Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 277(Pt 2): 134307, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39084435

RESUMEN

Though the heparin-protamine complex (HP complex) is a crucial system utilized in clinical settings, the metabolic pathways of this complex remain inadequately understood. Herein, the enzymatic degradation of the heparin-protamine complex by trypsin and its broader implications were investigated. By utilizing fluorescent gold nanoclusters liganded with the HP complex (AuNCs-HP complex), we observed significant morphological and spectral changes during enzymatic degradation. Experiments showed that AuNCs-HP complex could be degraded and cleaved into small fragments by trypsin. Moreover, the AuNCs-HP complex demonstrated its potential as a highly sensitive spectral sensing platform, enabling precise measurement of trypsin activity with an outstanding detection limit (0.34 ng mL-1). Additionally, we explored its utility for specific tumor cell detection, focusing on lung adenocarcinoma cells, and successfully identified their presence through distinctive fluorescence changes. These remarkable findings not only contribute valuable insights into targeted degradation systems but also offer promising opportunities for cancer biomarker detection. The AuNCs-HP complex serves as an innovative tool for real-time trypsin activity monitoring, paving the way for advanced biomedical applications.


Asunto(s)
Adenocarcinoma del Pulmón , Oro , Heparina , Neoplasias Pulmonares , Nanopartículas del Metal , Protaminas , Tripsina , Humanos , Heparina/química , Protaminas/química , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Tripsina/metabolismo , Tripsina/química , Oro/química , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Nanopartículas del Metal/química , Células A549 , Espectrometría de Fluorescencia/métodos , Línea Celular Tumoral
2.
Small ; 20(28): e2311129, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38319033

RESUMEN

Constructing concentration differences between anions and cations at the ends of an ionic conductor is an effective strategy in electricity generation for powering wearable devices. Temperature gradient or salinity gradient is the driving force behind such devices. But their corresponding power generation devices are greatly limited in actual application due to their complex structure and harsh application conditions. In this study, a novel ionic concentration gradient electric generator based on the evaporation difference of the electrolyte is proposed. The device can be constructed without the need for semipermeable membranes, and operation does not need to build a temperature difference. As a demonstration, a PVA-Na ionic hydrogel is prepared as an electrolyte for the device and achieved a thermovoltage of more than 200 mV and an energy density of 77.94 J m-2 at 323 K. Besides, the device exhibits the capability to sustain a continuous voltage output for a duration exceeding 1500 min, as well as enabling charging and discharging cycles for 100 iterations. For practical applications, a module comprising 16 sub-cells is constructed and successfully utilized to directly power a light-emitting diode. Wearable devices and their corresponding cell modules are also developed to recycle body heat.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA