Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 52
1.
Int J Biol Macromol ; 268(Pt 1): 131865, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38670200

A previous study reported the use of a biosensing technique based on surface plasmon resonance (SPR) for the ligand binding detection of peroxisome proliferator activator receptor gamma (PPARγ). This detection was designed based on the structural properties of PPARγ. Because of cross-linked protein inactivation and the low molecular weight of conventional ligands, direct ligand binding detection based on SPR has low stability and repeatability. In this study, we report an indirect response methodology based on SPR technology in which anti-His CM5 chip binds fresh PPARγ every cycle, resulting in more stable detection. We developed a remarkable improvement in ligand-protein binding detectability in vitro by introducing two coregulator-related polypeptides into this system. In parallel, a systematic indirect response methodology can reflect the interaction relationship between ligands and proteins to some extent by detecting the changes in SA-SRC1 and GST-NCOR2 binding to PPARγ. Rosiglitazone, a PPARγ agonist with strong affinity, is a potent insulin-sensitizing agent. Some ligands may be competitively exerted at the same sites of PPARγ (binding rosiglitazone). We demonstrated using indirect response methodology that selective PPARγ modulator (SPPARM) candidates of PPARγ can be found by competing for the binding of the rosiglitazone site on PPARγ, although they may have no effect on polypeptides and PPARγ binding.

2.
Metabolites ; 14(1)2024 Jan 19.
Article En | MEDLINE | ID: mdl-38276299

The prevalence of nonalcoholic fatty liver disease (NAFLD) has been increasing. Obesity, insulin resistance, and lipid metabolic dysfunction are always accompanied by NAFLD. Celastrol modulates the Peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα) signaling pathways, thereby promoting lipolysis in 3T3-L1 adipocytes. In the present study, oleic-acid-induced NAFLD and differentiated 3T3-L1 preadipocytes were used as models of NAFLD and obesity to investigate the protective effect of celastrol. We investigated the impact of celastrol on hepatic steatosis caused by oleic acid (OA), as well as the associated underlying molecular pathways. To address the aforementioned questions, we used a cellular approach to analyze the signaling effects of celastrol on various aspects. These factors include the improvement in fatty liver in HepG2 cells, the differentiation of 3T3-L1 preadipocytes, glucose uptake, and the modulation of key transcriptional pathways associated with PPARγ. The administration of celastrol effectively mitigated lipid accumulation caused by OA in HepG2 cells, thereby ameliorating fatty liver conditions. Furthermore, celastrol suppressed the impacts on adipocyte differentiation in 3T3-L1 adipocytes. Additionally, celastrol exhibited the ability to bind to PPARγ and modulate its transcriptional activity. Notably, the ameliorative effects of celastrol on hepatic steatosis were reversed by rosiglitazone. According to our preliminary findings from in vitro celastrol signaling studies, PPARγ is likely to be the direct target of celastrol in regulating hepatic steatosis in HepG2 cells and adipocyte differentiation in 3T3-L1 cells.

3.
Inorg Chem ; 62(46): 19015-19024, 2023 Nov 20.
Article En | MEDLINE | ID: mdl-37919966

Highly efficient transformation of carbon dioxide (CO2) into value-added chemicals is considered a promising route for clean production and future energy sustainability, which is crucial for realizing a carbon-neutral economy. It remains a great challenge to develop highly stable and active catalysts with low-cost, environmentally friendly, and nontoxic materials for catalytic conversion of CO2. Herein, a precious-metal-free and heterogeneous MOF (LTG-FeZr) catalyst, composed of bis(terpyridine)iron(II) complexes and zirconium(IV) ions, was designed and prepared via a metalloligand approach. LTG-FeZr, with a robust framework and regular 1D channels not only can achieve the photocatalytic reduction of CO2 to HCOOH with a high conversion rate (up to 265 µmol·g-1·h-1) under visible-light irradiation but also exhibits exceptional catalytic activities toward the synthesis of cyclic carbonates via cycloaddition reactions of various epoxides and CO2 in the absence of light. Possible mechanisms for two different conversion processes of CO2 catalyzed by LTG-FeZr have been proposed. LTG-FeZr represents an ideal dual-function MOF platform for the catalytic conversion and utilization of CO2 in all weather conditions.

4.
Molecules ; 28(20)2023 Oct 17.
Article En | MEDLINE | ID: mdl-37894610

Angiotensin-converting enzyme 1 (ACE1) is a peptide involved in fluid and blood pressure management. It regulates blood pressure by converting angiotensin I to angiotensin II, which has vasoconstrictive effects. Previous studies have shown that certain compounds of natural origin can inhibit the activity of angiotensin-converting enzymes and exert blood pressure-regulating effects. Surface Plasmon Resonance (SPR) biosensor technology is the industry standard method for observing biomolecule interactions. In our study, we used molecular simulation methods to investigate the docking energies of various herbal metabolites with ACE1 proteins, tested the real-time binding affinities between various herbal metabolites and sACE1 by SPR, and analyzed the relationship between real-time binding affinity and docking energy. In addition, to further explore the connection between inhibitor activity and real-time binding affinity, several herbal metabolites' in vitro inhibitory activities were tested using an ACE1 activity test kit. The molecular docking simulation technique's results and the real-time affinity tested by the SPR technique were found to be negatively correlated, and the virtual docking technique still has some drawbacks as a tool for forecasting proteins' affinities to the metabolites of Chinese herbal metabolites. There may be a positive correlation between the enzyme inhibitory activity and the real-time affinity detected by the SPR technique, and the results from the SPR technique may provide convincing evidence to prove the interaction between herbal metabolites and ACE1 target proteins.


Angiotensin-Converting Enzyme Inhibitors , Biosensing Techniques , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/chemistry , Molecular Docking Simulation , Surface Plasmon Resonance , Biosensing Techniques/methods , Angiotensins
5.
ACS Appl Mater Interfaces ; 15(32): 38201-38213, 2023 Aug 16.
Article En | MEDLINE | ID: mdl-37526921

Wearable biosensors promise real-time measurements of chemicals in human sweat, with the potential for dramatic improvements in medical diagnostics and athletic performance through continuous metabolite and electrolyte monitoring. However, sweat sensing is still in its infancy, and questions remain about whether sweat can be used for medical purposes. Wearable sensors are focused on proof-of-concept designs that are not scalable for multisubject trials, which could elucidate the utility of sweat sensing for health monitoring. Moreover, many wearable sensors do not include the microfluidics necessary to protect and channel consistent and clean sweat volumes to the sensor surface or are not designed to be disposable to prevent sensor biofouling and inaccuracies due to repeated use. Hence, there is a need to produce low-cost and single-use wearable sensors with integrated microfluidics to ensure reliable sweat sensing. Herein, we demonstrate the convergence of laser-induced graphene (LIG) based sensors with soft tape polymeric microfluidics to quantify both sweat metabolites (glucose and lactate) and electrolytes (sodium) for potential hydration and fatigue monitoring. Distinct LIG-electrodes were functionalized with glucose oxidase and lactate oxidase for selective sensing of glucose and lactate across physiological ranges found in sweat with sensitivities of 26.2 and 2.47 × 10-3 µA mM-1 cm-2, detection limits of 8 and 220 µM, and linear response ranges of 0-1 mM and 0-32 mM, respectively. LIG-electrodes functionalized with a sodium-ion-selective membrane displayed Nernstian sensitivity of 58.8 mV decade-1 and a linear response over the physiological range in sweat (10-100 mM). The sensors were tested in a simulated sweating skin microfluidic system and on-body during cycling tests in a multisubject trial. Results demonstrate the utility of LIG integrated with microfluidics for real-time, continuous measurements of biological analytes in sweat and help pave the way for the development of personalized wearable diagnostic tools.


Biosensing Techniques , Graphite , Wearable Electronic Devices , Humans , Sweat , Sweating , Microfluidics , Biosensing Techniques/methods , Sodium , Lactic Acid , Polymers , Glucose
6.
Article Zh | MEDLINE | ID: mdl-37549950

Objective:To investigate surgical treatment of carotid artery diseases in neck tumor surgery. Methods:A retrospective analysis of the clinical data on carotid artery treatment was conducted in the five cases of neck tumor surgeries treated at Department of Surgical Oncology, the First Peoples Hospital of Lanzhou from March 2010 to May 2020. Surgical methods, including carotid artery resection and ligation, tumor-involved artery resection and vascular reconstruction, and tumor peeling and carotid rupture repairing were used, respectively. Results:Five cases were successfully operated on. One case of carotid artery ligation was followed by intermittent dizziness and decreased contra-lateral limb strength after the surgery. The remaining patients exhibited no neurological complications. A patient with cervical low-grade myofibroblastoma developed into lung metastases 8 months after the surgery. Another patient with cervical lymph node metastases in papillary thyroid cancer developed into lung metastases 24 months after the surgery. Conclusion:Currently, surgical methods for clinical treatment of diseased carotid arteries include carotid artery resection and ligation, simple tumor peeling, tumor invasion artery resection and vascular reconstruction, and interventional therapy. Each surgical method has its own advantages and disadvantages. Therefore, the choice of treatment depends on the patient's specific conditions, physician's clinical experience, and the equipment available.


Head and Neck Neoplasms , Lung Neoplasms , Thyroid Neoplasms , Humans , Retrospective Studies , Carotid Arteries/surgery , Carotid Arteries/pathology , Head and Neck Neoplasms/surgery , Head and Neck Neoplasms/pathology , Thyroid Neoplasms/surgery , Lung Neoplasms/pathology
7.
Int J Pharm X ; 6: 100188, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-37387778

In this study, the torque profiles of heterogeneous granulation formulations with varying powder properties in terms of particle size, solubility, deformability, and wettability, were studied, and the feasibility of identifying the end-point of the granulation process for each formulation based on the torque profiles was evaluated. Dynamic median particle size (d50) and porosity were correlated to the torque measurements to understand the relationship between torque and granule properties, and to validate distinction between different granulation stages based on the torque profiles made in previous studies. Generally, the torque curves obtained from the different granulation runs in this experimental design could be categorized into two different types of torque profiles. The primary factor influencing the likelihood of producing each profile was the binder type used in the formulation. A lower viscosity, higher solubility binder resulted in a type 1 profile. Other contributing factors that affected the torque profiles include API type and impeller speed. Material properties such as the deformability and solubility of the blend formulation and the binder were identified as important factors affecting both granule growth and the type of torque profiles observed. By correlating dynamic granule properties with torque values, it was possible to determine the granulation end-point based on a pre-determined target median particle size (d50) range which corresponded to specific markers identified in the torque profiles. In type 1 torque profiles, the end-point markers corresponded to the plateau phase, whereas in type 2 torque profiles the markers were indicated by the inflection point where the slope gradient changes. Additionally, we proposed an alternative method of identification by using the first derivative of the torque values, which facilitates an easier identification of the system approaching the end-point. Overall, this study identified the effects of different variations in formulation parameters on torque profiles and granule properties and implemented an improved method of identification of granulation end-point that is not dependent on the different types of torque profiles observed.

8.
ACS Appl Mater Interfaces ; 15(25): 30320-30331, 2023 Jun 28.
Article En | MEDLINE | ID: mdl-37312235

[Ru(Phen)3]2+ (phen = phenanthroline) as a very classical photosensitizer possesses strong absorption in the visible range and facilitates photoinduced electron transfer, which plays a vital role in regulating photochemical reactions. However, it remains a significant challenge to utilize more adequately and exploit more efficiently the ruthenium-based materials due to the uniqueness, scarcity, and nonrenewal of the noble metal. Here, we integrate the intrinsic advantages of the ruthenium-based photosensitizer and mesoporous metal-organic frameworks (meso-MOFs) into a [Ru(Phen)3]2+ photosensitizer-embedded heterometallic Ni(II)/Ru(II) meso-MOF (LTG-NiRu) via the metalloligand approach. LTG-NiRu, with an extremely robust framework and a large one-dimensional (1D) channel, not only makes ruthenium photosensitizer units anchored in the inner wall of meso-MOF tubes to circumvent the problem of product/catalyst separation and recycling of catalysts in heterogeneous systems but also exhibits exceptional activities for the aerobic photocatalytic oxidative coupling of amine derivatives as a general photocatalyst. The conversion of the light-induced oxidative coupling reaction for various benzylamines is ∼100% in 1 h, and more than 20 chemical products generated by photocatalytic oxidative cycloaddition of N-substituted maleimides and N,N-dimethylaniline can be synthesized easily in the presence of LTG-NiRu upon visible light irradiation. Moreover, recycling experiments demonstrate that LTG-NiRu is an excellent heterogeneous photocatalyst with high stability and excellent reusability. LTG-NiRu represents a great potential photosensitizer-based meso-MOF platform with an efficient aerobic photocatalytic oxidation function that is convenient for gram-scale synthesis.

9.
Inorg Chem ; 62(18): 7111-7122, 2023 May 08.
Article En | MEDLINE | ID: mdl-37099015

In this study, Mo-glycerate was used as a precursor to create MoS2 hollow nanospheres (HNS), which were then used for the first time to modify ZnIn2S4 nanosheets to create MoS2 HNS/ZnIn2S4 photocatalysts. The findings demonstrate that MoS2 HNS/ZnIn2S4 heterojunctions exhibited remarkably boosted photocatalytic properties and excellent reusability for both RhB degradation and H2 evolution without the use of Pt as a co-catalyst. Among the heterojunctions, the RhB degradation and H2 evolution efficiencies of the optimized MoS2 HNS/ZnIn2S4-3 wt % composite were almost 5 and 34 times higher than those of ZnIn2S4, respectively. The excellent performance of MoS2 HNS/ZnIn2S4-3 wt % might be attributed to the expansion of the visible-light response range and the accelerated separation efficiency of photo-induced carriers, according to the findings of the optical property tests. Based on the established band gap position and characterization results, a potential mechanism for appealing photocatalytic activity over MoS2 HNS/ZnIn2S4 heterojunctions was also postulated.

10.
ESC Heart Fail ; 10(2): 1305-1313, 2023 04.
Article En | MEDLINE | ID: mdl-36722640

AIMS: Myocardial infarction (MI) is one of the serious diseases with great mortality over the world. Myocardial mitochondrial oxidative stress has been implicated as a key player in MI. The histidine triad nucleotide-binding protein 2 (HINT2) is a nucleotide hydrolase and transferase located in mitochondria. HINT2 has multiple functions such as regulating mitochondrial lipid metabolism and respiration and glucose homeostasis. Although HINT2 has been shown to protect against MI, the underlying mechanisms were not fully elucidated. In this study, the effects of HINT2 on oxidative stress during MI were explored. METHODS AND RESULTS: MI mouse models in both wild-type and HINT2-deficient mice were established. The expression of HINT2 in HINT2-deficient mice was determined by quantitative real-time PCR and western blot. The levels of oxidative stress were measured, including the levels of malondialdehyde (MDA), nitric oxide (NO), superoxide dismutase (SOD), and glutathione (GSH). The myocardial functions, as indicated by left ventricular end-diastolic diameter (LVEDD), left ventricular end-systolic diameter (LVESD), left ventricular ejection fraction (LVEF), and left ventricular fractional shortening (LVFS), were monitored. Both mRNA and protein expressions of HINT2 in the myocardial tissues were significantly down-regulated in MI mice starting at 6 h post-MI. MI induced oxidative stress 6 h post-MI in myocardial tissues of wild-type mice, as suggested by the enhanced MDA and NO levels and decreased SOD and GSH levels. The expression of HINT2 was negatively correlated to the MDA and NO levels and positively correlated to the SOD and GSH levels. HINT2-deficient MI mice had significantly elevated levels of MDA and NO and significantly decreased levels of SOD and GSH when compared with wild-type MI mice. HINT2-deficient MI mice had higher LVEDD and LVESD and lower LVEF and LVFS compared with wild-type MI mice, indicating that HINT2 deficiency exacerbated myocardial dysfunction. CONCLUSIONS: HINT2 deficiency causes deteriorative oxidative stress in MI mice, leading to exacerbated myocardial dysfunction.


Myocardial Infarction , Ventricular Function, Left , Mice , Animals , Stroke Volume , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Oxidative Stress , Disease Models, Animal , Superoxide Dismutase/metabolism , Nucleotides/metabolism , Hydrolases/metabolism , Mitochondrial Proteins/metabolism
11.
Inorg Chem ; 62(1): 401-407, 2023 Jan 09.
Article En | MEDLINE | ID: mdl-36537348

The first mixed-valence nanocluster CuI/CuII with the highest percentage of CuII ions was synthesized by using 4-tert-butylcalix[4]arene (Calix4), with the formula DMF2⊂[(CO3)2-@CuII6CuI3(Calix4)3Cl2(DMF)5(H3O)]•DMF (1), as a photothermal nanocluster. Its structure was characterized using single-crystal X-ray diffraction, Fourier-transform infrared spectroscopy, and powder X-ray diffraction. In addition, the charge state and chemical composition of the nanocluster were determined using electrospray ionization spectrometry and X-ray photoelectron spectroscopy (XPS) spectrum. The results of the XPS and X-ray crystallography revealed that there are two independent CuII and CuI centers in nanocluster 1 with the relative abundances of 66.6 and 33.3% for CuII and CuI, respectively. The nanocluster contains three four-coordinated CuI ions with a square-planar geometry and six five-coordinated CuII ions with a square pyramid geometry. The nanocluster shows strong near-infrared optical absorption in the solid state and excellent photothermal conversion ability (the equilibrium temperature ∼78.2 °C) with the light absorption centers in 286-917 nm over previous reported pentanucleus CuI4CuII clusters and CuII compounds.

12.
J Clin Med ; 11(22)2022 Nov 16.
Article En | MEDLINE | ID: mdl-36431256

To compare pregnancy outcomes between double stimulation (DouStim) and two consecutive mild stimulations in poor ovarian responders, this study retrospectively analyzed 281 patients diagnosed as having poor ovarian response (POR) who underwent oocytes retrieval for in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI) from January 2018 to December 2020. They were divided into two groups: the DouStim group (n = 89) and the two consecutive mild stimulations group (n = 192). The results illustrated that there were no significant differences in the number of oocytes and 2PNs between the two groups. The number of frozen embryos [1 (0, 2) versus 1(0, 2)] was significantly lower and the proportion of patients without frozen embryos (39.3% versus 26.0%) was significantly higher in the DouStim group than in the two consecutive mild stimulations group (p < 0.05). There were no significant differences in the clinical pregnancy rate (CPR) and the cumulative live birth rate (CLBR) between the two groups (p > 0.05). The intra-subgroup comparison showed that in young POR patients under 35 years old, there were no significant differences in clinical indicators and pregnancy outcomes (p > 0.05). In elderly POR patients aged 35 years and above, the number of frozen embryos [1 (0, 1.5) versus 1 (0.25, 2)] (p < 0.01) was significantly lower in the DouStim group than in the two consecutive mild stimulations group, but the pregnancy outcomes were not significantly different (p > 0.05). In conclusion, the DouStim protocol is inferior to the two consecutive mild stimulations protocol in terms of the number of frozen embryos, which mainly occurs in elderly patients, but there is no difference in pregnancy outcomes between the two protocols.

13.
RSC Adv ; 12(50): 32480-32487, 2022 Nov 09.
Article En | MEDLINE | ID: mdl-36425734

In this study, a novel g-C3N4-based ternary heterojunction was rationally designed and constructed by the in situ growth of ZnIn2S4 nanosheets and CdS nanoparticles onto the g-C3N4 nanosheets using a facile two-step oil-bath method. Through optimizing the proportion of ZnIn2S4 and CdS component, g-C3N4 nanosheets coupled with ZnIn2S4 nanosheets and CdS nanoparticles (denoted as CdS/ZnIn2S4/g-C3N4) exhibited obviously higher photocatalytic properties for RhB removal than the single-component and dual-component systems. Among the as-obtained ternary photocatalysts, it was found that the ternary CdS/ZnIn2S4/g-C3N4-0.2 photocatalyst displayed the optimum photocatalytic property (96%) within a short time (30 min), which was almost 27.42 and 1.17 times higher than that of pure g-C3N4 and binary ZnIn2S4/g-C3N4-0.7 composite. The excellent activity of the ternary CdS/ZnIn2S4/g-C3N4 heterostructure is assigned to the synergetic effects of CdS nanoparticles, ZnIn2S4 nanosheets and g-C3N4 nanosheets, which not only broaden the visible-light absorption range, but also improve the charge mobility and separation rate, thus boosting the visible-light-driven photocatalytic property of g-C3N4.

14.
Comput Math Methods Med ; 2022: 9272709, 2022.
Article En | MEDLINE | ID: mdl-36193199

Acute, chronic myocarditis as myocardial localized or diffuse inflammation lesions is usually involving cardiac function in patients with severe adverse outcomes such as heart failure, sudden death, and no unified, but its pathogenesis clinical is mainly composed of a number of factors including infection and autoimmune defects, such as physical and chemical factors; therefore, it is of great significance to explore the regulation mechanism of myocarditis-related miRNA network connectivity and temperament for in-depth understanding of the pathogenesis of myocarditis and the direction of targeted therapy. Based on this, this study explored the miRNA network related to the pathogenesis of myocarditis through deep learning medical data association rules and analyzed its specific mechanism. The results showed that 39 upregulated miRNAs, 88 downregulated miRNAs, 109 upregulated differentially expressed miRNAs, and 589 downregulated mRNAs were obtained by data association through GSE126677 and GSE4172 databases. GO enrichment and KRGG enrichment analysis showed that the differentially expressed mRNAs were involved in the regulation of a variety of biological processes, cellular components, and molecular functions. At the same time, the miRNA with differentially expressed miRNAs and their corresponding mRNAs were connected to further clarify the specific molecular mechanism of the pathological changes of myocarditis by constructing miRNA-mRNA network. It provides effective potential molecular targets for subsequent treatment and diagnosis.


Deep Learning , MicroRNAs , Myocarditis , Gene Regulatory Networks , Humans , MicroRNAs/genetics , Myocarditis/genetics , RNA, Messenger/genetics
15.
Glob Chall ; 6(9): 2200057, 2022 Sep.
Article En | MEDLINE | ID: mdl-36176938

Glyphosate is a globally applied herbicide yet it has been relatively undetectable in-field samples outside of gold-standard techniques. Its presumed nontoxicity toward humans has been contested by the International Agency for Research on Cancer, while it has been detected in farmers' urine, surface waters and crop residues. Rapid, on-site detection of glyphosate is hindered by lack of field-deployable and easy-to-use sensors that circumvent sample transportation to limited laboratories that possess the equipment needed for detection. Herein, the flavoenzyme, glycine oxidase, immobilized on platinum-decorated laser-induced graphene (LIG) is used for selective detection of glyphosate as it is a substrate for GlyOx. The LIG platform provides a scaffold for enzyme attachment while maintaining the electronic and surface properties of graphene. The sensor exhibits a linear range of 10-260 µ m, detection limit of 3.03 µ m, and sensitivity of 0.991 nA µ m -1. The sensor shows minimal interference from the commonly used herbicides and insecticides: atrazine, 2,4-dichlorophenoxyacetic acid, dicamba, parathion-methyl, paraoxon-methyl, malathion, chlorpyrifos, thiamethoxam, clothianidin, and imidacloprid. Sensor function is further tested in complex river water and crop residue fluids, which validate this platform as a scalable, direct-write, and selective method of glyphosate detection for herbicide mapping and food analysis.

16.
Langmuir ; 38(28): 8614-8622, 2022 Jul 19.
Article En | MEDLINE | ID: mdl-35786970

Polymer hydrogel-based solid-state supercapacitors exhibit great potential applications in flexible devices. Nevertheless, the poor electrode-electrolyte interfacial properties restrict their advances. Herein, by taking the well-developed polyvinyl alcohol (PVA)/H2SO4 gel electrolyte and the graphene film electrode as the prototype, a very simple strategy is demonstrated to improve the interfacial affinity between the electrode and the hydrogel electrolyte by a preadsorbed highly hydrophilic polyzwitterion layer of poly(propylsulfonate dimethylammonium propylmethacrylamide) (PPDP) on the electrode surface. Electrochemical measurements confirm that the charge-transfer resistance on the interface is effectively reduced after modification with PPDP. Consequently, the obtained areal capacitance experiences a 3-fold increase compared to the unmodified ones. Results from electrochemical quartz crystal microbalance with dissipation demonstrate that more ions can be reversibly transferred on the modified interface during the change-discharge cycles, suggesting that the accessible surface area on the electrode is also increased. The hydrophilic PVA layer shows a similar function but with a much smaller efficiency. The strategy depicted here is highly universalizable and can be generalized to different electrode/electrolyte systems or other electrochemical energy storage devices.

17.
Dalton Trans ; 51(15): 6053-6060, 2022 Apr 12.
Article En | MEDLINE | ID: mdl-35353105

To enhance light absorption in the visible region for the utilization of sunlight, eight mixed-valence polynuclear CuI/CuII clusters have been synthesized for evaluating their photothermal conversion performance. They are fabricated considering the ligand's electron density distribution inhomogeneity using 1,2,3-triazole (3N) or tetrazole (4N) and different mono-phosphine ligands. We report here the synthesis, crystal structure, characterization, optical properties, and photothermal conversion performance of these clusters. X-ray crystal structures reveal that those pentanuclear clusters are neutral clusters with octahedrally-coordinated copper(II) ion being surrounded by four tetrahedrally coordinated copper(I) ions. Interestingly, with the introduction of the mixed-valence centers, these compounds show additional light absorption centers in 350-600 nm via the IVCT transition mechanism, compared with our previously reported Cu(II) compounds. These clusters show excellent photothermal conversion performance, with an average equilibrium temperature (∼60 °C) and a temperature increment (∼40 °C), which are also superior to Cu(II) complexes (the average equilibrium temperature ∼55 °C). This work proves that it is possible to design and prepare new polynuclear mixed-valence CuI/CuII clusters for achieving high-performance photothermal conversion materials.

18.
Inorg Chem ; 61(9): 4009-4017, 2022 Mar 07.
Article En | MEDLINE | ID: mdl-35188386

The exploration and development of coordination nanocages can provide an approach to control chemical reactions beyond the bounds of the flask, which has aroused great interest due to their significant applications in the field of molecular recognition, supramolecular catalysis, and molecular self-assembly. Herein, we take the advantage of a semirigid and nonsymmetric bridging ligand (H5L) with rich metal-chelating sites to construct an unusual and discrete 3d-4f metallacage, [Zn2Er4(H2L)4(NO3)Cl2(H2O)]·NO3·xCH3OH·yH2O (Zn2Er4). The 3d-4f Zn2Er4 cage possesses a quadruple-stranded structure, and all of the ligands wrap around an open spherical cavity within the core. The self-assembly of the unique cage not only ensures the structural stability of the Zn2Er4 cage as a nanoreactor in solution but also makes the bimetallic lanthanide cluster units active sites that are exposed in the medium-sized cavity. It is important to note that the Zn2Er4 cage as a homogeneous catalyst has been successfully applied to catalyze three-component aza-Darzens reactions of formaldehyde, anilines, and α-diazo esters without another additive under mild conditions, displaying better catalytic activity, higher specificity, short reaction time, and low catalyst loadings. A possible mechanism for this three-component aza-Darzens reaction catalyzed by the Zn2Er4 cage has been proposed. These experimental results have demonstrated the great potential of the discrete 3d-4f metallacage as a host nanoreactor for the development of supramolecular or molecular catalysis.

19.
Mikrochim Acta ; 189(3): 122, 2022 02 26.
Article En | MEDLINE | ID: mdl-35218439

Current solid-contact ion-selective electrodes (ISEs) suffer from signal-to-noise drift and short lifespans partly due to water uptake and the development of an aqueous layer between the transducer and ion-selective membrane. To address these challenges, we report on a nitrate ISE based on hydrophobic laser-induced graphene (LIG) coated with a poly(vinyl) chloride-based nitrate selective membrane. The hydrophobic LIG was created using a polyimide substrate and a double lasing process under ambient conditions (air at 23.0 ± 1.0 °C) that resulted in a static water contact angle of 135.5 ± 0.7° (mean ± standard deviation) in wettability testing. The LIG-ISE displayed a Nernstian response of - 58.17 ± 4.21 mV dec-1 and a limit-of-detection (LOD) of 6.01 ± 1.44 µM. Constant current chronopotentiometry and a water layer test were used to evaluate the potential (emf) signal stability with similar performance to previously published work with graphene-based ISEs. Using a portable potentiostat, the sensor displayed comparable (p > 0.05) results to a US Environmental Protection Agency (EPA)-accepted analytical method when analyzing water samples collected from two lakes in Ames, IA. The sensors were stored in surface water samples for 5 weeks and displayed nonsignificant difference in performance (LOD and sensitivity). These results, combined with a rapid and low-cost fabrication technique, make the development of hydrophobic LIG-ISEs appealing for a wide range of long-term in situ surface water quality applications.

20.
Int J Pharm ; 615: 121472, 2022 Mar 05.
Article En | MEDLINE | ID: mdl-35063595

Process analytical technology in the pharmaceutical industry requires the monitoring of critical quality attributes (CQA) through calibrated models. However, the development, implementation, and maintenance of these quantitative models are both resource and time-intensive. This study proposes the implementation of a non-linear iterative optimization technology (IOT) to study the magnitude of analytical errors when the calibration tablet used to extract the λ vector deviates physically and chemically from the test samples. IOT is based on mathematical optimization of excess spectral absorbance. It requires minimum calibration effort and allows simultaneous prediction of the entire formulation instead of only the active pharmaceutical ingredient (API), with just one standard and pure component spectral data. Unlike Partial Least Squares (PLS), which requires the development of standards to incorporate variations in the process, this non-destructive methodology minimizes significant calibration effort by developing a mathematical model that uses only one standard and spectral information of pure powders present in the tablet. The method described in this study allows a fast re-calculation to include factors such as change of spectroscopic instruments, variations in raw materials, environmental conditions, and methods of tablet preparation. The robustness of the proposed approach for variation in compaction (physical changes) and variation in composition (chemical changes) was evaluated for correlated and uncorrelated formulations. For uncorrelated formulation a PLS model was also constructed to compare the robustness of the proposed methodology. The RMSEP of API in target formulation predicted using non-linear IOT method was varied from 0.17 to 1.50 depends on compaction of tablet chosen to compute λ vector. On the other hand, the RMSEP of API in target formulation predicted using PLS-based model was varied from 0.13 to 0.57 depending on compaction of tablet. The additional accuracy achieved in PLS based model required significant calibration effort of preparing 84 tablets compared to just one in proposed non-linear IOT method.


Spectroscopy, Near-Infrared , Calibration , Least-Squares Analysis , Powders , Tablets
...