Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 295(3): 717-728, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31819005

RESUMEN

Cellular membranes contain many lipids, some of which, such as sphingolipids, have important structural and signaling functions. The common sphingolipid glucosylceramide (GlcCer) is present in plants, fungi, and animals. As a major plant sphingolipid, GlcCer is involved in the formation of lipid microdomains, and the regulation of GlcCer is key for acclimation to stress. Although the GlcCer biosynthetic pathway has been elucidated, little is known about GlcCer catabolism, and a plant GlcCer-degrading enzyme (glucosylceramidase (GCD)) has yet to be identified. Here, we identified AtGCD3, one of four Arabidopsis thaliana homologs of human nonlysosomal glucosylceramidase, as a plant GCD. We found that recombinant AtGCD3 has a low Km for the fluorescent lipid C6-NBD GlcCer and preferentially hydrolyzes long acyl-chain GlcCer purified from Arabidopsis leaves. Testing of inhibitors of mammalian glucosylceramidases revealed that a specific inhibitor of human ß-glucosidase 2, N-butyldeoxynojirimycin, inhibits AtGCD3 more effectively than does a specific inhibitor of human ß-glucosidase 1, conduritol ß-epoxide. We also found that Glu-499 and Asp-647 in AtGCD3 are vital for GCD activity. GFP-AtGCD3 fusion proteins mainly localized to the plasma membrane or the endoplasmic reticulum membrane. No obvious growth defects or changes in sphingolipid contents were observed in gcd3 mutants. Our results indicate that AtGCD3 is a plant glucosylceramidase that participates in GlcCer catabolism by preferentially hydrolyzing long-acyl-chain GlcCers.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Glucosilceramidasa/genética , Glucosilceramidas/metabolismo , Proteínas Asociadas a Microtúbulos/genética , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/farmacología , Animales , Arabidopsis/metabolismo , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/química , Vías Biosintéticas/efectos de los fármacos , Glucosilceramidasa/antagonistas & inhibidores , Glucosilceramidasa/química , Glucosilceramidas/genética , Humanos , Metabolismo/efectos de los fármacos , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Proteínas Asociadas a Microtúbulos/química , Hojas de la Planta/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Transducción de Señal/efectos de los fármacos , Esfingolípidos/metabolismo
2.
J Integr Plant Biol ; 62(7): 967-983, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31449356

RESUMEN

RNA capping and decapping tightly coordinate with transcription, translation, and RNA decay to regulate gene expression. Proteins in the DXO/Rai1 family have been implicated in mRNA decapping and decay, and mammalian DXO was recently found to also function as a decapping enzyme for NAD+ -capped RNAs (NAD-RNA). The Arabidopsis genome contains a single gene encoding a DXO/Rai1 protein, AtDXO1. Here we show that AtDXO1 possesses both NAD-RNA decapping activity and 5'-3' exonuclease activity but does not hydrolyze the m7 G cap. The atdxo1 mutation increased the stability of NAD-RNAs and led to pleiotropic phenotypes, including severe growth retardation, pale color, and multiple developmental defects. Transcriptome profiling analysis showed that the atdxo1 mutation resulted in upregulation of defense-related genes but downregulation of photosynthesis-related genes. The autoimmunity phenotype of the mutant could be suppressed by either eds1 or npr1 mutation. However, the various phenotypes associated with the atdxo1 mutant could be complemented by an enzymatically inactive AtDXO1. The atdxo1 mutation apparently enhances post-transcriptional gene silencing by elevating levels of siRNAs. Our study indicates that AtDXO1 regulates gene expression in various biological and physiological processes through its pleiotropic molecular functions in mediating RNA processing and decay.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/inmunología , Proteínas de Cloroplastos/metabolismo , Exonucleasas/metabolismo , Exorribonucleasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación/genética , NAD/metabolismo , Fotosíntesis/genética , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Proteínas de Cloroplastos/genética , Resistencia a la Enfermedad/genética , Exorribonucleasas/genética , Hidrólisis , Mutación con Pérdida de Función/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Caperuzas de ARN/metabolismo , Estabilidad del ARN , ARN de Planta/metabolismo , ARN Interferente Pequeño/metabolismo , Temperatura
3.
Plant Cell ; 28(12): 3038-3051, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27923879

RESUMEN

Serine palmitoyltransferase (SPT), a pyridoxyl-5'-phosphate-dependent enzyme, catalyzes the first and rate-limiting step in sphingolipid biosynthesis. In humans and yeast, orosomucoid proteins (ORMs) negatively regulate SPT and thus play an important role in maintaining sphingolipid levels. Despite the importance of sphingoid intermediates as bioactive molecules, the regulation of sphingolipid biosynthesis through SPT is not well understood in plants. Here, we identified and characterized the Arabidopsis thaliana ORMs, ORM1 and ORM2. Loss of function of both ORM1 and ORM2 (orm1 amiR-ORM2) stimulated de novo sphingolipid biosynthesis, leading to strong sphingolipid accumulation, especially of long-chain bases and ceramides. Yeast two-hybrid, bimolecular fluorescence complementation, and coimmunoprecipitation assays confirmed that ORM1 and ORM2 physically interact with the small subunit of SPT (ssSPT), indicating that ORMs inhibit ssSPT function. We found that orm1 amiR-ORM2 plants exhibited an early-senescence phenotype accompanied by H2O2 production at the cell wall and in mitochondria, active vesicular trafficking, and formation of cell wall appositions. Strikingly, the orm1 amiR-ORM2 plants showed increased expression of genes related to endoplasmic reticulum stress and defenses and also had enhanced resistance to oxidative stress and pathogen infection. Taken together, our findings indicate that ORMs interact with SPT to regulate sphingolipid homeostasis and play a pivotal role in environmental stress tolerance in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Serina C-Palmitoiltransferasa/metabolismo , Esfingolípidos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Pared Celular/metabolismo , Estrés del Retículo Endoplásmico/genética , Estrés del Retículo Endoplásmico/fisiología , Mitocondrias/metabolismo , Unión Proteica , Serina C-Palmitoiltransferasa/genética , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA