Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 25
1.
Chem Sci ; 15(19): 7308-7315, 2024 May 15.
Article En | MEDLINE | ID: mdl-38756792

Surface-enhanced Raman scattering (SERS) spectroscopy is an effective technique that can reveal molecular structure and molecular interaction details. Semiconductor-based SERS platforms exhibit multifaceted tunability and unique selectivity to target molecules as well as high spectral reproducibility. However, the detection sensitivity of semiconductors is impeded by inferior SERS enhancement. Herein, a surface and interference co-enhanced Raman scattering (SICERS) platform based on corrugated TiO2 nanotube arrays (c-TiO2 NTs) was developed, and the coupling of structural regulation and photo-induced charge transfer (PICT) effectively optimized the SERS performance of the semiconductor substrate. Due to the regularly oscillating optical properties of the c-TiO2 NTs, well-defined interference patterns were generated and the local electric field was significantly increased, which greatly promoted both the electromagnetic mechanism and PICT processes. The c-TiO2 NTs were subsequently applied as a highly sensitive SICERS substrate to investigate the mechanism of temperature influence on enantioselective identification. This identification process is related to the existence of temperature-sensitive hydrogen bonds and π-π interaction. This work demonstrates a simply prepared, low-cost, and sensitive SERS substrate that enables better investigation into molecular identification.

2.
J Environ Manage ; 347: 119161, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-37797521

Rapid urbanization is one of the key factors in threatening regional ecological security and undermining human well-being. Understanding of the impacts of urbanization on ecosystem services (ESs) could provide comprehensive information for policy making to support ecological governance. In this study, the spatial and temporal distributions of four ESs, namely water yield (WY), soil conservation (SC), nitrogen export (NE), and habitat quality (HQ), and four factors of urbanization, namely construction land percentage, economic density, population density, and nighttime lighting, were analyzed in the Xiangjiang River Basin (XJRB) from 1990 to 2020. The impacts of urbanization on ESs at the sub-watershed and county level were investigated using the space-for-time and change-over-time methods. The results showed that: (1) WY, SC, and NE fluctuated throughout the study period, while HQ significantly decreased and urbanization factors significantly increased. (2) Each urbanization factor had a significant influence on the spatial heterogeneity of ESs, with the contribution at the county level being 2.88%-56.11% higher than that at the sub-watershed level. Moreover, there were enhanced interactions between factors in general, although spatial heterogeneity effects on NE and HQ were weaker at the county level. (3) Urbanization and ESs had a significant nonlinear relationship, and there was a threshold of relationship change between them, with the impact of urbanization on ESs showing evident spatial heterogeneity in terms of both the driving direction and intensity of change over time. (4) The change-over-time method identified 1992-1995 and 2008-2013 as key periods of change in the relationship between urbanization and ESs in the XJRB, and the method had the advantage of revealing the spatial heterogeneity of the effects of driving factors. These findings provide a reference for decision making related to urban planning.


Ecosystem , Urbanization , Humans , Conservation of Natural Resources , Soil , Rivers , Water , China
3.
Environ Sci Pollut Res Int ; 30(55): 117545-117561, 2023 Nov.
Article En | MEDLINE | ID: mdl-37872340

Herein, an electrospinning porous nanofiber with large specific surface area, excellent flexibility, remarkable tensile strength, and high stability of thermal degradation has been developed by loading Ho3+/Yb3+ co-doped BiOBr/g-C3N4 (BHY/CN) heterojunction photocatalysts on polyacrylonitrile (PAN) nanofibers. The optimized BHY/CN-2 nanofiber demonstrates outstanding photocatalytic activity for the degradation of 98.83% tetracycline (TC, 60 min) and 99.06% rhodamine B (RhB, 90 min) under simulated sunlight irradiation, and maintains a high level of reusability and recycling stability in three cycles. In addition, temperature monitoring of the catalytic degradation process can be feedback by (5F4, 5S2) → 5I8 and 5F5 → 5I8 radiation transitions of Ho3+ with excellent sensitivity. More importantly, the nanofiber luminescence performance is enhanced by the doping of g-C3N4, which maintain the effective upconversion luminescence properties even in water, providing a reliable reference for real-time monitoring and feedback of the operating temperature, and further expanding the application fields of photocatalysts.


Anti-Bacterial Agents , Luminescence , Porosity , Temperature , Catalysis
4.
ACS Sens ; 8(9): 3487-3497, 2023 09 22.
Article En | MEDLINE | ID: mdl-37643286

The accurate, sensitive, and selective on-site screening of volatile aldehyde biomarkers for lung cancer is of utmost significance for preclinical cancer diagnosis and treatment. Applying surface-enhanced Raman scattering (SERS) for gas sensing remains difficult due to the small Raman cross section of most gaseous molecules and interference from other components in exhaled breath. Using an Au asymmetrically coated TiO2 nanochannel membrane (Au/TiO2 NM) as the substrate, a ZIF-8-covered Au/TiO2 NM SERS sensing substrate is designed for the detection of exhaled volatile organic compounds (VOCs). Au/TiO2 NM provides uniformly amplified Raman signals for trace measurements in this design. Importantly, the interfacial nanocavities between Au nanoparticles (NPs) and metal-organic frameworks (MOFs) served as gaseous confinement cavities, which is the key to enhancing the capture and adsorption ability toward gaseous analytes. Both ends of the membrane are left open, allowing gas molecules to pass through. This facilitates the diffusion of gaseous molecules and efficient capture of the target analyte. Using benzaldehyde as a typical gas marker model of lung cancer, the Schiff base reaction with a Raman-active probe molecule 4-aminothiophene (4-ATP) pregrafted on Au NPs enabled trace and multicomponent detection. Moreover, the combination of machine learning (ML) and Raman spectroscopy eliminates subjective assessments of gaseous aldehyde species with the use of a single feature peak, allowing for more accurate identification. This membrane sensing device offers a promising design for the development of a desktop SERS analysis system for lung cancer point-of-care testing (POCT).


Lung Neoplasms , Metal Nanoparticles , Humans , Aldehydes , Gold , Biomarkers , Gases , Lung Neoplasms/diagnosis
5.
Sports Med Health Sci ; 5(2): 112-119, 2023 Jun.
Article En | MEDLINE | ID: mdl-37424531

Nonalcoholic fatty liver disease (NAFLD) is a prevalent medical condition with an ever-growing trend. Although multiple intracellular mechanisms are involved, endoplasmic reticulum (ER) stress has been demonstrated to play a significant role in the genesis and progression. Most of the research supports the advantages of exercise for NAFLD. However, little is known about the molecular mechanism(s) that underpin the effectiveness of exercise training in NAFLD. This study aimed to identify how aerobic exercise affected hepatic ER stress in a mouse NAFLD model. In this study, the mice were fed either a standard diet (SD) or a high-fat diet (HFD) for 17 weeks. HFD mice were trained on a treadmill during the last eight weeks. All animals were tested for serum levels of biochemical assays, protein expression, and gene expression. The hematoxylin and eosin, Oil red O, and immunohistochemistry staining were also performed. The results indicated that a high-fat diet generated NAFLD, with serum lipid disruption and hepatic function impairment, and increased GRP78 and ATF6 expressions. However, aerobic training reversed the majority of these alterations. It is concluded that NAFLD appears to be associated with hepatic ER stress response, and aerobic exercise mitigates NAFLD via lowering ER stress proteins GRP78 and ATF6.

6.
J Mater Chem B ; 11(17): 3877-3884, 2023 05 03.
Article En | MEDLINE | ID: mdl-37016803

Bacterial contamination in diets is a major threat to human health and a global health problem. The development of sensitive methods for rapid discrimination of benign and pathogenic bacteria is essential. Herein, using self-standing Au/TiO2 nanotubes as a surface-enhanced Raman spectroscopy (SERS) substrate, rapid and sensitive bacteria discrimination is achieved via the hydrophobic interaction between the volatile metabolites released from pathogenic bacteria and the SERS substrate. With the modification of hydrocarbon moieties, the SERS substrate demonstrates improved binding ability and rapid enrichment performance towards volatile metabolites through the hydrophobic interaction. The metabolites enriched on the hytocarbon moieties then drive the replacements of Raman probes from the SERS substrate, as demonstrated by the remarkably decreased Raman signals in the silent region (1800-2800 cm-1). Using Escherichia coli (E. coli) as the model pathogenic bacteria, the SERS platform exhibits good discrimination ability between benign and pathogenic bacteria within 4 min and allows detection of E. coli at a level of as few as 3 × 100 cells per mL. Considering that volatile metabolites are associated with the activity of bacteria, this technique can be further applied as a guide for antibiotic treatment, demonstrating reliable and rapid guidance for interrelated bacteria therapy.


Bacteria , Escherichia coli , Humans , Spectrum Analysis, Raman , Hydrophobic and Hydrophilic Interactions
7.
Wei Sheng Yan Jiu ; 52(2): 246-252, 2023 Mar.
Article Zh | MEDLINE | ID: mdl-37062687

OBJECTIVE: To investigate the effect of aerobic exercise on AKT/GSK3ß pathway-mediated hepatocyte apoptosis in non-alcoholic fatty liver diseases(NAFLD). METHODS: A total of 30 6-week-old male C57BL/6J mice, and mice were fed adaptively for one week. The control group was fed with ordinary diet, and the model group and model exercise group were fed with high-fat diet until 18 weeks. At the 10th week of the experiment, the model exercise group received aerobic exercise intervention for 8 consecutive weeks until the end of the experiment at the 18th week. Automatic biochemical analyzer to detect serum total cholesterol(TC), triglycerides(TG), alanine aminotransferase(ALT), aspartate aminotransferase(AST), low-density lipoprotein(LDL-C) and high-density lipoprotein(HDL-C) levels. Liver pathological morphology was observed by staining with oil red O and HE. The expression changes of AKT, P-AKT~( Ser473), GSK3ß, P-GSK3ß~(Ser9) and Caspase-3 proteins were detected by western blot, and the apoptosis of hepatocytes was detected by in situ terminal transferase labeling(TUNEL). RESULTS: (1) After intervention, compared with control group, body weight, liver index, serum TC, TG, ALT, AST and LDL-C levels in model group were significantly increased(P<0.01 or P<0.05), while HDL-C level was significantly decreased(P<0.01). Compared with model group, body weight, liver index, serum TC, TG, ALT, AST and LDL-C levels in model exercise group were significantly decreased(P<0.01 or P<0.05), while HDL-C level was significantly increased(P<0.01). (2) Compared with the control group, hepatocyte steatosis and the number of lipid droplets in model group were significantly increased. Compared with the model group, the degree of hepatic adipose degeneration was significantly improved and the number of hepatic lipid droplets was significantly decreased in the model exercise group. (3) Compared with control group, the protein expression levels of P-AKT~(Ser473) and P-GSK3ß~(Ser9) in model group were significantly decreased(P<0.01 or P<0.05), the protein expression levels of Caspase-3 were significantly increased(P<0.05), and the number of hepatocyte apoptosis was significantly increased(P<0.05). Compared with model group, the expression of P-AKT~(Ser473) and P-GSK3ß~(Ser9) protein in model exercise group was significantly increased(P<0.01 or P<0.05), the expression of Caspase-3 protein was significantly decreased(P<0.05), and the number of hepatocyte apoptosis was significantly decreased(P<0.01). CONCLUSION: Aerobic exercise can effectively improve NAFLD, by activating AKT/GSK3ß pathway and increasing the expression of AKT/GSK3ß pathway related molecules, thereby reducing caspase-3 expression and hepatocyte apoptosis.


Non-alcoholic Fatty Liver Disease , Animals , Male , Mice , Apoptosis , Body Weight , Caspase 3/metabolism , Caspase 3/pharmacology , Cholesterol, LDL , Diet, High-Fat , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/pharmacology , Hepatocytes/metabolism , Liver , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/therapy , Non-alcoholic Fatty Liver Disease/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/pharmacology , Triglycerides , Physical Conditioning, Animal
8.
Sci Rep ; 13(1): 4375, 2023 Mar 16.
Article En | MEDLINE | ID: mdl-36928377

The Xiangjiang River Basin is an important part of the Yangtze River Basin and an important area in Hunan Province. Thus, taking steps to protect the ecological sustainability of the Xiangjiang River Basin, such as the construction of the protection of ecological security in Hunan Province and the Yangtze River Protection Law, is important for national projects However, research on the ecological quality of the Xiangjiang River Basin is mostly biased toward the evaluation of ecosystem services or an individual ecological index. Furthermore, a long-term evaluation of multiple indicators is lacking. Therefore, based on Google Earth Engine and geographic detectors, the remote sensing ecological index was used to evaluate this area. The year-by-year research on the Xiangjiang River Basin from 2001 to 2020 clarified its past ecological quality change trend, explored the reasons for the ecological quality change, and provided a basis for protecting its ecological quality. The following results are presented. (1) Regarding spatial distribution, areas with poor ecological environments are mainly distributed at the centers of Chang-Zhu-Tan, Hengyang, and various districts and counties. (2) Regarding the time variation, the ecological quality of the Xiangjiang River Basin from 2001 to 2020 showed a slight downward trend, with a downward slope of approximately - 0.0000357143; a rapid increase, with a growth rate of approximately 0.00395; And an overall improvement over 20 years. The areas with declining ecological quality are mainly located in the Chang-Zhu-Tan urban agglomeration, the city center of Hengyang, and the county centers of various county towns. (3) The factor detection results show that human factors play a key role in population density and land use, with average q values of 0.429 and 0.353, respectively. Among natural factors, elevation and slope play a key role, with average q values of 0.230 and 0.351, respectively; hence, Land use directly affect on the ecological quality in a location. These findings will provide important information for managers to formulate ecological restoration measures for the Xiangjiang River.

9.
Exp Neurol ; 360: 114293, 2023 02.
Article En | MEDLINE | ID: mdl-36493862

BACKGROUND: Most patients with subarachnoid hemorrhage (SAH) do not exhibit brain parenchymal injury upon imaging but present significant blood-brain barrier (BBB) disruption and secondary neurological deficits. The aim of this study was to investigate whether stressed astrocytes act as a secondary barrier to exert a protective effect after SAH and to investigate the mechanism of glial limitan formation. METHODS: A total of 204 adult male C57BL/6 mice and an endovascular perforation SAH model were employed. The spatiotemporal characteristics of glial limitan formation after SAH were determined by immunofluorescence staining and transmission electron microscopy. The molecular mechanisms by which pericytes regulate glia limitans formation were analyzed using polymerase chain reaction, Western blotting, immunofluorescence staining and ELISA in a pericyte-astrocyte contact coculture system. The findings were validated ex vivo and in vivo using lentiviruses and inhibitors. Finally, pericytes were targeted to regulate glial limitan formation, and the effect of the glia limitans on secondary brain injury after SAH was evaluated by flow cytometry and analysis of neurological function. RESULTS: Stress-induced glial limitan formation occurred 1 day after SAH and markedly subsided 3 days after ictus. Pericytes regulated astrocyte glia limitan formation via EphA4/EphrinB2 signaling, inhibited inflammatory cell infiltration and altered neurological function. CONCLUSIONS: Astrocyte-derived glia limitans serve as a secondary protective barrier following BBB disruption after SAH in mice, and pericytes can regulate glial limitan formation and alter neurological function via EphA4/EphrinB2 signaling. Strategies for maintaining this secondary protective barrier may be novel treatment approaches for alleviating early brain injury after SAH.


Brain Edema , Brain Injuries , Subarachnoid Hemorrhage , Animals , Male , Mice , Astrocytes , Blood-Brain Barrier , Ephrin-B2 , Mice, Inbred C57BL , Pericytes , Subarachnoid Hemorrhage/complications , Receptor, EphA4/metabolism
10.
Sheng Li Xue Bao ; 74(5): 816-826, 2022 Oct 25.
Article Zh | MEDLINE | ID: mdl-36319104

Non-alcoholic fatty liver disease (NAFLD) is one of the main diseases of metabolic syndrome. With the increasing popularity of NAFLD in the world, the prevention and therapy of NAFLD are facing great challenges. In recent years, scholars at home and abroad have carried out a large number of studies on NAFLD, but its pathogenesis is still unclear. Endoplasmic reticulum stress (ERS) is caused by the accumulation of unfolded or misfolded proteins. In response to ERS, cells help restore normal endoplasmic reticulum function by initiating a protective mechanism known as the unfolded protein response (UPR). Abnormal accumulation of lipids in hepatocytes, aggravated inflammatory response, increased apoptosis of hepatocytes and insulin resistance (IR) are the main pathogenic factors and characteristics of NAFLD, which are closely related to hepatic ERS. A large number of studies have shown that exercise, as a low-cost treatment, can prevent and improve NAFLD effectively, and its mechanism is related to exercise regulating the level of ERS. This paper reviews the research progress on the mechanism of exercise improving NAFLD from the point of view of ERS. The mechanism of exercise improving NAFLD is related to the regulation of hepatocyte lipid metabolism, alleviation of inflammatory reaction, reduction of hepatocyte apoptosis and improvement of IR through regulating ERS.


Insulin Resistance , Non-alcoholic Fatty Liver Disease , Humans , Endoplasmic Reticulum Stress , Exercise , Unfolded Protein Response
11.
Front Microbiol ; 13: 1019444, 2022.
Article En | MEDLINE | ID: mdl-36312977

Background: The diversity in currently documented viruses and their morphological characteristics indicates the need for understanding the evolutionary characteristics of viruses. Notably, further studies are needed to obtain a comprehensive landscape of virome, the virome of host species in Yunnan province, China. Materials and methods: We implemented the metagenomic next-generation sequencing strategy to investigate the viral diversity, which involved in 465 specimens collected from bats, pangolins, monkeys, and other species. The diverse RNA viruses were analyzed, especially focusing on the genome organization, genetic divergence and phylogenetic relationships. Results: In this study, we investigated the viral composition of eight libraries from bats, pangolins, monkeys, and other species, and found several diverse RNA viruses, including the Alphacoronavirus from bat specimens. By characterizing the genome organization, genetic divergence, and phylogenetic relationships, we identified five Alphacoronavirus strains, which shared phylogenetic association with Bat-CoV-HKU8-related strains. The pestivirus-like virus related to recently identified Dongyang pangolin virus (DYPV) strains from dead pangolin specimens, suggesting that these viruses are evolving. Some genomes showed higher divergence from known species (e.g., calicivirus CS9-Cali-YN-CHN-2020), and many showed evidence of recombination events with unknown or known strains (e.g., mamastroviruses BF2-astro-YN-CHN-2020 and EV-A122 AKM5-YN-CHN-2020). The newly identified viruses showed extensive changes and could be assigned as new species, or even genus (e.g., calicivirus CS9-Cali-YN-CHN-2020 and iflavirus Ifla-YN-CHN-2020). Moreover, we identified several highly divergent RNA viruses and estimated their evolutionary characteristics among different hosts, providing data for further examination of their evolutionary dynamics. Conclusion: Overall, our study emphasizes the close association between emerging viruses and infectious diseases, and the need for more comprehensive surveys.

12.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 38(3): 193-198, 2022 Sep.
Article Zh | MEDLINE | ID: mdl-36062783

Objective: To investigate the effects of aerobic exercise on non-alcoholic fatty liver (NAFLD) induced by high fat and the mechanism of CNPY2-PERK pathway. Methods: Eight-week-old male C57BL/6J mice were randomly divided into four groups: the control group (C), the C+ aerobic exercise group (CE), the model group (M) and the M+ aerobic exercise group (ME). Mice in group C and CE were given normal diet, while mice in group M and ME were given high-fat diet (60 cal % fat). The mice were fed continuously for 18 weeks until the end of the experiment, and the serum and liver samples were collected. Both CE and ME group performed an aerobic treadmill training from the 10th week (12 m/min, 60 min/ day, 5 days/week, for 8 weeks). The serum levels of total cholesterol (TC), triacylglycerol (TG), high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), alanine aminotransferase (ALT), aspartate aminotransferase (AST) were detected. The pathological morphology of the liver was observed. The relative expressions of CNPY2, PERK, p-eIF2a, CHOP, CNPY2 mRNA and PERK mRNA, and the positive expressions of CNPY2 and PERK were measured. Results: Compared with group C, the serum levels of LDL-c, TC, TG, ALT and AST in group M were increased significantly (P<0.05), while the HDL-c level was decreased significantly (P<0.05). The liver tissues of mice showed obvious hepatic steatosis, the number of lipid droplets in liver cells was increased, and the expressions of CNPY2, CNPY2mRNA, PERK, PERKmRNA, p-eIF2a, CHOP, and the positive expressions of both CNPY2 and PERK in liver were increased (P<0.05). However, the above indexes showed no significant difference in CE group (P>0.05). Compared with group M, the serum levels of LDL-c, TC, TG, ALT and AST in group ME were decreased (P<0.05). The fatty degeneration of liver tissue and the number of lipid droplets in liver cells in mice was reduced, and the expressions of CNPY2, CNPY2 mRNA, PERK, PERK mRNA, p-eIF2a, CHOP, and the positive expressions of CNPY2 and PERK in liver tissue were decreased (P<0.05). Conclusion: The CNPY2-PERK pathway is involved in the formation of NAFLD. Aerobic exercise can effectively ameliorate NAFLD, and the mechanisms may be related to the reduction of CNPY2-PERK pathway-related molecule expressions by aerobic exercise.


Non-alcoholic Fatty Liver Disease , Animals , Cholesterol, LDL , Exercise , Male , Mice , Mice, Inbred C57BL , RNA, Messenger , Triglycerides
13.
Virol J ; 19(1): 98, 2022 06 03.
Article En | MEDLINE | ID: mdl-35659318

BACKGROUND: Echovirus 9 (E9) is associated with a wide variety of diseases and medical conditions, and the clinical symptoms of sporadic cases caused by E9 often are severe. With a high global prevalence, E9 has caused multiple outbreaks worldwide. However, little is known about the genetic and geographic population dynamics of E9. METHOD: A total of 131 VP1 gene sequences, including15 generated in this study and 116 obtained from GenBank, were used to coestimate time-resolved phylogenies to infer viral evolution and transmission in worldwide. Overlapping fragments representing whole genomes were amplified by reverse transcription polymerase chain reaction (RT-PCR) using specific primers. Then, we reported the genetic characteristics of fifteen E9 strains in the Chinese Mainland. Similarity plots and bootscanning analysis were used to determine recombination patterns of E9. RESULTS: The estimated mean evolutionary rate of global E9 VP1 gene was 4.278 × 10-3 substitutions per site per year (95% confidence interval [CI], 3.822 × 10-3/site/year to 4.710 × 10-3/site/year), and the common ancestor of E9 likely emerged around 1868 (95% CI, 1840 to 1892). The full-length genomic sequences of the fifteen E9 strains showed 76.9-79.6% nucleotide identity and 95.3-95.9% amino acid identity with E9 Barty strain. 11 of 15 E9 whole genome sequence present four recombination patterns, and E9 recombinants have extensive genetic exchanges in the 2C and P3 regions with other Enterovirus B (EV-B) circulated in China. Four of six E9 strains were temperature sensitive, and two were temperature resistant, and a comparative genomics analysis suggested that 411, 865 and 867 amino acid substitution in the P1 region was related to temperature sensitivity. CONCLUSION: This study highlights a persistent transmission network of E9 in worldwide, provides valuable information regarding the molecular epidemiology of E9.


Echovirus 9 , China/epidemiology , Enterovirus B, Human/genetics , Evolution, Molecular , Genome, Viral , Phylogeny , Recombination, Genetic
14.
Virol J ; 19(1): 83, 2022 05 15.
Article En | MEDLINE | ID: mdl-35570270

The C4 sub-genotype of Enterovirus 71 (EV71) has been identified as the most dominant sub-genotype circulating in the Chinese mainland since 1998. The circulation situation of EV71 before 1998 is not well established due to insufficient experimental data. The C1 subgenotype of EV71 has not yet been reported in the Chinese mainland by now. Based on the AFP surveillance system of the mainland of China, this study conducted a retrospective study of AFP cases for 1985-1999: a strain of EV-A71 C1 subgenotype was found. To our knowledge, this strain (SD92-41) is the first C1 sub-genotype reported in the Chinese mainland. This study demonstrates that the C1 gene subtype also appeared in the Chinese mainland, but it is unknown whether it is an imported or a local epidemic strain. With sufficient information known from retrospective studies, the source of the SD92-41 strain will be identified and the prevalence of EV-A71 in the Chinese mainland before 1998 will be clearer.


Enterovirus A, Human , Enterovirus Infections , Enterovirus , Humans , China/epidemiology , Enterovirus/genetics , Enterovirus A, Human/genetics , Enterovirus Infections/epidemiology , Genotype , Phylogeny , Retrospective Studies
15.
Biochem Biophys Res Commun ; 603: 35-40, 2022 05 07.
Article En | MEDLINE | ID: mdl-35278877

Non-alcoholic fatty liver disease (NAFLD) is highly prevalent, and physical exercise represents one of the most effective methods to attenuate NAFLD. However, the mechanism of aerobic exercise improving NAFLD remains unclear. This study aims to investigate the effect of aerobic exercise on CNPY2-PERK pathway in mice with NAFLD. Our study found that a high-fat diet induced NAFLD, causing an abnormal lipid metabolism and liver function injury, and increased the expressions of CNPY2, CNPY2 mRNA, PERK, PERK mRNA, p-eIF2a and CHOP. However, aerobic exercise reversesd all these parameters. These data suggest that CNPY2-PERK pathway is involved in the formation of NAFLD, and aerobic exercise can effectively improve NAFLD, which may be related to down-regulate the protein expressions of the CNPY2-PERK pathway.


Non-alcoholic Fatty Liver Disease , Animals , Diet, High-Fat/adverse effects , Lipid Metabolism , Liver/metabolism , Mice , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/therapy , RNA, Messenger/metabolism
16.
Virol Sin ; 37(2): 168-176, 2022 Apr.
Article En | MEDLINE | ID: mdl-35277374

Coxsackievirus A24 variant (CVA24v) is a major pathogen that causes continued outbreaks and pandemics of acute hemorrhagic conjunctivitis (AHC). In China, the first confirmed outbreak of CVA24v-related AHC occurred in Beijing in 1988, followed by another two significant outbreaks respectively in 1994 and 2007, which coincides with the three-stage dynamic distribution of AHC in the world after 1970s. To illustrate the genetic characteristics of CVA24v in different periods, a total of 23 strains were isolated from those three outbreaks and the whole genome of those isolations were sequenced and analyzed. Compared with the prototype strain, the 23 strains shared four nucleotide deletions in the 5' UTR except the 0744 strain isolated in 2007. And at the 98th site, one nucleotide insertion was found in all the strains collected from 2007. From 1994 to 2007, amino acid polarity in the VP1 region at the 25th and the 32nd site were changed. Both the 3C and VP1 phylogenetic tree indicated that isolates from 1988 and 1994 belonged to Genotype III (GIII), and 2007 strains to Genotype IV (GIV). According to the Bayesian analysis based on complete genome sequence, the most recent common ancestors for the isolates in 1988, 1994 and 2007 were respectively estimated around October 1987, February 1993 and December 2004. The evolutionary rate of the CVA24v was estimated to be 7.45 â€‹× â€‹10-3 substitutions/site/year. Our study indicated that the early epidemic of CVA24v in Chinese mainland was the GIII. Point mutations and amino acid changes in different genotypes of CVA24v may generate intensity differences of the AHC outbreak. CVA24v has been evolving constantly with a relatively rapid rate.


Conjunctivitis, Acute Hemorrhagic , Coxsackievirus Infections , Enterovirus C, Human , Amino Acids/genetics , Bayes Theorem , Beijing , China/epidemiology , Conjunctivitis, Acute Hemorrhagic/epidemiology , Coxsackievirus Infections/epidemiology , Disease Outbreaks , Enterovirus C, Human/genetics , Humans , Nucleotides , Phylogeny
17.
J Mol Cell Cardiol ; 162: 81-96, 2022 01.
Article En | MEDLINE | ID: mdl-34520801

Calcific aortic valve disease (CAVD) is an important health burden due to its increasing prevalence and lack of available approaches. Osteogenic transdifferentiation of aortic valve interstitial cells (AVICs) contributes to valve calcification. SRY-related HMG-box transcription factor 5 (SOX5) is essential for cartilage development. Whether SOX5 is involved in AVIC calcification has not been determined. This study aimed to explore the role of SOX5 in warfarin-induced AVIC calcification. Immunostaining showed decreased SOX5 in human calcific AV and warfarin induced mouse calcific AV tissues compared with human noncalcific AV and control mouse AV tissues. In calcific human AVICs (hAVICs) and porcine AVICS (pAVICs), both knockdown and overexpression of SOX5 inhibited calcium deposition and osteogenic marker gene expression. Protein expression assays and ChIP assays showed that overexpression of SOX5 led to increased recruitment of SOX5 to the SOX9 promoter and resulted in increased mRNA and protein expression of SOX9. Coimmunoprecipitation and immunofluorescence showed that SOX5 binds to SOX9 with its HMG domain in nucleus. Blue Native PAGE showed overexpression of SOX5 led to multimeric complex formation of SOX5 and resulted in decreased binding of SOX5 to SOX9 similar to the results of knockdown of SOX5. Further ChIP and western blotting assays showed that both knockdown and overexpression of SOX5 resulted in SOX9 initiating transcription of anti-calcific gene LRP6 in warfarin-treated pAVICs. Knockdown of LRP6 rescues the anti-calcification effect of SOX5 overexpression. We found that both loss and gain of function of SOX5 lead to the same phenotype: decreased warfarin induced calcification. The stoichiometry of SOX5 is crucial for cooperation with SOX9, SOX9 nuclear localization and subsequent binding of SOX9 to LRP6 promoter. These results suggest that SOX5 is a potential target for the development of anti-calcification therapy.


Aortic Valve Stenosis , Aortic Valve , Animals , Aortic Valve/metabolism , Aortic Valve Stenosis/metabolism , Cells, Cultured , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Mice , Swine , Transcriptional Activation , Warfarin/metabolism , Warfarin/pharmacology
18.
Open Forum Infect Dis ; 8(12): ofab535, 2021 Dec.
Article En | MEDLINE | ID: mdl-34926714

BACKGROUND: China implemented the globally synchronized switch from trivalent oral poliovirus vaccine (tOPV) to bivalent OPV (bOPV) on May 1, 2016. During April 2018 to May 2019, the first outbreak caused by type 2 circulating vaccine-derived poliovirus (cVDPV2) after the switch occurred in Xinjiang and Sichuan, China. Methods. We performed sequence analysis of VP1 and the whole genome to determine the genomic characteristics of type 2 cVDPVs, and carried out coverage surveys to assess the risk of viral propagation. Surveillance for environment and acute flaccid paralysis was intensified to enhance case ascertainment. Results. Comparison of the complete genomes between early (Xinjiang strain) and late strains (Sichuan strains) revealed that recombination pattern and reverse mutation of attenuation sites had been fixed early, but the mutations of the neutralizing antigenic sites were introduced over the circulation. The Markov Chain Monte Carlo tree showed that the cVDPV2 initial infection was April 2016, earlier than the switch. So, we speculated that the cVDPV2 was originated from tOPV recipients and spread among children with a low level of immunity against the type 2. CONCLUSIONS: The detection of this outbreak combined acute flaccid paralysis (AFP) surveillance with environmental surveillance (ES) indicates that ES should be expanded geographically to further complement AFP surveillance.

19.
PLoS One ; 16(12): e0261842, 2021.
Article En | MEDLINE | ID: mdl-34972138

Soil loss caused by erosion is a global problem. Therefore, the assessment of soil erosion and the its driving mechanism are of great significance to soil conservation. However, soil erosion is affected by both climate change and human activities, which have not been quantified, and few researchers studied the differences in the driving mechanisms of soil erosion depending on the land use type. Therefore, the spatiotemporal characteristics and changing trends of soil erosion in the Dongting Lake Basin were analyzed in this study. Geographic detectors were used to identify the dominant factors affecting soil erosion in different land use types. In this study, a sensitivity experiment was conducted to clarify the relative contributions of climate change and human activities to soil erosion changes. In addition, we studied the effects of different land use types and vegetation cover restoration on soil erosion. The results show that soil erosion in the Dongting Lake Basin decreased from 2000 to 2018. Human activities represented by land use types and vegetation coverage significantly contributed to the alleviation of soil erosion in the Dongting Lake Basin, whereas climate change represented by rainfall slightly aggravated soil erosion in the study area. The restoration of grassland vegetation and transfer of cultivated land to woodlands in the study area improved the soil erosion. The slope steepness is the key factor affecting the intensity of soil erosion in dry land, paddy fields, and unused land, whereas the vegetation coverage is the key factor affecting the intensity of soil erosion in woodland, garden land, and grassland. Detailed spatiotemporally mapping of soil erosion was used to determine the connections between soil erosion and potential drivers, which have important implications for vegetation restoration and the optimization of land use planning.


Lakes , Soil Erosion , Conservation of Natural Resources , Environmental Monitoring
20.
Virus Res ; 303: 198501, 2021 10 02.
Article En | MEDLINE | ID: mdl-34252491

Posa-like viruses have been detected in the fecal samples of several host species and are considered unclassified members of Picornavirales. Here, we identified genomic fragments of novel posa-like viruses (monsaviruses) in monkey specimens through next generation sequencing and obtained 11 full-length genomes. This monsavirus shared 88.5-89.2% nucleotide similarity with the Tottori-HG1 strain (GenBank accession LC123275). In total, 713 nucleotide polymorphism sites were identified, indicating their persistent evolution during circulation. The genomic organization and phylogenetic relationship of monsavirus were determined. Subsequent phylogenetic analysis of the conserved replication block of Hel-Pro-RdRp and core RNA-dependent RNA polymerase domain-based analysis of posa-like viruses showed significant separation compared with other known families. Further, posa-like virus genomes possessed the classical replication block of picornavirus in the 5' part of genome and picorna-like capsid domains at the structural coding region of 3' part of genome. Based on these results, we proposed the new family Posaliviridae, within Picornavirales. Four genera, which showed 68.6-75.5% amino acid distances but similar genomic organization including the conserved replication block of Hel-Pro-RdRp, the same order of the genomic coding region, and picorna-like capsid domains, were identified. The flexible genomic organization strategy and a large evolutionary scale of Posaliviridae was explicit. This study provides novel information on monsaviruses and important taxonomic data for the family Posaliviridae.


Pharynx , RNA Viruses , Animals , Capsid Proteins/genetics , Genome, Viral , Haplorhini/genetics , Nucleotides , Phylogeny , RNA Viruses/genetics , RNA-Dependent RNA Polymerase
...