Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Transl Lung Cancer Res ; 13(8): 1950-1963, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39263027

RESUMEN

Background: Stereotactic body radiotherapy (SBRT) combined immunotherapy has a synergistic effect on patients with stage IV tumors. However, the efficacy and prognostic factors analysis of SBRT combined immunotherapy for patients with pulmonary oligometastases have rarely been reported in the studies. The purpose of this study is to explore the efficacy and prognostic factors analysis of SBRT combined immunotherapy for patients with oligometastatic lung tumors. Methods: A retrospective analysis was conducted on 43 patients with advanced tumors who received SBRT combined with immunotherapy for pulmonary oligometastases from October 2018 to October 2021. Local control (LC), progression-free survival (PFS), and overall survival (OS) were assessed using the Kaplan-Meier method. Univariate and multivariate analyses of OS were performed using the Cox regression model, and the P value <0.05 was considered statistically significant. The receiver operating characteristic (ROC) curve of neutrophil-to-lymphocyte ratio (NLR) after SBRT was generated. Spearman correlation analysis was used to determine the relationship of planning target volume (PTV) with absolute lymphocyte count (ALC) before and after SBRT and with neutrophil count (NE) after SBRT. Additionally, linear regression was used to examine the relationship between ALC after SBRT and clinical factors. Results: A total of 43 patients with pulmonary oligometastases receiving SBRT combined with immunotherapy were included in the study. The change in NLR after SBRT was statistically significant (P<0.001). At 1 and 2 years, respectively, the LC rates were 90.3% and 87.5%, the OS rates were 83.46% and 60.99%, and the PFS rates were 69.92% and 54.25%, with a median PFS of 27.00 (17.84-36.13) months. Univariate and multivariate Cox regression analyses showed that a shorter interval between radiotherapy and immunization [≤21 days; hazard ratio (HR) =1.10, 95% confidence interval (CI): 0.06-0.89; P=0.02] and a low NLR after SBRT (HR =0.24, 95% CI: 1.01-1.9; P=0.03) were associated with improved OS. The ROC curve identified 4.12 as the cutoff value for predicting OS based on NLR after SBRT. NLR after SBRT ≤4.12 significantly extended OS compared to NLR after SBRT >4.12 (log-rank P=0.001). Spearman correlation analysis and linear regression analysis showed that PTV was negatively correlated with ALC after SBRT. Conclusions: Our preliminary research shows that SBRT combined with immunotherapy has a good effect, and NLR after SBRT is a poor prognostic factor for OS. Larger PTV volume is associated with decreased ALC after SBRT.

2.
Parasit Vectors ; 17(1): 352, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169430

RESUMEN

BACKGROUND: The dimerizable Cre recombinase system (DiCre) exhibits increased leaky activity in Cryptosporidium, leading to unintended gene editing in the absence of induction. Therefore, optimization of the current DiCre technique is necessary for functional studies of essential Cryptosporidium genes. METHODS: Based on the results of transcriptomic analysis of Cryptosporidium parvum stages, seven promoters with different transcriptional capabilities were screened to drive the expression of Cre fragments (FKBP-Cre59 and FRB-Cre60). Transient transfection was performed to assess the effect of promoter strength on leakage activity. In vitro and in vivo experiments were performed to evaluate the leaky activity and cleavage efficiency of the optimized DiCre system by polymerase chain reaction (PCR), nanoluciferase, and fluorescence analyses. RESULTS: The use of promoters with lower transcriptional activity, such as pcgd6_4110 and pcgd3_260, as opposed to strong promoters such as pActin, pα-Tubulin, and pEnolase, reduced the leakage rate of the system from 35-75% to nearly undetectable levels, as verified by transient transfection. Subsequent in vitro and in vivo experiments using stable lines further demonstrated that the optimized DiCre system had no detectable leaky activity. The system achieved 71% cleavage efficiency in vitro. In mice, a single dose of the inducer resulted in a 10% conditional gene knockout and fluorescent protein expression in oocysts. These fluorescently tagged transgenic oocysts could be enriched by flow sorting for further infection studies. CONCLUSIONS: A DiCre conditional gene knockout system for Cryptosporidium with good cleavage efficiency and reduced leaky activity has been successfully established.


Asunto(s)
Cryptosporidium parvum , Edición Génica , Integrasas , Regiones Promotoras Genéticas , Edición Génica/métodos , Animales , Ratones , Integrasas/genética , Integrasas/metabolismo , Cryptosporidium parvum/genética , Cryptosporidium parvum/enzimología , Criptosporidiosis/parasitología , Cryptosporidium/genética
3.
Genes (Basel) ; 15(8)2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39202451

RESUMEN

Male infertility affects approximately 7% of the male population, and about 15% of these cases are predicted to have a genetic etiology. One gene implicated in autosomal dominant male infertility, SYCP2, encodes a protein critical for the synapsis of homologous chromosomes during meiosis I, resulting in impaired spermatogenesis. However, the clinical validity of the gene-disease pair was previously categorized as on the border of limited and moderate due to few reported cases. This study investigates the genetic cause of infertility for three unrelated Chinese patients with oligoasthenozoospermia. Whole exome sequencing (WES) and subsequent Sanger sequencing revealed novel heterozygous loss-of-function (LOF) variants in SYCP2 (c.89dup, c.946_947del, and c.4378_4379del). These cases, combined with the previously reported cases, provide strong genetic evidence supporting an autosomal dominant inheritance pattern. The experimental evidence also demonstrates a critical role for SYCP2 in spermatogenesis. Collectively, this updated assessment of the genetic and experimental evidence upgrades the gene-disease association strength of SYCP2 and autosomal dominant male infertility from on the border of limited and moderate to strong. The reclassification improves SYCP2 variant interpretation and qualifies it for the inclusion on diagnostic male infertility gene panels and prioritization in whole exome or genome studies for related phenotypes. These findings therefore improve the clinical interpretation of SYCP2 LOF variants.


Asunto(s)
Secuenciación del Exoma , Infertilidad Masculina , Masculino , Humanos , Infertilidad Masculina/genética , Adulto , Secuenciación del Exoma/métodos , Espermatogénesis/genética , Mutación con Pérdida de Función , Proteínas de Unión al ADN/genética , Proteínas de Ciclo Celular/genética , Linaje
4.
ChemSusChem ; : e202401313, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087447

RESUMEN

Carbon dots (CDs) still suffer from unclear surface state fluorescence mechanism for fine modulation. Here, redox reactions for cathode and anode within electrochemical method are firstly employed to construct differentiated strategy for surface-state modulation, so as to obtain CDs with controllable emission in separated electrodes simultaneously. The fluorescence peaks of CDs from blue to red centered at 425 nm (mCDs-), 530 nm (mCDs+), 580 nm (oCDs-) and 665 nm (oCDs+) are mainly originated from the different bombardment effects of the ions and reaction tendencies of modifier during the electrolysis process. The phenylenediamine (as modifier) tends to introduce the amino groups on the surface of CDs- while introduced nitrogen atoms into the carbon nucleus skeleton around the anode, thus leading to much larger size and the formation of the graphite N for CDs+. It is the different surface states formed by phenylenediamine and the absorption redshift triggered by graphite N that ensures the tunable emission. The improved electrochemical method is of great significance for finely spectra modulation and efficient synthesis.

5.
Ophthalmic Genet ; : 1-7, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39016008

RESUMEN

PURPOSE: The biallelic variant of MAB21L1 has previously been documented in conjunction with the autosomal recessive cerebellar, ocular, craniofacial, and genital syndrome (COFG). The purpose of this study was to investigate the gene-disease association of MAB21L1 and the newly discovered autosomal dominant (AD) microphthalmia. METHODS: We report the presence of an exceptionally rare missense variant in a single allele of the Arg51 codon of MAB21L1 among four individuals from a single family diagnosed with microphthalmia, which suggesting an autosomal dominant inheritance pattern. Subsequently, based on comprehensive literature review, we identified another 13 families that have reported cases of autosomal dominant microphthalmos. RESULTS: Genotype-phenotype analysis revealed that patients with a single allele missense variant in MAB21L1 exhibited solely eye abnormalities. This starkly diverged from the clinical presentation of COFG, typified by the concurrent occurrence of ocular and extraocular symptoms stemming from the biallelic variant in MAB21L1. Our findings revealed that the heterozygous pathogenic variant in MAB21L1 resulted in the emergence of autosomal dominant microphthalmia. By combining these genetic and experimental evidence, the clinical validity of MAB21L1 and the emerging autosomal dominant microphthalmia can be regarded as moderate. CONCLUSION: In summary, there is sufficient convincing evidence to prove that MAB21L1 is a novel pathogenic gene responsible for autosomal dominant microphthalmia, thus offering valuable insights for precise diagnosis and targeted therapeutic interventions in cases of microphthalmia.

6.
Transl Cancer Res ; 13(6): 3106-3125, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38988908

RESUMEN

N6-methyladenosine (m6A) is one of the most common internal modifications in eukaryotic RNA. The presence of m6A on transcripts can affect a series of fundamental cellular processes, including mRNA splicing, nuclear transportation, stability, and translation. The m6A modification is introduced by m6A methyltransferases (writers), removed by demethylases (erasers), and recognized by m6A-binding proteins (readers). Current research has demonstrated that m6A methylation is involved in the regulation of malignant phenotypes in tumors by controlling the expression of cancer-related genes. Non-coding RNAs (ncRNAs) are a diverse group of RNA molecules that do not encode proteins and are widely present in the human genome. This group includes microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and PIWI interaction RNAs (piRNAs). They function as oncogenes or tumor suppressors through various mechanisms, regulating the initiation and progression of cancer. Previous studies on m6A primarily focused on coding RNAs, but recent discoveries have revealed the significant regulatory role of m6A in ncRNAs. Simultaneously, ncRNAs also exert their influence by modulating the stability, splicing, translation, and other biological processes of m6A-related enzymes. The interplay between m6A and ncRNAs collectively contributes to the occurrence and progression of malignant tumors in humans. This review provides an overview of the interactions between m6A regulatory factors and ncRNAs and their impact on tumors.

7.
Arch Esp Urol ; 77(4): 359-367, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38840278

RESUMEN

OBJECTIVE: To study the effects of nurse-led cognitive behavioural therapy on anxiety, depression and quality of life in patients with urinary incontinence after radical prostatectomy. METHODS: Patients with urinary incontinence after undergoing radical prostatectomy in our hospital from January 2019 to January 2023 were selected as the research objects. They were divided into the observation and control groups in accordance with whether they received nurse-led cognitive behavioural therapy. The general data of the patients were collected, and the baseline data of the two groups were balanced by propensity score matching. The disease-related knowledge; Urinary catheter indwelling time; Urinary incontinence duration; And scores on the Exercise of Self-Care Agency Scale (ESCA), Hamilton Anxiety Scale (HAMA), Hamilton Depression Scale (HAMD) and Nursing Effect and Health Questionnaire (SF-36) were compared between the two groups after matching. RESULTS: At discharge, the ESCA, SF-36 and disease cognition scores of the observation group were higher than those of the control group (p < 0.05). The HAMA and HAMD scores of the observation group were lower than those of the control group (p < 0.001), and the total effective rate of the observation group (89.83%) was higher than that of the control group (76.27%) (p < 0.05). CONCLUSIONS: In patients with urinary incontinence after radical prostatectomy, the implementation of nurse-led cognitive behavioural therapy can effectively improve self-care and disease cognition abilities, relieve anxiety and depression and improve quality of life.


Asunto(s)
Terapia Cognitivo-Conductual , Complicaciones Posoperatorias , Prostatectomía , Incontinencia Urinaria , Humanos , Prostatectomía/efectos adversos , Masculino , Incontinencia Urinaria/etiología , Incontinencia Urinaria/terapia , Persona de Mediana Edad , Anciano , Ansiedad/etiología , Depresión/etiología , Calidad de Vida , Pautas de la Práctica en Enfermería
9.
Molecules ; 29(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38792189

RESUMEN

A novel ternary eutectic salt, NaNO3-KNO3-Na2SO4 (TMS), was designed and prepared for thermal energy storage (TES) to address the issues of the narrow temperature range and low specific heat of solar salt molten salt. The thermo-physical properties of TMS-2, such as melting point, decomposition temperature, fusion enthalpy, density, viscosity, specific heat capacity and volumetric thermal energy storage capacity (ETES), were determined. Furthermore, a comparison of the thermo-physical properties between commercial solar salt and TMS-2 was carried out. TMS-2 had a melting point 6.5 °C lower and a decomposition temperature 38.93 °C higher than those of solar salt. The use temperature range of TMS molten salt was 45.43 °C larger than that of solar salt, which had been widened about 13.17%. Within the testing temperature range, the average specific heat capacity of TMS-2 (1.69 J·K-1·g-1) was 9.03% higher than that of solar salt (1.55 J·K-1·g-1). TMS-2 also showed higher density, slightly higher viscosity and higher ETES. XRD, FTIR and Raman spectra SEM showed that the composition and structure of the synthesized new molten salt were different, which explained the specific heat capacity increasing. Molecular dynamic (MD) simulation was performed to explore the different macroscopic properties of solar salt and TMS at the molecular level. The MD simulation results suggested that cation-cation and cation-anion interactions became weaker as the temperature increased and the randomness of molecular motion increased, which revealed that the interaction between the cation cluster and anion cluster became loose. The stronger interaction between Na-SO4 cation-anion clusters indicated that TMS-2 molten salt had a higher specific heat capacity than solar salt. The result of the thermal stability analysis indicated that the weight losses of solar salt and TMS-2 at 550 °C were only 27% and 53%, respectively. Both the simulation and experimental study indicated that TMS-2 is a promising candidate fluid for solar power generation systems.

10.
Talanta ; 275: 126112, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38677169

RESUMEN

The development of nanomaterials with multi-enzyme-like activity is crucial for addressing challenges in multi-enzyme-based biosensing systems, including cross-talk between different enzymes and the complexities and costs associated with detection. In this study, Pt nanoparticles (Pt NPs) were successfully supported on a Zr-based metal-organic framework (MOF-808) to create a composite catalyst named MOF-808/Pt NPs. This composite catalyst effectively mimics the functions of acetylcholinesterase (AChE) and peroxidase (POD). Leveraging this capability, we replaced AChE and POD with MOF-808/Pt NPs and constructed a biosensor for sensitive detection of acetylcholine (ACh). The MOF-808/Pt NPs catalyze the hydrolysis of ACh, resulting in the production of acetic acid. The subsequent reduction in pH value further enhances the POD-like activity of the MOFs, enabling signal amplification through the oxidation of a colorimetric substrate. This biosensor capitalizes on pH variations during the reaction to modulate the different enzyme-like activities of the MOFs, simplifying the detection process and eliminating cross-talk between different enzymes. The developed biosensor holds great promise for clinical diagnostic analysis and offers significant application value in the field.


Asunto(s)
Acetilcolina , Acetilcolinesterasa , Técnicas Biosensibles , Estructuras Metalorgánicas , Estructuras Metalorgánicas/química , Técnicas Biosensibles/métodos , Acetilcolina/análisis , Acetilcolina/metabolismo , Acetilcolina/química , Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Platino (Metal)/química , Nanopartículas del Metal/química , Concentración de Iones de Hidrógeno , Circonio/química , Materiales Biomiméticos/química , Peroxidasa/química , Peroxidasa/metabolismo , Colorimetría/métodos , Catálisis , Límite de Detección
11.
Sci Total Environ ; 915: 170153, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38232821

RESUMEN

Precipitation is a vital component of the global atmospheric and hydrological cycles and influencing the distribution of water resources. Even subtle changes in precipitation can significantly impact ecosystems, energy cycles, agricultural production, and food security. Therefore, understanding the changes in the precipitation structure under climate change is essential. The Qinghai-Tibet Plateau (QTP) is a region sensitive to global climate change and profoundly impacts the atmospheric water cycle in Asia and even globally, rendering it a hot topic in climate change research in recent years. Few studies have examined on the sub-daily scale precipitation structure over the QTP. In this paper, the characteristics of sub-daily precipitation on the QTP were systematically investigated from multiple perspectives, including the concentration index, skewness (the third standardized moment of a distribution), and kurtosis (the fourth standardized moment of a distribution). The results indicated that the frequency of moderate-intensity nighttime precipitation on the QTP generally increased, and the analysis of both the concentration index and kurtosis (skewness) suggested that extreme precipitation was more frequent in the southwestern foothills of the QTP. Furthermore, potential high-risk areas for natural disasters were identified on the QTP, and found that the southeastern part of the plateau constituted a potential hotspot area for flood disasters. Given the complexity of climate change, a comprehensive analysis of the spatiotemporal characteristics of diurnal and nighttime precipitation changes on the QTP could help reveal the regularity of precipitation changes. This has significant implications for forecasting, warning, disaster preparedness, and mitigation efforts on the QTP.

12.
Nat Commun ; 14(1): 7022, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919267

RESUMEN

Crystalline porous materials such as covalent organic frameworks (COFs), metal-organic frameworks (MOFs) and porous organic cages (POCs) have been widely applied in various fields with outstanding performances. However, the lack of general and effective methodology for large-scale production limits their further industrial applications. In this work, we developed a general approach comprising high pressure homogenization (HPH), which can realize large-scale synthesis of crystalline porous materials including COFs, MOFs, and POCs under benign conditions. This universal strategy, as illustrated in the proof of principle studies, has prepared 4 COFs, 4 MOFs, and 2 POCs. It can circumvent some drawbacks of existing approaches including low yield, high energy consumption, low efficiency, weak mass/thermal transfer, tedious procedures, poor reproducibility, and high cost. On the basis of this approach, an industrial homogenizer can produce 0.96 ~ 580.48 ton of high-performance COFs, MOFs, and POCs per day, which is unachievable via other methods.

13.
ACS Sens ; 8(8): 3257-3263, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37566793

RESUMEN

Semiconductor-based photoelectrochemical (PEC) biosensors have garnered significant attention in the field of disease diagnosis and treatment. However, the recognition units of these biosensors are mainly limited to bioactive macromolecules, which hinder the photoelectric response due to their insulating characteristics. In this study, we develop an in situ-sensitized strategy that utilizes a small-molecule probe at the interface of the photoelectrode to accurately detect α-glucosidase (α-Glu) activity. Silane, a prototype small-molecule probe, was surface-modified on graphitic carbon nitride to generate Si nanoparticles upon reacting with hydroquinone, the enzymatic product of α-Glu. The in situ formed heterojunction enhances the light-harvesting property and photoexcited carrier separation efficiency. As a result, the in situ-sensitized PEC biosensor demonstrates excellent accuracy, a low detection limit, and outstanding anti-interference ability, showing good applicability in evaluating α-Glu activity and its inhibitors in human serum samples. This novel in situ sensitization approach using small-molecule probes opens up new avenues for developing simple and efficient PEC biosensing platforms by replacing conventional biorecognition elements.


Asunto(s)
Técnicas Biosensibles , alfa-Glucosidasas , Humanos , Técnicas Electroquímicas , Semiconductores
15.
RSC Adv ; 13(31): 21643-21654, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37476034

RESUMEN

In this work, we present a binary composite of La(OH)3@Ni(OH)2 on carboxyl graphene (La@Ni/CG) as an electrode material. The layered La@Ni/CG double hydroxides (LDHs) were synthesized by a simple electrodeposition method in which La(OH)3 nanoparticles were first adsorbed onto carboxyl graphene and then coated with Ni(OH)2, with different particle shapes due to the large pH change near the cathodic region. Scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) were used to characterise the as-prepared La@Ni/CG composite. These results showed that the La@Ni/CG composite exhibited improved electrochemical properties, including large specific capacitance (1334.7 F g-1 at 1.4 A g-1) and capacity retention of 90.6% even after 3000 cycles, and excellent rate capability. The improved electrochemical performance of the composite can be attributed to the synergistic effect of surface adsorption and conductive pathways provided by the multiple active species (Ni, La and C) in the La@Ni/CG composite. The results presented in this work provide advances in the efficient design of nanomaterial based electrochemical energy storage devices.

16.
Chem Sci ; 14(26): 7346-7354, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37416724

RESUMEN

Advances in the rational design of semiconductor-electrocatalyst photoelectrodes provide robust driving forces for improving energy conversion and quantitative analysis, while a deep understanding of elementary processes remains underwhelming due to the multistage interfaces involved in semiconductor/electrocatalyst/electrolyte. To address this bottleneck, we have constructed carbon-supported nickel single atoms (Ni SA@C) as an original electron transport layer with catalytic sites of Ni-N4 and Ni-N2O2. This approach illustrates the combined effect of photogenerated electron extraction and the surface electron escape ability of the electrocatalyst layer in the photocathode system. Theoretical and experimental studies reveal that Ni-N4@C, with excellent oxygen reduction reaction catalytic activity, is more beneficial for alleviating surface charge accumulation and facilitating electrode-electrolyte interfacial electron-injection efficiency under a similar built-in electric field. This instructive method enables us to engineer the microenvironment of the charge transport layer for steering the interfacial charge extract and reaction kinetics, providing a great prospect for atomic scale materials to enhance photoelectrochemical performance.

17.
Redox Biol ; 65: 102824, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37517320

RESUMEN

Vascular endothelial cells (ECs) senescence plays a crucial role in vascular aging that promotes the initiation and progression of cardiovascular disease. The mutation of Grb10-interacting GYF protein 2 (GIGYF2) is strongly associated with the pathogenesis of aging-related diseases, whereas its role in regulating ECs senescence and dysfunction still remains elusive. In this study, we found aberrant hyperexpression of GIGYF2 in senescent human ECs and aortas of old mice. Silencing GIGYF2 in senescent ECs suppressed eNOS-uncoupling, senescence, and endothelial dysfunction. Conversely, in nonsenescent cells, overexpressing GIGYF2 promoted eNOS-uncoupling, cellular senescence, endothelial dysfunction, and activation of the mTORC1-SK61 pathway, which were ablated by rapamycin or antioxidant N-Acetyl-l-cysteine (NAC). Transcriptome analysis revealed that staufen double-stranded RNA binding protein 1 (STAU1) is remarkably downregulated in the GIGYF2-depleted ECs. STAU1 depletion significantly attenuated GIGYF2-induced cellular senescence, dysfunction, and inflammation in young ECs. Furthermore, we disclosed that GIGYF2 acting as an RNA binding protein (RBP) enhances STAU1 mRNA stability, and that the intron region of the late endosomal/lysosomal adaptor MAPK and mTOR activator 4 (LAMTOR4) could bind to STAU1 protein to upregulate LAMTOR4 expression. Immunofluorescence staining showed that GIGYF2 overexpression promoted the translocation of mTORC1 to lysosome. In the mice model, GIGYF2flox/flox Cdh-Cre+ mice protected aged mice from aging-associated vascular endothelium-dependent relaxation and arterial stiffness. Our work discloses that GIGYF2 serving as an RBP enhances the mRNA stability of STAU1 that upregulates LAMTOR4 expression through binding with its intron region, which activates the mTORC1-S6K1 signaling via recruitment of mTORC1 to the lysosomal membrane, ultimately leading to ECs senescence, dysfunction, and vascular aging. Disrupting the GIGYF2-STAU1-mTORC1 signaling cascade may represent a promising therapeutic approach against vascular aging and aging-related cardiovascular diseases.


Asunto(s)
Envejecimiento , Células Endoteliales , Animales , Humanos , Ratones , Envejecimiento/genética , Envejecimiento/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Senescencia Celular/fisiología , Proteínas del Citoesqueleto/metabolismo , Células Endoteliales/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
18.
Anal Chem ; 95(26): 10044-10051, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37337310

RESUMEN

Photoelectrochemical (PEC) enzymatic biosensors have attracted widespread attention for their specificity and sensitivity, but the charge migration between an enzyme and a semiconductor remains uncertain. In this work, horseradish peroxidase (HRP) was successfully immobilized on ionic liquid-functioned Cu@Cu2O (IL-Cu@Cu2O) aerogels to boost charge transfer and an interfacial redox reaction. The photogenerated electrons flow from the conduction band of Cu2O to HRP under the assistance of Cu and are subsequently captured by [Fe(CN)6]3- in the electrolyte, which boosts the PEC response. The improved interfacial catalytic ability after the immobilization of HRP is proved by the enhanced redox ability under light irradiation. Benefiting from the excellent PEC activity and catalysis reaction of IL-Cu@Cu2O@HRP, an immunoassay platform was constructed for sensing prostate-specific antigens, which presents a wide detection range and a low limit of detection. An in-depth understanding of the direct electronic communication between a photoactive material and an enzyme for boosted charge transfer and interfacial catalysis provides a new view for the design of advanced PEC sensing platforms.


Asunto(s)
Técnicas Biosensibles , Cobre , Peroxidasa de Rábano Silvestre , Electrones , Transporte de Electrón , Metales , Inmunoensayo , Límite de Detección , Técnicas Electroquímicas
19.
Nano Lett ; 23(11): 5358-5366, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37265420

RESUMEN

Accelerating the migration of interfacial carriers in a heterojunction is of paramount importance for driving high-performance photoelectric responses. However, the inferior contact area and large resistance at the interface limit the eventual photoelectric performance. Herein, we fabricated an S-scheme heterojunction involving a 2D/2D dual-metalloporphyrin metal-organic framework with metal-center-regulated CuTCPP(Cu)/CuTCPP(Fe) through electrostatic self-assembly. The ultrathin nanosheet-like architectures reduce the carrier migration distance, while the similar porphyrin backbones promote reasonable interface matching through π-π conjugation, thereby inhibiting the recombination of photogenerated carriers. Furthermore, the metal-center-regulated S-scheme band alignments create a giant built-in electric field, which provides a huge driving force for efficient carrier separation and migration. Coupling with the biomimetic catalytic activity of CuTCPP(Fe), the resultant heterojunction was utilized to construct photoelectrochemical uric acid biosensors. This work provides a general strategy to enhance photoelectric responses by engineering the interfacial structure of heterojunctions.

20.
J Fluoresc ; 33(6): 2273-2280, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37017894

RESUMEN

Most fluorescent probes based on carbon dots (CDs) fluorescence color or intensity change are still used for detection in solution, but in practical fluorescence detection applications, detection in the solid state is necessary. Therefore, a CDs-based fluorescence sensing device is designed in this paper, which can be used for water detection in liquid and solid states. Using oPD as a single precursor, yellow fluorescent CDs (y-CDs) were prepared by hydrothermal method, which can be used in the field of water detection and anti-counterfeiting by using its solvent-sensitive properties. First, y-CDs can be used to visually and intelligently detect the water content in ethanol. Secondly, it can be used to detect the Relative Humidity (RH) of the environment by combining it with cellulose to form a fluorescent film. Finally, y-CDs can also be used as a fluorescent material for fluorescence anti-counterfeiting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA