mechanistic investigation showed that the PI3K/AKT/mTOR signaling pathway was activated by phosphorylation, which was enrolled in an AgNP-induced autophagy process. AgNPs could further trigger the apoptosis by upregulation of caspase-3 and Bax and downregulation of Bcl-2 in HT22 cells. These results revealed AgNP-induced cytotoxicity in HT22 cells, which was mediated by autophagy and apoptosis via the PI3K/AKT/mTOR signaling pathway. The study could provide the experimental evidence and explanation for the potential neurotoxicity triggered by AgNPs in vitro.


Apoptosis/drug effects , Autophagy/drug effects , Metal Nanoparticles/toxicity , Signal Transduction/drug effects , Silver/toxicity , Animals , Cell Line , Cell Survival/drug effects , Mice , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , TOR Serine-Threonine Kinases/metabolism
14.
Pharmacol Res ; 163: 105207, 2021 01.
Article En | MEDLINE | ID: mdl-32971268

Ivermectin is a macrolide antiparasitic drug with a 16-membered ring that is widely used for the treatment of many parasitic diseases such as river blindness, elephantiasis and scabies. Satoshi omura and William C. Campbell won the 2015 Nobel Prize in Physiology or Medicine for the discovery of the excellent efficacy of ivermectin against parasitic diseases. Recently, ivermectin has been reported to inhibit the proliferation of several tumor cells by regulating multiple signaling pathways. This suggests that ivermectin may be an anticancer drug with great potential. Here, we reviewed the related mechanisms by which ivermectin inhibited the development of different cancers and promoted programmed cell death and discussed the prospects for the clinical application of ivermectin as an anticancer drug for neoplasm therapy.


Antineoplastic Agents/therapeutic use , Antiparasitic Agents/therapeutic use , Ivermectin/therapeutic use , Neoplasms/drug therapy , Animals , Antineoplastic Agents/pharmacology , Antiparasitic Agents/pharmacology , Cell Death/drug effects , Humans , Ivermectin/pharmacology , Molecular Targeted Therapy , Neoplasms/metabolism , Signal Transduction/drug effects
15.
J Appl Toxicol ; 41(1): 65-81, 2021 01.
Article En | MEDLINE | ID: mdl-32686875

With the development of nanotechnology, metal-containing nanoparticles are used widely in the diagnosis, monitoring and treatment of central nervous system (CNS) diseases. The neurotoxicity of these nanoparticles has drawn attention. Glial cells (particularly microglial cells and astrocytes) have important functions in the CNS. Neural disorders are related to functional/histologic damage to glial cells. Dysfunctions of microglial cells or astrocytes injure the brain, and cause the neurodegeneration seen in Alzheimer's disease and Parkinson's disease. We have summarized the route of access of metal-containing nanoparticles to the CNS, as well as their neurotoxicity and potential molecular mechanisms involved in glial cells. Metal-containing nanoparticles cross or bypass the blood-brain barrier, access the CNS and cause neurotoxicity. The potential mechanisms are related to inflammation, oxidative stress, DNA and/or mitochondrial damage and cell death, all of which are mediated by microglial cell activation, inflammatory factor release, generation of reactive oxygen species, apoptosis and/or autophagy in glial cells. Moreover, these processes increase the burden of the CNS and even accelerate the occurrence or development of neurodegenerative diseases. Some important signaling pathways involved in the mechanism of neurotoxicity in glial cells caused by nanoparticles are also discussed.


Cell Death/drug effects , Central Nervous System Diseases/chemically induced , Central Nervous System Diseases/therapy , Metal Nanoparticles/toxicity , Metal Nanoparticles/therapeutic use , Neuroglia/drug effects , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/physiopathology , Humans
16.
Ecotoxicol Environ Saf ; 208: 111463, 2021 Jan 15.
Article En | MEDLINE | ID: mdl-33130480

With the increasing use of silver nanoparticles (AgNPs) in biological materials, the cytotoxicity caused by these particles has attracted much attention. However, the molecular mechanism underlying AgNP cytotoxicity remains unclear. In this study, we aimed to systematically investigate the toxicity induced by AgNP exposure to the lung adenocarcinoma A549 cell line at the subcellular and signaling pathway levels and elucidate the related molecular mechanism. The survival rate of cells exposed to AgNPs at 0, 20, 40, 80, and 160 µg/mL for 24 or 48 h decreased in a dose- and time-dependent manner. AgNPs induced autophagy and mitophagy, determined by the transmission electron microscopy investigation and upregulation of LC3 II/I, p62, PINK1, and Parkin expression levels. AgNP treatment induced lysosomal injury, including the decline of lysosomal membrane integrity and increase in cathepsin B level. The decreased in mitochondrial membrane potential, along with upregulation of cytochrome c, caspases 9 and 3, and BAX/BCL2, further suggested that mitochondrial injury were involved in AgNP-induced apoptosis. In addition, mitochondrial injury may further lead to excessive production of reactive oxygen species and oxidative/ antioxidant imbalance. The results suggested that AgNPs could regulate autophagy via mitochondrial and lysosome injury in A549 cells. The information of the molecular mechanism will provide an experimental basis for the safe application of nanomaterials.


Metal Nanoparticles/toxicity , Mitophagy/physiology , Silver/toxicity , A549 Cells , Apoptosis/drug effects , Autophagy/drug effects , Caspase 9 , Cell Death/drug effects , Humans , Lysosomes/metabolism , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Mitophagy/drug effects , Reactive Oxygen Species/metabolism , Ubiquitin-Protein Ligases
17.
J Thorac Dis ; 12(7): 3529-3538, 2020 Jul.
Article En | MEDLINE | ID: mdl-32802432

BACKGROUND: Small cell cancer (SmCC) of the esophagus is a rare malignancy with an aggressive behavior associated with poor survival. The present study aims to determine the clinicopathological characteristics, therapeutic and prognosis. METHODS: Patients with SmCC of the esophagus, diagnosed from 1975 to 2016, were identified from the Surveillance, Epidemiology, and End Results (SEER) database. The clinicopathological characteristics were described and the prognostic factors were further determined using Cox regression analysis. RESULTS: The median overall survival (mOS) of all 515 patients with SmCC of the esophagus was 7.0 months, and the 1-, 2-, and 5-year survival rates were 31.5%, 14.7%, 6.00%, respectively. Patients with chemoradiotherapy (mOS: 12.0 months) had better prognosis than those receiving surgery alone (mOS: 12.0 vs. 4.0 months). The patients receiving surgery combined with chemoradiotherapy had longest survival time (mOS: 19.0 months), followed by patients receiving surgery combined with chemotherapy (14.0 months). The multivariate Cox survival analysis demonstrated that older age, distant metastases were independent prognostic factors. The use of surgery, chemotherapy, radiotherapy were independent favorable prognostic factors (P<0.05 for all). CONCLUSIONS: SmCC of the esophagus is uncommon, older age and distant metastases were independently associated with poor survival. Chemotherapy could provide significant clinical benefit for those patients, especially chemoradiotherapy and surgery combined with chemotherapy.

18.
PLoS Negl Trop Dis ; 14(6): e0008255, 2020 06.
Article En | MEDLINE | ID: mdl-32530913

BACKGROUND: Vivax malaria is an important public health problem in the Greater Mekong Subregion (GMS), including the China-Myanmar border. Previous studies have found that Plasmodium vivax has decreased sensitivity to antimalarial drugs in some areas of the GMS, but the sensitivity of P. vivax to antimalarial drugs is unclear in the China-Myanmar border. Here, we investigate the drug sensitivity profile and genetic variations for two drug resistance related genes in P. vivax isolates to provide baseline information for future drug studies in the China-Myanmar border. METHODOLOGY/PRINCIPAL FINDINGS: A total of 64 P. vivax clinical isolates collected from the China-Myanmar border area were assessed for ex vivo susceptibility to eight antimalarial drugs by the schizont maturation assay. The medians of IC50 (half-maximum inhibitory concentrations) for chloroquine, mefloquine, pyronaridine, piperaquine, quinine, artesunate, artemether, dihydroartemisinin were 84.2 nM, 34.9 nM, 4.0 nM, 22.3 nM, 41.4 nM, 2.8 nM, 2.1 nM and 2.0 nM, respectively. Twelve P. vivax clinical isolates were found over the cut-off IC50 value (220 nM) for chloroquine resistance. In addition, sequence polymorphisms in pvmdr1 (P. vivax multidrug resistance-1), pvcrt-o (P. vivax chloroquine resistance transporter-o), and difference in pvmdr1 copy number were studied. Sequencing of the pvmdr1 gene in 52 samples identified 12 amino acid substitutions, among which two (G698S and T958M) were fixed, M908L were present in 98.1% of the isolates, while Y976F and F1076L were present in 3.8% and 78.8% of the isolates, respectively. Amplification of the pvmdr1 gene was only detected in 4.8% of the samples. Sequencing of the pvcrt-o in 59 parasite isolates identified a single lysine insertion at position 10 in 32.2% of the isolates. The pvmdr1 M908L substitutions in pvmdr1 in our samples was associated with reduced sensitivity to chloroquine, mefloquine, pyronaridine, piperaquine, quinine, artesunate and dihydroartemisinin. CONCLUSIONS: Our findings depict a drug sensitivity profile and genetic variations of the P. vivax isolates from the China-Myanmar border area, and suggest possible emergence of chloroquine resistant P. vivax isolates in the region, which demands further efforts for resistance monitoring and mechanism studies.


Antimalarials/pharmacology , Drug Resistance , Malaria, Vivax/parasitology , Membrane Transport Proteins/genetics , Multidrug Resistance-Associated Proteins/genetics , Plasmodium vivax/drug effects , Polymorphism, Genetic , Protozoan Proteins/genetics , Adolescent , Adult , Aged , Child , Child, Preschool , China , Female , Genotype , Humans , Infant , Inhibitory Concentration 50 , Male , Middle Aged , Myanmar , Parasitic Sensitivity Tests , Plasmodium vivax/isolation & purification , Sequence Analysis, DNA , Young Adult
19.
J Appl Toxicol ; 40(6): 815-831, 2020 06.
Article En | MEDLINE | ID: mdl-31984544

This study evaluated the biodistribution and organ oxidative effects of silver nanoparticles (AgNPs) coated with/without polyvinylpyrrolidone (PVP) (AgNP-20 and AgNP-PVP) in mice; these were administered by gavage at a dose of 10-250 mg/kg body weight per day for 28 days. The results showed that both the AgNPs could induce subacute toxicity and oxidative damage to mice and were mainly accumulated in the liver and spleen and excreted by feces. AgNPs could be absorbed into blood and might cross the blood-brain barrier, and be distributed extensively in mice. The malondialdehyde content in the liver, lungs and kidneys increased in both AgNP groups, while the content of glutathione decreased, and the activity of superoxide dismutase increased at first and then decreased along with the increased doses. Inflammatory pathological changes in the lung and liver at high dose of both AgNPs were consistent with increases in glutamate pyruvic transaminase, glutamate oxaloacetic transaminase and the total protein in serum detection. The Ag content was detected in organs, with the highest content in the liver, followed by spleen, while the Ag content in feces was about 500 times higher than that in urine. AgNP-PVP could induce higher oxidative stress and subacute toxicity than AgNP-20 at the same dose, which might be related to the higher concentrations and more Ag+ ions released in mice after AgNP-PVP exposure. The data from this research provided information on toxicity and biodistribution of AgNPs following gavage administration in mice, and might shed light for future application of AgNPs in daily life.


Metal Nanoparticles/toxicity , Povidone/toxicity , Silver Compounds/toxicity , Administration, Oral , Animals , Female , Male , Metal Nanoparticles/administration & dosage , Mice, Inbred ICR , Povidone/metabolism , Silver Compounds/administration & dosage , Silver Compounds/metabolism , Tissue Distribution
20.
J Appl Toxicol ; 40(1): 4-15, 2020 01.
Article En | MEDLINE | ID: mdl-31828819

Micro- and nanoplastics are generated from plastics and have negative impacts on the environment due to their high level of fragmentation. They can originate from various sources such as fragments, fibers and foams. The large proportion of the waste and resistance to degradation means micro- and nanoplastics have become a serious global environmental problem, but there are few studies on their potential toxicity for human health. In this review, we discussed routes of exposure and the potential effects of micro- and nanoplastics to human health. Human beings could mainly be exposed to micro- and nanoplastics orally and by inhalation. The possible toxic effects of plastic particles are due to the potential toxicity of plastics themselves, and their combined toxicity with leachable additives and adsorbed contaminants. The potential risks for human health focused on their gastrointestinal toxicity and liver toxicity. The toxic mechanisms could involve oxidative stress, inflammatory reactions and metabolism disorders. More studies are needed to carry out and explore the potential toxicological mechanisms of micro- and nanoplastics and evaluate the combined toxicity of their adsorbed contaminants.


Ecotoxicology , Environmental Exposure/adverse effects , Environmental Monitoring , Environmental Pollutants/adverse effects , Environmental Pollution/adverse effects , Microplastics/adverse effects , Nanoparticles/adverse effects , Animals , Dietary Exposure/adverse effects , Food Chain , Food Contamination , Health Status , Humans , Risk Assessment
...