Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 153
1.
Front Plant Sci ; 15: 1383477, 2024.
Article En | MEDLINE | ID: mdl-38721338

Introduction: Chrysanthemum morifolium Ramat. is a perennial herb in the Compositae family, often employed in traditional Chinese medicine due to its medicinal value. The planting of C. morifolium faces the challenges of continuous cropping, and intercropping is able to somewhat overcome the obstacles of continuous cropping. Methods: In our study, we designed two different C. morifolium-maize intercropping patterns, including C. morifolium-maize narrow-wide row planting (IS) and C. morifolium-maize middle row planting (IM). Compared with monoculture, the agronomic traits, yield, active ingredients, soil physicochemical properties, soil enzyme activities, and rhizosphere soil microbial communities of C. morifolium and maize were measured under the two C. morifolium-maize intercropping patterns. Results: The findings indicated that (1) Intercropping elevated the agronomic traits, yield, and active ingredients of C. morifolium, especially in C. morifolium-maize narrow-wide row planting pattern, which indicating that interspecific distance played an important role in intercropping system; (2) Intercropping enhanced soil physicochemical properties and enzyme activities of C. morifolium and maize; (3) Intercropping altered rhizosphere soil microbial communities of C. morifolium and maize, making microbial interrelationships more complex. (4) Intercropping could recruit a large number of beneficial microorganisms enrich in the soil, including Bacillus, Sphingomonas, Burkholderia-Caballeronia-Paraburkholderia, Chaetomium, and Ceratorhiza, which may increase the content of AN, NN, AvK, ExCa, AvCu, AvZn and other nutrients in soil and promoted the growth and quality of C. morifolium. Discussion: In summary, intercropping with maize could promote the accumulation of beneficial microorganisms in the soil, thus improving the overall growing environment, and finally realizing the growth and improvement of C. morifolium.

2.
J Ethnopharmacol ; 331: 118344, 2024 Sep 15.
Article En | MEDLINE | ID: mdl-38754641

ETHNOPHARMACOLOGICAL RELEVANCE: Dermatophytes are notorious pathogens capable of infecting various mammals skin, posing serious threats to human health and overall life quality worldwide. Artemisia argyi has been recorded and applied for over a thousand years to treat skin itching. Although it has the potential to be developed as a plant-based antifungal agent, it's antifungal activity and action mechanism of active ingredients are still unclear. AIM OF THE STUDY: The aim of this study was to investigate the chemical composition, antifungal activity against skin fungi, and potential mechanisms of Artemisia argyi essential oil (AEO). MATERIALS AND METHODS: The chemical composition of AEO was analyzed by gas chromatography-mass spectrometry (GC-MS) firstly. Flat growth restraint and double half dilution tests was performed to evaluate AEO antifungal activity against Microsporum gypseum, Trichophyton mentagrophytes, and Trichophyton rubrum. And then, the physiological mechanism of AEO inhibiting dermatophytes was systematically explored through scanning electron microscopy, relative conductivity, membrane leakage, ROS content, and antioxidant enzyme activity. Finally, the main pathways were screened through transcriptome sequencing, while the related genes expression levels and enzyme activity were validated. RESULTS: Monoterpenes and sesquiterpenoids were the most highly representative class of AEO. AEO had powerful antifungal activity against M. gypseum, T. mentagrophytes, and T. rubrum, with minimum inhibitory concentration (MIC) values of 0.6, 1.2, and 1.2 µL/mL, respectively. Moreover, AEO can also damage the cell membrane integrity of T. mentagrophytes, resulting in cellular extravasation of intracellular substances. Transcriptome analysis revealed that the main target of AEO is to inhibit electron transfer and oxidative phosphorylation during respiration, ultimately leading to obstruction of normal ATP synthesis and energy metabolism in mitochondria. And a large amount of ROS will generate due to the incompletely catalysis of oxygen under mitochondrial complexes. Coupled with the decrease of antioxidant enzyme (SOD, POD) activity, excessive accumulation of ROS will cause serious oxidative damage to cells and eventually exhibiting antifungal activity against dermatophytes. CONCLUSIONS: The present study demonstrated that Artemisia argyi was a valuable source of active compounds with antifungal activity. These findings support AEO as a potential agent to inhibit dermatophytes and prevent related dermatophytoses.


Antifungal Agents , Artemisia , Arthrodermataceae , Oils, Volatile , Oxidative Phosphorylation , Oxidative Stress , Artemisia/chemistry , Antifungal Agents/pharmacology , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Arthrodermataceae/drug effects , Oxidative Stress/drug effects , Oxidative Phosphorylation/drug effects , Microbial Sensitivity Tests , Gas Chromatography-Mass Spectrometry
3.
Cell Rep ; 43(4): 114065, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38578828

Epigenetic modification shapes differentiation trajectory and regulates the exhaustion state of chimeric antigen receptor T (CAR-T) cells. Limited efficacy induced by terminal exhaustion closely ties with intrinsic transcriptional regulation. However, the comprehensive regulatory mechanisms remain largely elusive. Here, we identify class I histone deacetylase inhibitors (HDACi) as boosters of CAR-T cell function by high-throughput screening of chromatin-modifying drugs, in which M344 and chidamide enhance memory maintenance and resistance to exhaustion of CAR-T cells that induce sustained antitumor efficacy both in vitro and in vivo. Mechanistically, HDACi decrease HDAC1 expression and enhance H3K27ac activity. Multi-omics analyses from RNA-seq, ATAC-seq, and H3K27ac CUT&Tag-seq show that HDACi upregulate expression of TCF4, LEF1, and CTNNB1, which subsequently activate the canonical Wnt/ß-catenin pathway. Collectively, our findings elucidate the functional roles of class I HDACi in enhancing CAR-T cell function, which provides the basis and therapeutic targets for synergic combination of CAR-T cell therapy and HDACi treatment.


Aminopyridines , Histone Deacetylase Inhibitors , Wnt Signaling Pathway , Histone Deacetylase Inhibitors/pharmacology , Wnt Signaling Pathway/drug effects , Animals , Humans , Mice , Benzamides/pharmacology , Cell Line, Tumor , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , T-Lymphocytes/immunology , Histone Deacetylase 1/metabolism
4.
Anal Methods ; 16(13): 1887-1893, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38482559

Microplastics can enter the human body through the food chain and can cause cardiovascular or cerebrovascular diseases; thus, it is essential to detect microplastics sensitively and accurately. Traditional methods have some drawbacks, such as a low sensitivity and complicated experimental procedures, so it is difficult to detect microplastics less than 1 µm. While surface enhanced Raman scattering technology can compensate for these shortcomings, there are fewer reports on the quantitative detection of microplastics using SERS technology. In this study, SERS and an internal standard method were utilized to detect microplastics qualitatively and quantitatively. The electric field enhancement effect of common gold, silver, and copper substrates were simulated by the finite element method, and the influence rule of structural parameters on the enhancement factor was obtained to optimize structural parameters. Subsequently, a gold nanopyramid array substrate was prepared using the colloidal sphere template method. Finally, the prepared substrate was applied to detect polystyrene microplastics with a diameter of 500 nm, and the detection of limit is 1.8 × 10-4 mg mL-1 in the quantitative range of 2-2 × 10-4 mg mL-1, and the correlation coefficient of the linear regression equation is 0.9918. The experimental results showed that this proposal has a lower detection limit and a wider quantitative range and expands ideas for the qualitative and quantitative detection of microplastics in seawater.

5.
Cell Discov ; 10(1): 35, 2024 Mar 29.
Article En | MEDLINE | ID: mdl-38548771

Microplastics (MPs) are contaminants ubiquitously found in the global biosphere that enter the body through inhalation or ingestion, posing significant risks to human health. Recent studies emerge that MPs are present in the bone marrow and damage the hematopoietic system. However, it remains largely elusive about the specific mechanisms by which MPs affect hematopoietic stem cells (HSCs) and their clinical relevance in HSC transplantation (HSCT). Here, we established a long-term MPs intake mouse model and found that MPs caused severe damage to the hematopoietic system. Oral gavage administration of MPs or fecal transplantation of microbiota from MPs-treated mice markedly undermined the self-renewal and reconstitution capacities of HSCs. Mechanistically, MPs did not directly kill HSCs but disrupted gut structure and permeability, which eventually ameliorated the abundance of Rikenellaceae and hypoxanthine in the intestine and inactivated the HPRT-Wnt signaling in bone marrow HSCs. Furthermore, administration of Rikenellaceae or hypoxanthine in mice as well as treatment of WNT10A in the culture system substantially rescued the MPs-induced HSC defects. Finally, we validated in a cohort of human patients receiving allogenic HSCT from healthy donors, and revealed that the survival time of patients was negatively correlated with levels of MPs, while positively with the abundance of Rikenellaceae, and hypoxanthine in the HSC donors' feces and blood. Overall, our study unleashes the detrimental roles and mechanisms of MPs in HSCs, which provides potential strategies to prevent hematopoietic damage from MPs and serves as a fundamental critique for selecting suitable donors for HSCT in clinical practice.

6.
Int Ophthalmol ; 44(1): 34, 2024 Feb 08.
Article En | MEDLINE | ID: mdl-38332205

PURPOSE: To explore the associations between central anterior chamber depth (CACD) and other anterior segment biometric parameters and to determine the possible determinants of CACD in short, normal, and long eyes. METHODS: The biometric data of pre-operation patients aged 50-80 years with coexisting cataract and primary angle-closure disease or senile cataract were reviewed. Axial length (AL), CACD, lens thickness (LT), central corneal thickness (CCT), and white-to-white distance (WTW) were measured by Lenstar optical biometry (Lenstar 900). The data of 100 normal eyes (AL = 22 to 26 mm), 100 short eyes (AL ≤ 22 mm), and 100 long eyes (AL ≥ 26 mm) were consecutively collected for subsequent analyses. RESULTS: The mean age of the subjects was 66.60 ± 7.85 years, with 25.7% of the sample being men. Both CACD and WTW were found to be smallest in short eyes and were smaller in normal eyes than in long eyes (F = 126.524, P < 0.001; F = 28.458, P < 0.001). The mean LT was significantly thicker in short eyes than in normal and long eyes (4.66 mm versus 4.49 mm versus 4.40 mm; F = 18.099, P < 0.001). No significant differences were observed in CCT between the three AL groups (F = 2.135, P = 0.120). Stepwise regression analysis highlighted AL, LT, and WTW as three independent factors associated with CACD in the normal AL group. In the short AL group and long AL group, LT and WTW were independent factors associated with CACD. CONCLUSIONS: CACD increases as AL elongates and reaches a peak when AL exceeds 26 mm. Furthermore, CACD showed inverse correlation with LT and positive correlation with WTW. A relatively small WTW results in an anteriorly positioned lens, and thus, a decrease in CACD.


Cataract , Lens, Crystalline , Lenses, Intraocular , Male , Humans , Middle Aged , Aged , Female , Lens, Crystalline/diagnostic imaging , Cataract/complications , Cataract/diagnosis , Biometry/methods , Anterior Chamber/diagnostic imaging , Axial Length, Eye
7.
Food Funct ; 14(23): 10581-10590, 2023 Nov 27.
Article En | MEDLINE | ID: mdl-37955444

Whole grain insoluble dietary fiber (IDF) is a good source of bound-form polyphenols. In the present study, insoluble dietary fiber rich in bound polyphenols (BP-IDF) from quinoa, rye and wheat was prepared. The carbonyl scavenging capacities of these three BP-IDFs and the effects of in vitro gastrointestinal (GI) digestion and colonic fermentation on their scavenging activities were studied. The results indicated that the fiber-bound polyphenols from quinoa showed the highest carbonyl scavenging capacity compared to those from rye and wheat. After colonic fermentation, more than 73% of the bound polyphenols were still retained in the fermented residues of the quinoa BP-IDF. The fiber-bound polyphenols in the GI-digested residues of quinoa retained considerable carbonyl scavenging activities. During the fermentation process, the residual fiber-bound polyphenols in the fermented residues still scavenged 35.8% to 45.2% of methylglyoxal, 19.3% to 25.4% of glyoxal, 50.7% to 60.5% of acrolein and 5.2% to 9.7% of malondialdehyde, showing a critical role in the scavenging of carbonyl compounds compared to the released and metabolized polyphenols. These findings confirm the capacity of fiber-bound polyphenols from three whole grains to scavenge carbonyls during in vitro digestion and fermentation processes, suggesting that they could be used as functional ingredients to maintain continuous defenses against carbonyls along the digestive tract.


Chenopodium quinoa , Polyphenols , Polyphenols/pharmacology , Chenopodium quinoa/chemistry , Fermentation , Digestion , Carbohydrates/pharmacology , Dietary Fiber/analysis
8.
Cancer Sci ; 114(11): 4270-4285, 2023 Nov.
Article En | MEDLINE | ID: mdl-37715534

Branched-chain keto-acid dehydrogenase kinase (BCKDK) is the rate-limiting enzyme of branched-chain amino acid (BCAA) metabolism. In the last six years, BCKDK has been used as a kinase to promote tumor proliferation and metastasis. Renal cell carcinoma (RCC) is a highly vascularized tumor. A high degree of vascularization promotes tumor metastasis. Our objective is to explore the relationship between BCKDK and RCC metastasis and its specific mechanism. In our study, BCKDK is highly expressed in renal clear cell carcinoma and promotes the migration of clear cell renal cell carcinoma (ccRCC). Exosomes from ccRCC cells can promote vascular permeability and angiogenesis, especially when BCKDK is overexpressed in ccRCC cells. BCKDK can also augment the miR-125a-5p expression in ccRCC cells and derived exosomes, thereby decreasing the downstream target protein VE-cadherin level, weakening adhesion junction expression, increasing vascular permeability, and promoting angiogenesis in HUVECs. The novel BCKDK/Exosome-miR-125a-5p/VE-cadherin axis regulates intercellular communication between ccRCC cells and HUVECs. BCKDK plays a critical role in renal cancer metastasis, may be used as a molecular marker of metastatic ccRCC, and even may become a potential target of clinical anti-vascular therapy for ccRCC.


Carcinoma, Renal Cell , Kidney Neoplasms , MicroRNAs , Humans , Carcinoma, Renal Cell/pathology , Capillary Permeability , Cell Line, Tumor , Kidney Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Oxidoreductases
9.
Article En | MEDLINE | ID: mdl-37603479

Cancer is a multifaceted disease that results from co-mutations of multi biological molecules. A promising strategy for cancer therapy involves in exploiting the phenomenon of Synthetic Lethality (SL) by targeting the SL partner of cancer gene. Since traditional methods for SL prediction suffer from high-cost, time-consuming and off-targets effects, computational approaches have been efficient complementary to these methods. Most of existing approaches treat SL associations as independent of other biological interaction networks, and fail to consider other information from various biological networks. Despite some approaches have integrated different networks to capture multi-modal features of genes for SL prediction, these methods implicitly assume that all sources and levels of information contribute equally to the SL associations. As such, a comprehensive and flexible framework for learning gene cross-network representations for SL prediction is still lacking. In this work, we present a novel Triple-Attention cross-network Representation learning for SL prediction (TARSL) by capturing molecular features from heterogeneous sources. We employ three-level attention modules to consider the different contribution of multi-level information. In particular, feature-level attention can capture the correlations between molecular feature and network link, node-level attention can differentiate the importance of various neighbors, and network-level attention can concentrate on important network and reduce the effects of irrelated networks. We perform comprehensive experiments on human SL datasets and these results have proven that our model is consistently superior to baseline methods and predicted SL associations could aid in designing anti-cancer drugs.

10.
J Colloid Interface Sci ; 652(Pt A): 500-507, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-37604061

Zinc-ion batteries (ZIBs) have attracted an increasing attention as a potential low-cost, environmentally friendliness, and high-safety energy storage system. Among them, transition metal vanadates with high oxidation state vanadium have great potential in ZIBs cathode research due to their high theoretical capacity. However, many vanadate particles still inevitably suffer from low ion mobility, low electrical conductivity and stability. Cation doping or compositing is an effective pathway capable of enhancing electrical conductivity. In this work, layered Cu-Fe2VO4 porous nanorods are obtained by introducing Cu2+ into MIL-88A(Fe) (a metal-organic framework; MIL stands for materials from Institute Lavoisier) and further ion-exchanged with NH4VO3, exhibiting excellent zinc storage properties as an cathode. The existence of oxygen vacancies and the change of electronic structure caused by Cu2+ substituting part of Fe2+ enhanced the conductivity and electron transfer rate. It delivers a reversible discharge capacity of 237 mAh/g at 0.3 A/g and a satisfactory high rate capacity of 126 mAh/g after 30 cycles at 5 A/g, and stable cycling performance (198 mAh/g after 1000 cycles at 1 A/g). Furthermore, the energy density can reached to 230.97 Wh kg-1 at 208.6 W kg-1. The assembled quasi-solid-state ZIBs maintain a high capacitance retention of 75% after 8000 cycles at 1 A/g.

11.
Front Plant Sci ; 14: 1163232, 2023.
Article En | MEDLINE | ID: mdl-37396641

Recently, a novel poplar mosaic disease caused by bean common mosaic virus (BCMV) was investigated in Populus alba var. pyramidalis in China. Symptom characteristics, physiological performance of the host, histopathology, genome sequences and vectors, and gene regulation at the transcriptional and posttranscriptional levels were analyzed and RT-qPCR (quantitative reverse transcription PCR) validation of expression was performed in our experiments. In this work, the mechanisms by which the BCMV pathogen impacts physiological performance and the molecular mechanisms of the poplar response to viral infection were reported. The results showed that BCMV infection decreased the chlorophyll content, inhibited the net photosynthesis rate (Pn) and stomatal conductance (Gs), and significantly changed chlorophyll fluorescence parameters in diseased leaves. Transcriptome analysis revealed that the expression of the majority of DEGs (differentially expressed genes) involved in the flavonoid biosynthesis pathway was promoted, but the expression of all or almost all DEGs associated with photosynthesis-antenna proteins and the photosynthesis pathway was inhibited in poplar leaves, suggesting that BCMV infection increased the accumulation of flavonoids but decreased photosynthesis in hosts. Gene set enrichment analysis (GSEA) illustrated that viral infection promoted the expression of genes involved in the defense response or plant-pathogen interaction. MicroRNA-seq analysis illustrated that 10 miRNA families were upregulated while 6 families were downregulated in diseased poplar leaves; moreover, miR156, the largest family with the most miRNA members and target genes, was only differentially upregulated in long-period disease (LD) poplar leaves. Integrated transcriptome and miRNA-seq analyses revealed 29 and 145 candidate miRNA-target gene pairs; however, only 17 and 76 pairs, accounting for 2.2% and 3.2% of all DEGs, were authentically negatively regulated in short-period disease (SD) and LD leaves, respectively. Interestingly, 4 miR156/SPL (squamosa promoter-binding-like protein) miRNA-target gene pairs were identified in LD leaves: the miR156 molecules were upregulated, but SPL genes were downregulated. In conclusion, BCMV infection significantly changed transcriptional and posttranscriptional gene expression in poplar leaves, inhibited photosynthesis, increased the accumulation of flavonoids, induced systematic mosaic symptoms, and decreased physiological performance in diseased poplar leaves. This study elucidated the fine-tuned regulation of poplar gene expression by BCMV; moreover, the results also suggested that miR156/SPL modules played important roles in the virus response and development of viral systematic symptoms in plant virus disease.

12.
iScience ; 26(7): 107185, 2023 Jul 21.
Article En | MEDLINE | ID: mdl-37404377

Although anti-PD-L1 therapy has been used in the clinical treatment of renal cell carcinoma (RCC), a proportion of patients are not sensitive to it, which may be attributed to the heterogeneity of PD-L1 expression. Here, we demonstrated that high TOPK (T-LAK cell-originated Protein Kinase) expression in RCC promoted PD-L1 expression by activating ERK2 and TGF-ß/Smad pathways. TOPK was positively correlated with PD-L1 expression levels in RCC. Meanwhile, TOPK significantly inhibited the infiltration and function of CD8+ T cells and promoted the immune escape of RCC. Moreover, inhibition of TOPK significantly enhanced CD8+ T cell infiltration, promoted CD8+ T cell activation, enhanced anti-PD-L1 therapeutic efficacy, and synergistically enhanced anti-RCC immune response. In conclusion, this study proposes a new PD-L1 regulatory mechanism that is expected to improve the effectiveness of immunotherapy for RCC.

13.
Front Microbiol ; 14: 1206038, 2023.
Article En | MEDLINE | ID: mdl-37426000

Introduction: Duck circovirus (DuCV) infection is currently recognized as an important immunosuppressive disease in commercial duck flocks in China. Specific antibodies against DuCV viral proteins are required to improve diagnostic assays and understand the pathogenesis of DuCV infection. Methods and results: To generate DuCV-specific monoclonal antibodies (mAbs), a recombinant DuCV capsid protein without the first 36 N-terminal amino acids was produced in Escherichia coli. Using the recombinant protein as an immunogen, a mAb was developed that reacted specifically with the DuCV capsid protein, expressed in E. coli and baculovirus systems. Using homology modeling and recombinant truncated capsid proteins, the antibody-binding epitope was mapped within the region of 144IDKDGQIV151, which is exposed to solvent in the virion capsid model structure. To assess the applicability of the mAb to probe the native virus antigen, the murine macrophage cell line RAW267.4 was tested for DuCV replicative permissiveness. Immunofluorescence and Western blot analysis revealed that the mAb recognized the virus in infected cells and the viral antigen in tissue samples collected from clinically infected ducks. Discussion: This mAb, combined with the in vitro culturing method, would have widespread applications in diagnosing and investigating DuCV pathogenesis.

14.
Cell Death Dis ; 14(7): 445, 2023 07 17.
Article En | MEDLINE | ID: mdl-37460470

Breast cancer is the most common malignant cancer in women worldwide. Cancer metastasis is the major cause of cancer-related deaths. BCKDK is associated with various diseases, including proliferation, migration, and invasion in multiple types of human cancers. However, the relevance of BCKDK to the development and progression of breast cancers and its function is unclear. This study found that BCKDK was overexpressed in breast cancer, associated with poor prognosis, and implicated in tumor metastasis. The downregulation of BCKDK expression inhibited the migration of human breast cancer cells in vitro and diminished lung metastasis in vivo. BCKDK perturbed the cadherin-catenin complex at the adherens junctions (AJs) and assembled focal adhesions (FAs) onto the extracellular matrix, thereby promoting the directed migration of breast cancer cells. We observed that BCKDK acted as a conserved regulator of the ubiquitination of cytoskeletal protein talin1 and the activation of the FAK/MAPK pathway. Further studies revealed that BCKDK inhibited the binding of talin1 to E3 ubiquitin ligase-TRIM21, leading to the decreased ubiquitination/degradation of talin1. In conclusion, identifying BCKDK as a biomarker for breast cancer metastasis facilitated further research on diagnostic biomarkers. Elucidating the mechanism by which BCKDK exerted its biological effect could provide a new theoretical basis for developing new markers for breast cancer metastasis and contribute to developing new therapies for the clinical treatment of breast cancer patients.


Breast Neoplasms , Lung Neoplasms , Female , Humans , Breast Neoplasms/pathology , Cell Adhesion , Cell Line, Tumor , Cell Movement , Focal Adhesions/metabolism , Lung Neoplasms/secondary , Neoplasm Metastasis/pathology , Talin
15.
J Hematol Oncol ; 16(1): 65, 2023 06 23.
Article En | MEDLINE | ID: mdl-37353849

Hematologic malignancies (HMs) pose a serious threat to patients' health and life, and the five-year overall survival of HMs remains low. The lack of understanding of the pathogenesis and the complex clinical symptoms brings immense challenges to the diagnosis and treatment of HMs. Traditional therapeutic strategies for HMs include radiotherapy, chemotherapy, targeted therapy and hematopoietic stem cell transplantation. Although immunotherapy and cell therapy have made considerable progress in the last decade, nearly half of patients still relapse or suffer from drug resistance. Recently, studies have emerged that nanomaterials, nanotechnology and nanomedicine show great promise in cancer therapy by enhancing drug targeting, reducing toxicity and side effects and boosting the immune response to promote durable immunological memory. In this review, we summarized the strategies of recently developed nanomaterials, nanotechnology and nanomedicines against HMs and then proposed emerging strategies for the future designment of nanomedicines to treat HMs based on urgent clinical needs and technological progress.


Hematologic Neoplasms , Nanostructures , Neoplasms , Humans , Nanomedicine , Neoplasm Recurrence, Local/drug therapy , Nanotechnology , Nanostructures/therapeutic use , Drug Delivery Systems , Hematologic Neoplasms/drug therapy , Neoplasms/therapy
16.
Nanomaterials (Basel) ; 13(10)2023 May 09.
Article En | MEDLINE | ID: mdl-37242005

During recent years, microrobots have drawn extensive attention owing to their good controllability and great potential in biomedicine. Powered by external physical fields or chemical reactions, these untethered microdevices are promising candidates for in vivo complex tasks, such as targeted delivery, imaging and sensing, tissue engineering, hyperthermia, and assisted fertilization, among others. However, in clinical use, the biodegradability of microrobots is significant for avoiding toxic residue in the human body. The selection of biodegradable materials and the corresponding in vivo environment needed for degradation are increasingly receiving attention in this regard. This review aims at analyzing different types of biodegradable microrobots by critically discussing their advantages and limitations. The chemical degradation mechanisms behind biodegradable microrobots and their typical applications are also thoroughly investigated. Furthermore, we examine their feasibility and deal with the in vivo suitability of different biodegradable microrobots in terms of their degradation mechanisms; pathological environments; and corresponding biomedical applications, especially targeted delivery. Ultimately, we highlight the prevailing obstacles and perspective solutions, ranging from their manufacturing methods, control of movement, and degradation rate to insufficient and limited in vivo tests, that could be of benefit to forthcoming clinical applications.

17.
Crit Rev Food Sci Nutr ; : 1-20, 2023 May 19.
Article En | MEDLINE | ID: mdl-37203992

Plant-based yogurt has several advantages over traditional yogurt, such as being lactose and cholesterol-free, making it more suitable for individuals with cardiovascular and gastrointestinal diseases. The formation mechanism of the gel in plant-based yogurt needs more attention because it is associated with the gel properties of yogurt. Most plant proteins, except for soybean protein, have poor functional abilities, such as solubility and gelling properties, which limits their application in most food items. This often results in undesirable mechanical quality of plant-based products, particularly plant-based yogurt gels, including grainy texture, high syneresis, and poor consistency. In this review, we summarize the common formation mechanism of plant-based yogurt gel. The main ingredients, including protein and non-protein components, as well as their interactions involved in the gel are discussed to understand their effects on gel formation and properties. The main interventions and their effects on gel properties are highlighted, which have been shown to improve the properties of plant-based yogurt gels effectively. Each type of intervention method may exhibit desirable advantages in different processes. This review provides new opportunities and theoretical guidance for efficiently improving the gel properties of plant-based yogurt for future consumption.


Protein type and content plays an important role in plant yogurt gel formationCarbohydrate and fat affect the formation and properties of plant-based yogurt gelAppropriate intervention promotes the formation and property of plant yogurtHydrophobic interaction is the main force for the stability of the gel network.

18.
Chemosphere ; 335: 138994, 2023 Sep.
Article En | MEDLINE | ID: mdl-37211168

The Fe(III) to Fe(II) process limits the rate of the electro-Fenton system. In this study, MIL-101(Fe) derived porous carbon skeleton-coated FeCo bimetallic catalyst Fe4/Co@PC-700 was prepared as a heterogeneous electro-Fenton (EF) catalytic process. The experimental results showed its good performance in catalytic removal of antibiotic contaminants, the rate constant of tetracycline (TC) degradation catalyzed by Fe4/Co@PC-700 was 8.93 times higher than that of Fe@PC-700 under the pH conditions of raw water (pH = 5.86), exhibited good removal of TC, oxytetracycline (OTC), hygromycin (CTC), chloramphenicol (CAP) and ciprofloxacin (CIP). It was shown that the introduction of Co promoted more Fe0 production, allowing the material to exhibit faster Fe(III)/Fe(II) cycling rates. 1O2 and high-priced metal oxygen species were identified as the main active species of the system, in addition to the analysis of possible degradation pathways and toxicity of intermediates of TC. Finally, the stability and adaptability of Fe4/Co@PC-700 and EF systems to different water matrices were evaluated, showing that Fe4/Co@PC-700 was easy to recover and could be applied to different water matrices. This study provides a reference for the design and system application of heterogeneous EF catalysts.


Anti-Bacterial Agents , Water Pollutants, Chemical , Oxidation-Reduction , Iron , Electrons , Hydrogen Peroxide , Tetracycline , Water , Ferrous Compounds , Catalysis , Water Pollutants, Chemical/analysis
19.
Front Public Health ; 11: 1147107, 2023.
Article En | MEDLINE | ID: mdl-37113175

Equity in the inheritance culture of family property is an important component of humanistic health in modern living environments. The inheritance of property under Chinese traditional family culture is the material basis for the continuation of family and clan. This study demonstrates the equity component embedded in traditional family inheritance culture and further studies of the healthy human settlements environment. Based on the theory of "equal share for all sons" in ancient China and the "equity" and "justice" that are of modern significance, this paper analyzes the family division culture of individual traditional housing and the corresponding impact indices of family division equity. Taking Renhe Village, a typical local residential building of the middle and late Qing Dynasty as the research object, this study built a spatial syntax data model and 3D simulation technology for the simulation analysis of space and climate. The results show that Renhe Village meets the requirements of the equity evaluation system of housing property rights distribution in terms of the natural unit indicator (quantity, lighting, ventilation) and the overall spatial indicator (privacy, centrality, convenience). In other words, equity does not mean an absolute average share, but an equity culture formed after six evaluation indices under the subdivision of two indicators are balanced. Based on the above, an equity system model of housing property rights distribution was established, and the weight of the ancients' attention to the housing distribution standard was explored. It is further found that the ancients attached more importance to light among the natural unit indicators, and attached the most importance to centrality in the overall spatial indicators. These findings provide new ideas for understanding the equity of property inheritance under Chinese traditional family culture. They also provide quantifiable criteria for the distribution of modern rural housing and social security housing, and ultimately provide a reference for the humanistic public health of the modern living environment.


Environment , Housing , Humans , China , Public Health
20.
J Zhejiang Univ Sci B ; 24(4): 366-370, 2023 Apr 15.
Article En, Zh | MEDLINE | ID: mdl-37056213

Glaucoma is one of the most common optic neuropathies, featuring progressive retinal ganglion cell damage and visual field loss (Tham et al., 2014; Xu et al., 2020). Currently, the only effective treatment for this condition is the reduction of intraocular pressure (IOP) (Palmberg, 2001; Heijl et al., 2002). Canaloplasty is a proven bleb-independent surgery with good efficacy and safety profiles in primary open-angle glaucoma (POAG) (Golaszewska et al., 2021). However, early transient postoperative IOP elevation has been reported in up to 30% of cases (Riva et al., 2019), similar to that commonly observed in other internal drainage glaucoma surgeries such as implantation using iStent (0%-21.0%), CyPass (10.8%), and Hydrus (4.8%-6.5%) (Lavia et al., 2017). This complication may be a predictor of poor reserve in the outflow system and is potentially associated with surgical failure. Nonetheless, the exact pathophysiology of glaucoma remains unknown, and studies clarifying the risk factors for postoperative IOP elevation have been scarce.


Glaucoma, Open-Angle , Intraocular Pressure , Humans , Glaucoma, Open-Angle/surgery , Incidence , Treatment Outcome , Risk Factors
...