Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(22): 29049-29059, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38770760

RESUMEN

High-performance photodetectors with the detection capability of linearly polarized light have broad applications in both military and civilian fields. Quasi-one-dimensional ZrS3 as an emerging anisotropic two-dimensional material has come under the spotlight owing to its intriguing properties. However, the performance of the ZrS3 photodetector is seriously restricted by its low responsivity. Herein, a novel high-performance photodetector based on the van der Waals ZrS3/MoS2 heterostructure is proposed. Attributed to the charge trapping-assisted photogating effect, interlayer carrier transitions, and fast spatial separation of the photogenerated electron-hole pairs, the device displays superior photoresponse characteristics ranging from the ultraviolet to the visible spectrum in terms of high responsivity up to 212 A/W, an extraordinary external quantum efficiency of 8.5 × 104%, and a prompt rise/decay time of 0.19/0.38 ms. In addition, owing to the profound birefringence and dichroism effects in ZrS3 together with strong light-matter interactions in the heterostructure, profound linear-polarization sensitivity is demonstrated with a dichroic ratio of about 2.8. Overall, this photodetector not only is integrated with the excellent properties of ZrS3 and monolayer MoS2 but also further enhances the advantages through interlayer couplings, which demonstrate the strong potential of the ZrS3-based devices for high-performance, ultrafast, and polarization-sensitive photodetection.

2.
Micromachines (Basel) ; 14(6)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37374856

RESUMEN

Semiconductor lasers have developed rapidly with the steady growth of the global laser market. The use of semiconductor laser diodes is currently considered to be the most advanced option for achieving the optimal combination of efficiency, energy consumption, and cost parameters of high-power solid-state and fiber lasers. In this work, an approach for optical mode engineering in planar waveguides is investigated. The approach referred to as Coupled Large Optical Cavity (CLOC) is based on the resonant optical coupling between waveguides and allows the selection of high-order modes. The state-of-art of the CLOC operation is reviewed and discussed. We apply the CLOC concept in our waveguide design strategy. The results in both numerical simulation and experiment show that the CLOC approach can be considered a simple and cost-efficient solution for improving diode laser performance.

3.
Artículo en Inglés | MEDLINE | ID: mdl-35820158

RESUMEN

Recently, two-dimensional (2D) van der Waals (vdWs) heterostructures provided excellent and fascinating platforms for advanced engineering in high-performance optoelectronic devices. Herein, novel ReS2/ReSe2 heterojunction phototransistors are constructed and explored systematically that display high responsivity, wavelength-dependent ambipolar photoresponse (negative and positive), ultrafast and polarization-sensitive detection capability. This photodetector exhibits a positive photoresponse from UV to visible spectrum (760 nm) with high photoresponsivities about 126.56 and 16.24 A/W under 350 and 638 nm light illumination, respectively, with a negative photoresponse over 760 nm, which is mainly ascribed to the ambipolar photoresponse modulated by gate voltage. In addition, profound linear polarization sensitivity is demonstrated with a dichroic ratio of about ∼1.2 at 638 nm and up to ∼2.0 at 980 nm, primarily owing to the wavelength-dependent absorption anisotropy and the stagger alignment of the crystal. Beyond static photodetection, the dynamic photoresponse of this vdWs device presents an ultrafast and repeatable photoswitching performance with a cutoff frequency (f3dB) exceeding 100 kHz. Overall, this study reveals the great potential of 2D ReX2-based vdWs heterostructures for high-performance, ultrafast, and polarization-sensitive broadband photodetectors.

4.
Nanomaterials (Basel) ; 11(11)2021 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-34835898

RESUMEN

GaN-based green light-emitting diodes (LEDs) with different thicknesses of the low-temperature (LT) p-GaN layer between the last GaN barriers and p-AlGaN electron blocking layer were characterized by photoluminescence (PL) and electroluminescence (EL) spectroscopic methods in the temperature range of 6-300 K and injection current range of 0.01-350 mA. Based on the results, we suggest that a 20 nm-thick LT p-GaN layer can effectively prevent indium (In) re-evaporation, improve the quantum-confined Stark effect in the last quantum well (QW) of the active region, and finally reduce the efficiency droop by about 7%.

5.
Nanoscale Res Lett ; 13(1): 405, 2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30560382

RESUMEN

The energy band alignment at the multilayer-MoS2/ZrO2 interface and the effects of CHF3 plasma treatment on the band offset were explored using x-ray photoelectron spectroscopy. The valence band offset (VBO) and conduction band offset (CBO) for the MoS2 /ZrO2 sample is about 1.87 eV and 2.49 eV, respectively. While the VBO was enlarged by about 0.75 eV for the sample with CHF3 plasma treatment, which is attributed to the up-shift of Zr 3d core level. The calculation results demonstrated that F atoms have strong interactions with Zr atoms, and the valence band energy shift for the d-orbital of Zr atoms is about 0.76 eV, in consistent with the experimental result. This interesting finding encourages the application of ZrO2 as gate materials in MoS2-based electronic devices and provides a promising way to adjust the band alignment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA