Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 45
1.
J Neurol ; 2024 Jun 19.
Article En | MEDLINE | ID: mdl-38896262

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. In recent years, continuous discoveries of new ALS-causing genes have enhanced the understanding of the genotype-phenotype relationship in ALS, aiding in disease progression prediction and providing a more comprehensive basis for genetic diagnosis. METHODS: A total of 1672 ALS patients who visited the Neurology Department of Peking Union Medical College Hospital between January 2014 and December 2022 and met the revised El Escorial diagnostic criteria were included. Clinical data were collected, whole exome sequencing and dynamic mutation screening of the C9ORF72 gene were performed, and the clinical phenotypes and genotypes of the patients were analyzed. RESULTS: The average age of onset for the 1672 ALS patients was 52.6 ± 11.2 years (range 17-85 years), with a median disease duration of 14 months at the time of visit (interquartile range 9-24 months, range 2-204 months). The male to female ratio was 833:839. The patients included 297 (17.8%) with bulbar onset, 198 (11.8%) with flail arm/leg syndrome, 89 (5.3%) with familial ALS, and 52 (3.1%) with concomitant frontotemporal dementia (FTD). Pathogenic variants associated with ALS were detected in 175 patients (10.5% of the cohort), with the most common mutations being SOD1, FUS, and ANXA11. Among patients with familial ALS, 56.2% (50/89) had genetic mutations, compared to 7.9% (125/1583) in sporadic ALS cases. From the perspective of phenotype-genotype correlation, (1) In ALS-FTD patients, the most common genetic mutations were ANXA11 and C9ORF72 repeat expansions. Patients with flail arm/leg syndrome more frequently carried mutations in SOD1, ANXA11, and hnRNPA1; (2) Despite genetic heterogeneity, it was observed that mutations in FUS and NEK1 were more common in males, and patients with FUS mutations had a younger age of onset; mutations in SOD1 and SQSTM1 were more likely to present with lower limb onset. CONCLUSION: This study provides comprehensive data on the genetic characteristics of ALS patients in China through large-scale clinical data and genetic analysis of 1672 cases. Differences in age of onset, onset site, and clinical phenotype among ALS patients with different genotypes can help clinicians better predict disease progression and provide a basis for precise diagnosis and individualized treatment.

2.
Neurodegener Dis ; 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38830342

INTRODUCTION: There were limited observation studies on the association between tea intake and amyotrophic lateral sclerosis (ALS) with inconsistent results. This study aimed to determine the potential relationship between tea intake and ALS by a two-sample Mendelian randomization (MR) analysis. METHODS: We identified 41 independent SNPs strongly associated with tea intake from 448,060 participants of European ancestry in the UK Biobank. Summary statistics associated with ALS were also obtained from the UK Biobank including 20,806 cases and 59,804 controls. The study used MR analysis to assess the potential effect of tea consumption on ALS, and several methods such as sensitivity analyses and MR-pleiotropy residual sum and outlier (MR-PRESSO) method were performed to further test the robustness of our findings. RESULTS: The F statistic was more than 10 in each SNP, which meets the first assumption for the MR study. Using the Inverse variance weighted (IVW) MR analysis as the primary method, we found that a one standard deviation increase in tea consumption was associated with a 14% lower risk of ALS (OR=0.86, 95%CI=0.74-0.99, P<0.05). Sensitivity analyses detected no potential pleiotropy and directional heterogeneity. CONCLUSION: Our MR study supported the potential relationship between tea intake and ALS risk, suggesting the potential advantages of tea intake for preventing ALS. Future clinical trials and research are needed to further validate the results and elucidate possible mechanisms.

3.
Cell Res ; 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38834762

Coupling distinct enzymatic effectors emerges as an efficient strategy for defense against phage infection in bacterial immune responses, such as the widely studied nuclease and cyclase activities in the type III CRISPR-Cas system. However, concerted enzymatic activities in other bacterial defense systems are poorly understood. Here, we biochemically and structurally characterize a two-component defense system DUF4297-HerA, demonstrating that DUF4297-HerA confers resistance against phage infection by cooperatively cleaving dsDNA and hydrolyzing ATP. DUF4297 alone forms a dimer, and HerA alone exists as a nonplanar split spiral hexamer, both of which exhibit extremely low enzymatic activity. Interestingly, DUF4297 and HerA assemble into an approximately 1 MDa supramolecular complex, where two layers of DUF4297 (6 DUF4297 molecules per layer) linked via inter-layer dimerization of neighboring DUF4297 molecules are stacked on top of the HerA hexamer. Importantly, the complex assembly promotes dimerization of DUF4297 molecules in the upper layer and enables a transition of HerA from a nonplanar hexamer to a planar hexamer, thus activating their respective enzymatic activities to abrogate phage infection. Together, our findings not only characterize a novel dual-enzyme anti-phage defense system, but also reveal a unique activation mechanism by cooperative complex assembly in bacterial immunity.

4.
Asian J Psychiatr ; 97: 104077, 2024 Jul.
Article En | MEDLINE | ID: mdl-38781692

BACKGROUND: Working memory (WM) and attention are essential cognitive processes, and their interplay is critical for efficient information processing. Schizophrenia often exhibits deficits in both WM and attention, contributing to function impairments. This study aims to investigate the neural mechanisms underlying the relationship between WM impairments and attention deficits in schizophrenia. METHODS: We assessed the functional-MRI scans of the 184 schizophrenias with different attention deficits (mild=133; severe=51) and 146 controls during an N-back WM task. We explored their whole-brain functional connectome profile by adopting the voxel-wise degree centrality (DC). Linear analysis was conducted to explore the associations among attention deficit severity, altered DC, and WM performance in patients. RESULTS: We observed that all patients showed decreased DC in the pre-supplementary area (pre-SMA), and posterior cerebellum compared to the controls, and schizophrenia patients with mild attention deficits showed decreased DC in the supramarginal gyrus, insula, and precuneus compared with the other 2 groups. DC values of the detected brain regions displayed U-shaped or inverted U-shaped curves, rather than a linear pattern, in response to increasing attention deficits. The linear analysis indicated that altered DC of the pre-SMA can modulate the relationship between attention deficits and WM performance. CONCLUSION: The U-shaped or inverted U-shaped pattern in response to increasing attention deficits may reflect a compensation mechanism in schizophrenia with mild attention deficits. This notion is also supported by the linear analysis that schizophrenia patients with mild attention deficits can improve their WM performance by increasing the DC value of the pre-SMA.


Connectome , Magnetic Resonance Imaging , Memory, Short-Term , Schizophrenia , Humans , Memory, Short-Term/physiology , Schizophrenia/physiopathology , Schizophrenia/diagnostic imaging , Schizophrenia/complications , Adult , Male , Female , Attention/physiology , Young Adult , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/etiology
5.
mBio ; 15(4): e0308623, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38411066

Type II topoisomerase utilizes the energy from ATP hydrolysis to alter DNA topology during genome replication and transcription. The ATPase domain of this enzyme is required for ATP hydrolysis and plays a crucial role in coupling DNA binding and ATP turnover with the DNA strand passage reaction. The African swine fever virus (ASFV) specifically encodes a topoisomerase II (topo II), which is critical for viral replication and an attractive target for antiviral development. Here, we present a high-resolution crystal structure of the ASFV topo II ATPase domain complexed with the substrate analog AMPPNP. Structural comparison reveals that the ASFV topo II ATPase domain shares a conserved overall structure with its homologs from eukaryotes and prokaryotes but also has three characteristic regions, including the intra-molecular interface formed by the ATP-lid and QTK loop as well as helix α9, the K-loop in the transducer domain, and the antennae-like α-helix at the ATP binding domain. Mutating the key residues within these three regions impairs or abolishes the basal and DNA-stimulated ATPase activities and reduces or eliminates the relaxation activity of the holoenzyme. Our data indicate that all three regions are functionally important for the ATPase and relaxation activities and strongly suggest that ATP hydrolysis, DNA binding, and strand passage are highly coupled and managed by the allosteric coordination of multiple domains of the type II topoisomerase. Moreover, we find a promising druggable pocket in the dimeric interface of the ASFV topo II ATPase domain, which will benefit future anti-ASFV drug development. IMPORTANCE: The ATPase domain of type II topoisomerase provides energy by hydrolyzing ATP and coordinates with the DNA-binding/cleavage domain to drive and control DNA transport. The precise molecular mechanisms of how these domains respond to DNA binding and ATP hydrolysis signals and communicate with each other remain elusive. We determine the first high-resolution crystal structure of the ATPase domain of African swine fever virus (ASFV) topo II in complex with AMPPNP and biochemically investigate its function in ATPase and DNA relaxation activities. Importantly, we find that mutations at three characteristic regions of the ASFV ATPase domain produce parallel effects on the basal/DNA-stimulated ATPase and relaxation activities, implying the tight coupling of the ATP hydrolysis and strand passage process. Therefore, our data provide important implications for understanding the strand passage mechanism of the type II topoisomerase and the structural basis for developing ATPase domain-targeting antivirals against ASFV.


African Swine Fever Virus , Swine , Animals , African Swine Fever Virus/genetics , Adenylyl Imidodiphosphate/pharmacology , DNA Topoisomerases, Type II/genetics , DNA/metabolism , Adenosine Triphosphatases/metabolism
6.
Braz J Psychiatry ; 46: e20233322, 2024.
Article En | MEDLINE | ID: mdl-38219215

OBJECTIVE: The advancement of neuroimaging and genetic research has revealed the presence of morphological abnormalities and numerous risk genes, along with their associations. We aimed to estimate magnetic resonance imaging-derived cortical thickness across multiple brain regions. METHODS: The cortical thickness of 129 schizophrenia patients, 42 of their unaffected siblings, and 112 healthy controls was measured and the candidate genes were sequenced. Comparisons were made of cortical thickness (including 68 regions of the Desikan-Killiany Atlas) and genetic variants (in 108 risk genes for schizophrenia) among the three groups, and correlation analyses were performed regarding cortical thickness, clinical symptoms, cognitive tests (such as the N-back task and the logical memory test), and genetic variants. RESULTS: Schizophrenia patients had significantly thinner bilateral frontal, temporal, and parietal gyri than healthy controls and unaffected siblings. Association analyses in target genes showed that four single nucleotide variants (SNVs) were significantly associated with schizophrenia, including thioredoxin-related transmembrane protein 2-catenin, cadherin-associated protein, delta 1 (SNV20673) (positive false discovery rate [PFDR] = 0.008) and centromere protein M (rs35542507, rs41277477, rs73165153) (PFDR = 0.030). Additionally, cortical thickness in the right pars triangularis was lower in carriers of the SNV20673 variant than in non-carriers (PFDR = 0.048). Finally, a positive correlation was found between right pars triangularis cortical thickness and logical memory in schizophrenia patients (r = 0.199, p = 0.032). CONCLUSIONS: This study identified regional morphological abnormalities in schizophrenia, including the right homologue of Broca's area, which was associated with a risk variant that affected delta-1 catenin and logical memory. These findings suggest a potential association between candidate gene loci, cortical thickness, and schizophrenia.


Magnetic Resonance Imaging , Polymorphism, Single Nucleotide , Schizophrenia , Siblings , Humans , Schizophrenia/genetics , Schizophrenia/diagnostic imaging , Schizophrenia/pathology , Male , Female , Adult , Polymorphism, Single Nucleotide/genetics , Case-Control Studies , Genetic Predisposition to Disease/genetics , Delta Catenin , Catenins/genetics , Brain Cortical Thickness , Young Adult , Cerebral Cortex/pathology , Cerebral Cortex/diagnostic imaging , Membrane Proteins/genetics , Middle Aged , Genotype
7.
Sleep Med ; 114: 167-177, 2024 Feb.
Article En | MEDLINE | ID: mdl-38211375

STUDY OBJECTIVES: Coronavirus disease 2019 (COVID-19) can lead to insomnia. However, associations between COVID-19-caused insomnia and white matter (WM) changes are unclear. METHODS: All subjects had ever been infected with COVID-19. We investigated 89 insomniacs (29 chronic insomniacs, 33 new-onset insomniacs, 27 aggravated insomniacs) and 44 matched non-insomnia participants. Neurite orientation dispersion and density imaging (NODDI) was performed to identify micro-structural alterations of WM, and twelve scales related to sleeping status, memory, attention, learning, emotional status, and executive functions were used. Then, correlations between insomnia/cognitive-behavioral functions and diffusion metrics were tested. To eliminate influence of pre-COVID-19 factors on insomnia, causal relationships between COVID-19 and WM changes were validated by Mendelian randomization (MR) analysis. The significant brain regions of COVID-19-caused insomnia were intersected results of tract-based spatial statistics (TBSS) and MR analyses. RESULTS: Compared to non-insomnia group, insomnia group and its subgroups including post-COVID-19 aggravated or unchanged chronic insomnia group had higher orientation dispersion index (ODI) in extensive brain regions. The left superior longitudinal fasciculus (SLF), left posterior thalamic radiation (PTR), and left cingulate gyrus (CG) were specific brain regions in COVID-19-induced insomnia aggravation. After Bonferroni correction, partial correlation analyses within insomnia group showed that ODI in left SLF was positively correlated with Pittsburgh sleep quality index (PSQI), insomnia severity index (ISI), and self-rating anxiety scale (SAS) scores; ODI in the left PTR was positively correlated with PSQI and ISI scores. CONCLUSIONS: This study is a continuation of our previous research, which provided potential biomarkers for COVID-19-induced insomnia.


COVID-19 , Sleep Initiation and Maintenance Disorders , White Matter , Humans , White Matter/diagnostic imaging , Sleep Initiation and Maintenance Disorders/diagnostic imaging , Sleep Initiation and Maintenance Disorders/epidemiology , Pandemics , Mendelian Randomization Analysis , Diffusion Tensor Imaging/methods , Brain/diagnostic imaging , Neuroimaging
8.
Chem Sci ; 14(44): 12606-12614, 2023 Nov 15.
Article En | MEDLINE | ID: mdl-38020389

T-cell protein tyrosine phosphatase (TC-PTP), encoded by PTPN2, has emerged as a promising target for cancer immunotherapy. TC-PTP deletion in B16 melanoma cells promotes tumor cell antigen presentation, while loss of TC-PTP in T-cells enhances T-cell receptor (TCR) signaling and stimulates cell proliferation and activation. Therefore, there is keen interest in developing TC-PTP inhibitors as novel immunotherapeutic agents. Through rational design and systematic screening, we discovered the first highly potent and selective TC-PTP PROTAC degrader, TP1L, which induces degradation of TC-PTP in multiple cell lines with low nanomolar DC50s and >110-fold selectivity over the closely related PTP1B. TP1L elevates the phosphorylation level of TC-PTP substrates including pSTAT1 and pJAK1, while pJAK2, the substrate of PTP1B, is unaffected by the TC-PTP degrader. TP1L also intensifies interferon gamma (IFN-γ) signaling and increases MHC-I expression. In Jurkat cells, TP1L activates TCR signaling through increased phosphorylation of LCK. Furthermore, in a CAR-T cell and KB tumor cell co-culture model, TP1L enhances CAR-T cell mediated tumor killing efficacy through activation of the CAR-T cells. Thus, we surmise that TP1L not only provides a unique opportunity for in-depth interrogation of TC-PTP biology but also serves as an excellent starting point for the development of novel immunotherapeutic agents targeting TC-PTP.

9.
mBio ; 14(5): e0122823, 2023 Oct 31.
Article En | MEDLINE | ID: mdl-37610250

IMPORTANCE: African swine fever virus (ASFV) is a highly contagious virus that causes lethal hemorrhagic diseases known as African swine fever (ASF) with a case fatality rate of 100%. There is an urgent need to develop anti-ASFV drugs. We determine the first high-resolution structures of viral topoisomerase ASFV P1192R in both the closed and open C-gate forms. P1192R shows a similar overall architecture with eukaryotic and prokaryotic type II topoisomerases, which have been successful targets of many antimicrobials and anticancer drugs, with the most similarity to yeast topo II. P1192R also exhibits differences in the details of active site configuration, which are important to enzyme activity. These two structures offer useful structural information for antiviral drug design and provide structural evidence to support that eukaryotic type IIA topoisomerase likely originated from horizontal gene transfer from the virus.


African Swine Fever Virus , African Swine Fever , Swine , Animals , Cryoelectron Microscopy , DNA Topoisomerases, Type II/genetics , Catalytic Domain , Saccharomyces cerevisiae/metabolism
10.
Materials (Basel) ; 16(15)2023 Jul 31.
Article En | MEDLINE | ID: mdl-37570076

Molecular dynamics is a method of studying microstructure and properties by calculating and simulating the movement and interaction of molecules. The molecular dynamics simulation method has become an important method for studying the structural and dynamic characteristics of slag systems and can make up for the shortcomings of existing detection methods and experiments. Firstly, this paper analyzes the development process and application fields of molecular dynamics, summarizes the general simulation steps and software algorithms of molecular dynamics simulation methods, and discusses the advantages and disadvantages of the algorithms and the common functions of the software. Secondly, the research status and application progress of molecular dynamics simulation methods in the study of phosphate, silicate, aluminate and aluminosilicate are introduced. On this basis, a method of combining molecular dynamics simulation with laboratory experiments is proposed, which will help obtain more accurate simulation results. This review provides theoretical guidance and a technical framework for the effective analysis of the microstructure of different slag systems via molecular dynamics, so as to finally meet the needs of iron and steel enterprises in producing high-quality steel grades.

11.
Psychiatry Res ; 326: 115319, 2023 08.
Article En | MEDLINE | ID: mdl-37352748

Language-related symptoms, such as disorganized, impoverished speech and communicative behaviors, are one of the core features of schizophrenia. These features most strongly correlate with cognitive deficits and polygenic risk among various symptom dimensions of schizophrenia. Nevertheless, unaffected siblings with genetic high-risk fail to show consistent deficits in language network (LN), indicating that either (1) polygenic risk has no notable effect on LN and/or (2) siblings show compensatory changes in opposing direction to patients. To answer this question, we related polygenic risk scores (PRS) to the region-level, tract-level, and systems-level structure (cortical thickness and fiber connectivity) of LN in 182 patients, 48 unaffected siblings and 135 healthy controls. We also studied the relationships between symptoms, language-related cognition, social functioning and LN structure. We observed a significantly lower thickness in LN (especially the Broca's, Wernicke's area and their right homologues) in patients. Siblings had a distinctly higher thickness in parts of the LN and a more pronounced small-world-like structural integration within the LN. Patients with reduced LN thickness had higher PRS, more disorganization and impoverished speech with lower language-related cognition and social functioning. We conclude that the genetic susceptibility and putative compensatory changes for schizophrenia operate, in part, via key regions in the Language Network.


Schizophrenia , Humans , Schizophrenia/genetics , Siblings , Brain Mapping/methods , Language , Cognition , Magnetic Resonance Imaging/methods
12.
Sci Rep ; 13(1): 7863, 2023 05 15.
Article En | MEDLINE | ID: mdl-37188868

Provide reference data on which EQ-5D-3L value set should be used with Chinese patients with chronic kidney disease (CKD); assess differences in health-related quality of life (HRQoL) based on the use of the Chinese (from 2014 and 2018), the UK, and the Japanese value sets; and examine differences in utility scores for key preventive influencing factors. Data from 373 patients with CKD recruited for a cross-sectional multicenter HRQoL survey were used. Differences among utility scores based on the four value sets were determined using Wilcoxon signed rank test. Intra-class correlation coefficient (ICCs) and Bland-Altman plots were used to evaluate consistency among utility scores and Tobit regression model was used to analyze the influencing factors of utility scores. There were significant differences between utility scores based on the four value sets, with the Chinese 2018 value set yielding the highest utility (0.957). ICCs between the value sets for China 2014, the UK, and Japan were all greater than 0.9, whereas the ICCs between the value sets for China 2018 and the other three were all less than 0.7. The influencing factors of utility scores included CKD stages, age, education level, city, and primary renal disease. This was the first study to report findings on the health utility of patients with CKD based on the two Chinese EQ-5D-3L value sets. Overall, the Chinese value sets performed similarly to the other two value sets (UK and Japan) commonly used in the Chinese population; however, value sets for different countries were not interchangeable. In Chinese contexts, the two value sets for China were recommended and the choice of which one should consider whether the value set of choice was established with a sample that is consistent with the targeted population.


Quality of Life , Renal Insufficiency, Chronic , Humans , Asian People , Cross-Sectional Studies , Health Status , Surveys and Questionnaires , China
13.
PeerJ ; 11: e15322, 2023.
Article En | MEDLINE | ID: mdl-37187516

Background: Elaeocarpaceae is a vital family in tropical and subtropical forests. Compared with the important position of Elaeocarpaceae species in forest ecosystem and the concern of medicinal value, the most research on Elaeocarpaceae are classification and taxonomy. Molecular systematics has corrected the morphological misjudgment, and it belongs to Oxalidales. Phylogenetic and divergence time estimates of Elaeocarpaceae is mostly constructed by using chloroplast gene fragments. At present, although there are reports on the chloroplast structure of Elaeocarpaceae, a comprehensive analysis of the chloroplast structure of Elaeocarpaceae is lacking. Methods: To understand the variation in chloroplast sequence size and structure in Elaeocarpaceae, the chloroplast genomes of nine species were sequenced using the Illumina HiSeq 2500 platform and further assembled and annotated with Elaeocarpus japonicus and Sloanea sinensis (family Elaeocarpaceae) as references. A phylogenomic tree was constructed based on the complete chloroplast genomes of the 11 species representing five genera of Elaeocarpaceae. Chloroplast genome characteristics were examined by using Circoletto and IRscope software. Results: The results revealed the following: (a) The 11 sequenced chloroplast genomes ranged in size from 157,546 to 159,400 bp. (b) The chloroplast genomes of Elaeocarpus, Sloanea, Crinodendron and Vallea lacked the rpl32 gene in the small single-copy (SSC) region. The large single-copy (LSC) region of the chloroplast genomes lacked the ndhK gene in Elaeocarpus, Vallea stipularis, and Aristotelia fruticosa. The LSC region of the chloroplast genomes lacked the infA gene in genus Elaeocarpus and Crinodendron patagua. (c) Through inverted repeat (IR) expansion and contraction analysis, a significant difference was found between the LSC/IRB and IRA/LSC boundaries among these species. Rps3 was detected in the neighboring regions of the LSC and IRb regions in Elaeocarpus. (d) Phylogenomic analysis revealed that the genus Elaeocarpus is closely related to Crinodendron patagua on an independent branch and Aristotelia fruticosa is closely related to Vallea stipularis, forming a clade with the genus Sloanea. Structural comparisons showed that Elaeocarpaceae diverged at 60 Mya, the genus Elaeocarpus diverged 53 Mya and that the genus Sloanea diverged 0.44 Mya. These results provide new insight into the evolution of the Elaeocarpaceae.


Elaeocarpaceae , Genome, Chloroplast , Phylogeny , Genome, Chloroplast/genetics , Elaeocarpaceae/genetics , Ecosystem , Chloroplasts/genetics
14.
EBioMedicine ; 90: 104543, 2023 Apr.
Article En | MEDLINE | ID: mdl-37002989

BACKGROUND: Some observational studies found that dyslipidaemia is a risk factor for non-alcoholic fatty liver disease (NAFLD), and lipid-lowering drugs may lower NAFLD risk. However, it remains unclear whether dyslipidaemia is causative for NAFLD. This Mendelian randomisation (MR) study aimed to explore the causal role of lipid traits in NAFLD and evaluate the potential effect of lipid-lowering drug targets on NAFLD. METHODS: Genetic variants associated with lipid traits and variants of genes encoding lipid-lowering drug targets were extracted from the Global Lipids Genetics Consortium genome-wide association study (GWAS). Summary statistics for NAFLD were obtained from two independent GWAS datasets. Lipid-lowering drug targets that reached significance were further tested using expression quantitative trait loci data in relevant tissues. Colocalisation and mediation analyses were performed to validate the robustness of the results and explore potential mediators. FINDINGS: No significant effect of lipid traits and eight lipid-lowering drug targets on NAFLD risk was found. Genetic mimicry of lipoprotein lipase (LPL) enhancement was associated with lower NAFLD risks in two independent datasets (OR1 = 0.60 [95% CI 0.50-0.72], p1 = 2.07 × 10-8; OR2 = 0.57 [95% CI 0.39-0.82], p2 = 3.00 × 10-3). A significant MR association (OR = 0.71 [95% CI, 0.58-0.87], p = 1.20 × 10-3) and strong colocalisation association (PP.H4 = 0.85) with NAFLD were observed for LPL expression in subcutaneous adipose tissue. Fasting insulin and type 2 diabetes mediated 7.40% and 9.15%, respectively, of the total effect of LPL on NAFLD risk. INTERPRETATION: Our findings do not support dyslipidaemia as a causal factor for NAFLD. Among nine lipid-lowering drug targets, LPL is a promising candidate drug target in NAFLD. The mechanism of action of LPL in NAFLD may be independent of its lipid-lowering effects. FUNDING: Capital's Funds for Health Improvement and Research (2022-4-4037). CAMS Innovation Fund for Medical Sciences (CIFMS, grant number: 2021-I2M-C&T-A-010).


Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/genetics , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Genome-Wide Association Study/methods , Risk Factors , Lipids , Mendelian Randomization Analysis/methods , Polymorphism, Single Nucleotide
15.
Plant Divers ; 45(2): 185-198, 2023 Mar.
Article En | MEDLINE | ID: mdl-37069923

Two new species of Polyalthiopsis (Annonaceae), P. nigra Y.H. Tan & Bin Yang from Guangxi and Yunnan Provinces and P. xui Y.H. Tan & Bin Yang from Yunnan Province, are described and illustrated. P. nigra is morphologically similar to P. chinensis in having narrowly elliptic-oblong, lemon to yellowish green petals, but differs by having obovoid monocarps, a higher number of leaf secondary veins, leaf blades usually widest above the middle, and a lower ratio of leaf blade length to width. P. xui is morphologically similar to P. floribunda in having axillary inflorescences, 1-3(-4) flowers, elliptic leaves, and elliptic-ovate petals, but differs in the numbers of carpels per flower and ovules per carpel. The molecular phylogenetic analysis using five plastid markers confirm that the two new species belong to the genus Polyalthiopsis and show clear interspecific divergences between P. nigra and P. xui and between them and other species in the genus. Detailed descriptions, colored photographs, and habitat and distribution data for the two new species are provided. In addition, the fruit morphology of P. chinensis is described for the first time, based on living collections. Geographical distributions and a diagnostic key for all Polyalthiopsis species are also presented.

16.
Brain Behav ; 13(5): e2997, 2023 05.
Article En | MEDLINE | ID: mdl-37070132

BACKGROUND: Spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS) were two major motor neuron diseases with similar symptoms and poor outcomes. This study aimed to identify potential biomarkers in disease monitoring and differential diagnosis of adult SMA patients with sporadic ALS patients. METHODS: This was a pilot study with ten adult SMA patients and ten ALS patients consecutively enrolled during hospitalization. Serum and cerebrospinal fluid (CSF) samples were collected for assessment of neurofilament light (NFL) and phosphorylated neurofilament heavy chain (pNFH). Serum creatine kinase (CK) and creatinine (Cr) were also compared between groups. The receiver operating characteristic (ROC) curves were used to identify differentiated values among ALS and SMA patients. RESULTS: Serum Cr, CSF NFL, and CSF pNFH levels of ALS patients were significantly higher than those of the adult SMA patients (p < .01). Serum CK and Cr were strongly correlated with baseline ALSFRS-R scores in SMA patients (p < .001). The ROC curves revealed an area under the curve (AUC) of 0.94 in serum Cr with a cut-off value of 44.5 µmol/L (Sensitivity 90%, Specificity 90%). AUC from the ROC curve of CSF NFL and CSF pNFH were 1.0 and 0.84, with cut-off values of 1275 pg/mL and 0.395 ng/mL, respectively (Sensitivity and Specificity of 100% and 100% in CSF NFL; Sensitivity and Specificity of 90% and 80% in CSF pNFH). CONCLUSION: CSF NFL and pNFH might be useful biomarkers for differential diagnosis of adult SMA and ALS.


Amyotrophic Lateral Sclerosis , Muscular Atrophy, Spinal , Adult , Humans , Amyotrophic Lateral Sclerosis/diagnosis , Pilot Projects , Intermediate Filaments , Neurofilament Proteins/cerebrospinal fluid , Muscular Atrophy, Spinal/diagnosis , Biomarkers
17.
Environ Sci Pollut Res Int ; 30(11): 28525-28549, 2023 Mar.
Article En | MEDLINE | ID: mdl-36702984

Vascular endothelial dysfunction is an early stage to cardiovascular diseases (CVDs), but whether air pollution exposure has an effect on it remains unknown. We conducted a systematic review and meta-analysis to summarize epidemiological evidence between air pollution and endothelial dysfunction. We searched the database of PubMed, EMBASE, the Cochrane Library, and Web of Science up to November 10, 2022. Fixed and random effect models were used to pool the effect change or percent change (% change) and 95% confidence interval (95% CI) of vascular function associated with particulate matter (PM) and gaseous pollutants. I2 statistics, funnel plot, and Egger's test were used to evaluate heterogeneity and publication bias. There were 34 articles included in systematic review, and 25 studies included in meta-analysis. For each 10 µg/m3 increment in short-term PM2.5 exposure, augmentation index (AIx) and pulse wave velocity (PWV) increased by 2.73% (95% CI: 1.89%, 3.57%) and 0.56% (95% CI: 0.22%, 0.89%), and flow-mediated dilation (FMD) decreased by 0.17% (95% CI: - 0.33%, - 0.00%). For each 10 µg/m3 increment in long-term PM2.5 exposure, FMD decreased by 0.99% (95% CI: - 1.41%, - 0.57%). The associations between remaining pollutants and outcomes were not statistically significant. The effect of short-term PM2.5 exposure on FMD change was stronger in population with younger age, lower female proportion, higher mean body mass index and higher PM2.5 exposure. Cardiac or vasoactive medication might attenuate this effect. Our study provides evidence that PM2.5 exposure had adverse impact on vascular endothelial function, indicating the importance of air quality improvement for early CVD prevention.


Air Pollutants , Air Pollution , Cardiovascular Diseases , Environmental Pollutants , Female , Humans , Air Pollutants/analysis , Pulse Wave Analysis , Environmental Exposure/analysis , Air Pollution/analysis , Particulate Matter/analysis , Cardiovascular Diseases/chemically induced
18.
Sci Total Environ ; 863: 160983, 2023 Mar 10.
Article En | MEDLINE | ID: mdl-36535481

BACKGROUND: Several studies reported temperature exposure was associated with altered cardiac automatic function, while this effect of temperature on hourly heart rate variability (HRV) among populations with cardiovascular risks was seldom addressed. METHODS: We conducted this panel study in four Chinese cities with three repeated visits among 296 participants at intermediate to high-risk of cardiovascular disease (CVD). Real-time temperature level and 24-h ambulatory electrocardiogram were monitored during each seasonal visit. Linear mixed-effects models were used to investigate associations between individual temperature and HRV parameters, and the seasonal effects and circadian effect were also evaluated. RESULTS: We found the overall downward trend of hourly HRV associated with acute exposure to higher temperature. For each 1 °C increment in temperature of 1-3 h prior to HRV measurements (lag 1-3 h), hourly standard deviation of normal-to-normal intervals (SDNN) decreased by 0.38% (95% confidence interval [CI]: 0.22, 0.54), 0.28% (95% CI: 0.12, 0.44), and 0.20% (95% CI: 0.04, 0.36), respectively. Similar inverse associations between temperature and HRV were observed in stratified analyses by temperature level. Inverse associations for cold and warm seasons were also observed, despite some effects gradually decreased and reversed in the warm season as lag times extended. Moreover, HRV showed a more significant reduction with increased temperature during daytime than nighttime. Percent change of hourly SDNN was -0.41% (95% CI: -0.62, -0.21) with 1 °C increment of lag 1 h during daytime, while few obvious changes were revealed during nighttime. CONCLUSIONS: Generally, increasing temperature was significantly associated with reduced HRV. Inverse relationships for cold and warm seasons were also observed. Associations during daytime were much more prominent than nighttime. Our findings clarified the relationship of temperature with HRV and provided evidence for prevention approaches to alleviate cardiac automatic dysfunction among populations at intermediate to high-risk of CVD.


Cardiovascular Diseases , Environmental Exposure , Temperature , Humans , Cardiovascular Diseases/epidemiology , Heart Rate , Seasons
20.
Orphanet J Rare Dis ; 17(1): 404, 2022 11 07.
Article En | MEDLINE | ID: mdl-36345033

BACKGROUND: Studies have reported that a noncoding hexanucleotide repeat in C9ORF72, is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) among Caucasian population, nevertheless it is rare in Chinese population. Therefore, we aimed to investigate the mutation spectrum of Chinese ALS patients with FTD (ALS-FTD). METHODS: ALS patients with and without cognitive impairments were enrolled. Clinical features were collected including age, sex, disease duration, ALSFRS-r, family history and cognitive evaluation. Thirty-six ALS genes were screened by whole exome sequencing (WES) and repeat-primed polymerase chain reaction (PCR) were used for detection of and abnormal repeat expansions of C9ORF72. RESULTS: A total of 1208 patients, including 66 familial ALS (FALS) and 1142 sporadic ALS (SALS) patients were included. Twenty-three patients with sporadic ALS and one familial ALS index had concomitant FTD, which accounts for 1.99% (24/1208) of patients with ALS. In sporadic ALS-FTD, one case harboring C9ORF72 expansion variant, two cases harboring ANXA11 variants and one individual carrying CCNF variant were identified. A recurrent UBQLN2 variant was detected in a familial ALS-FTD patient. All of the ALS-FTD patients carrying variants in known causative genes manifested motor symptom onset (two bulbar onset and three limb onset) and developed cognitive impairment thereafter. It is not easy to draw a conclusion of the genotype-phenotype association in ALS-FTD with certain variants, limited by the small number of patients. CONCLUSION: Our findings provide an overview of spectrum of genetic variants in Chinese ALS-FTD patients. Variants of uncertain significance in UBQLN2, ANXA11 and CCNF were identified and further studies are required for causal relations of these variants with ALS-FTD.


Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Humans , Frontotemporal Dementia/genetics , Frontotemporal Dementia/complications , Frontotemporal Dementia/epidemiology , Amyotrophic Lateral Sclerosis/genetics , C9orf72 Protein/genetics , Mutation/genetics , China , Autophagy-Related Proteins/genetics , Adaptor Proteins, Signal Transducing/genetics
...