Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Chim Acta ; 560: 119729, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38754575

RESUMEN

BACKGROUND: Cell-free DNA (cfDNA) fragmentomic characteristics are promising analytes with abundant physiological signals for non-invasive disease diagnosis and monitoring. Previous studies on plasma cfDNA fragmentomics commonly employed a two-step centrifugation process for removing cell debris, involving a low-speed centrifugation followed by a high-speed centrifugation. However, the effects of centrifugation conditions on the analysis of cfDNA fragmentome remain uncertain. METHODS: We collected blood samples from 10 healthy individuals and divided each sample into two aliquots for plasma preparation with one- and two-step centrifugation processes. We performed whole genome sequencing (WGS) of the plasma cfDNA in the two groups and comprehensively compared the cfDNA fragmentomic features. Additionally, we reanalyzed the fragmentomic features of cfDNA from 16 healthy individuals and 16 COVID-19 patients, processed through one- and two-step centrifugation in our previous study, to investigate the impact of centrifugation on disease signals. RESULTS: Our results showed that there were no significant differences observed in the characteristics of nuclear cfDNA, including size, motif diversity score (MDS) of end motifs, and genome distribution, between plasma samples treated with one- and two-step centrifugation. The cfDNA size shortening in COVID-19 patients was observed in plasma samples with one- and two-step centrifugation methods. However, we observed a significantly higher relative abundance and longer size of cell-free mitochondrial DNA (mtDNA) in the one-step samples compared to the two-step samples. This difference in mtDNA caused by the one- and two-step centrifugation methods surpasses the pathological difference between COVID-19 patients and healthy individuals. CONCLUSIONS: Our findings indicate that one-step low-speed centrifugation is a simple and potentially suitable method for analyzing nuclear cfDNA fragmentation characteristics. These results offer valuable guidance for cfDNA research in various clinical scenarios.


Asunto(s)
COVID-19 , Ácidos Nucleicos Libres de Células , Centrifugación , SARS-CoV-2 , Humanos , Ácidos Nucleicos Libres de Células/sangre , Ácidos Nucleicos Libres de Células/aislamiento & purificación , Ácidos Nucleicos Libres de Células/genética , COVID-19/sangre , COVID-19/diagnóstico , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Recolección de Muestras de Sangre , Masculino , Femenino , Secuenciación Completa del Genoma , Adulto
2.
Clin Chim Acta ; 553: 117751, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38163539

RESUMEN

BACKGROUND: Cell-free DNA (cfDNA) is a promising analyte for non-invasive liquid biopsy, carrying abundant signatures for disease diagnosis and monitoring. In infectious disease researches, blood plasma samples are routinely heat-inactivated before proceeding with downstream analyses. However, the effects of heat inactivation on cfDNA fragmentomic analysis remain largely unclear, potentially introducing biases or altering the characteristics of cfDNA. METHODS: We performed a comprehensive investigation of cfDNA concentrations and fragmentomics in 21 plasma samples from 7 healthy individuals, by comparing the sample group without the heat inactivation to those exposed to once or twice heat-inactivation at 56 °C for 30 min and following freeze-thaw. RESULTS: Plasma samples with once and twice heat inactivation displayed no significant deviations in primary characteristics, including cfDNA concentrations, size profiles, end motif features, and genome-wide distributions, compared to samples without heat treatment. CONCLUSIONS: Heat-inactivated cfDNA can be utilized for liquid biopsy in infectious disease researches, without substantial impact on cfDNA concentrations and fragmentomic properties. This study provides essential insights into the effects of heat inactivation on cfDNA properties and will contribute to the development of reliable non-invasive biomarkers for infectious disease.


Asunto(s)
Ácidos Nucleicos Libres de Células , Calor , Humanos , Biomarcadores , Biopsia Líquida , Biomarcadores de Tumor/genética
3.
Mol Genet Genomics ; 298(4): 823-836, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37059908

RESUMEN

Coronavirus 2019 (COVID-19) is a complex disease that affects billions of people worldwide. Currently, effective etiological treatment of COVID-19 is still lacking; COVID-19 also causes damages to various organs that affects therapeutics and mortality of the patients. Surveillance of the treatment responses and organ injury assessment of COVID-19 patients are of high clinical value. In this study, we investigated the characteristic fragmentation patterns and explored the potential in tissue injury assessment of plasma cell-free DNA in COVID-19 patients. Through recruitment of 37 COVID-19 patients, 32 controls and analysis of 208 blood samples upon diagnosis and during treatment, we report gross abnormalities in cfDNA of COVID-19 patients, including elevated GC content, altered molecule size and end motif patterns. More importantly, such cfDNA fragmentation characteristics reflect patient-specific physiological changes during treatment. Further analysis on cfDNA tissue-of-origin tracing reveals frequent tissue injuries in COVID-19 patients, which is supported by clinical diagnoses. Hence, our work demonstrates and extends the translational merit of cfDNA fragmentation pattern as valuable analyte for effective treatment monitoring, as well as tissue injury assessment in COVID-19.


Asunto(s)
COVID-19 , Ácidos Nucleicos Libres de Células , Humanos , COVID-19/diagnóstico , Ácidos Nucleicos Libres de Células/genética
5.
Genome Res ; 32(2): 228-241, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35064006

RESUMEN

The pathogenesis of COVID-19 is still elusive, which impedes disease progression prediction, differential diagnosis, and targeted therapy. Plasma cell-free RNAs (cfRNAs) carry unique information from human tissue and thus could point to resourceful solutions for pathogenesis and host-pathogen interactions. Here, we performed a comparative analysis of cfRNA profiles between COVID-19 patients and healthy donors using serial plasma. Analyses of the cfRNA landscape, potential gene regulatory mechanisms, dynamic changes in tRNA pools upon infection, and microbial communities were performed. A total of 380 cfRNA molecules were up-regulated in all COVID-19 patients, of which seven could serve as potential biomarkers (AUC > 0.85) with great sensitivity and specificity. Antiviral (NFKB1A, IFITM3, and IFI27) and neutrophil activation (S100A8, CD68, and CD63)-related genes exhibited decreased expression levels during treatment in COVID-19 patients, which is in accordance with the dynamically enhanced inflammatory response in COVID-19 patients. Noncoding RNAs, including some microRNAs (let 7 family) and long noncoding RNAs (GJA9-MYCBP) targeting interleukin (IL6/IL6R), were differentially expressed between COVID-19 patients and healthy donors, which accounts for the potential core mechanism of cytokine storm syndromes; the tRNA pools change significantly between the COVID-19 and healthy group, leading to the accumulation of SARS-CoV-2 biased codons, which facilitate SARS-CoV-2 replication. Finally, several pneumonia-related microorganisms were detected in the plasma of COVID-19 patients, raising the possibility of simultaneously monitoring immune response regulation and microbial communities using cfRNA analysis. This study fills the knowledge gap in the plasma cfRNA landscape of COVID-19 patients and offers insight into the potential mechanisms of cfRNAs to explain COVID-19 pathogenesis.


Asunto(s)
COVID-19 , Ácidos Nucleicos Libres de Células , ARN/sangre , COVID-19/sangre , COVID-19/genética , Ácidos Nucleicos Libres de Células/sangre , Síndrome de Liberación de Citoquinas , Humanos , SARS-CoV-2
6.
Front Genet ; 12: 663098, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34122515

RESUMEN

Symptoms of coronavirus disease 2019 (COVID-19) range from asymptomatic to severe pneumonia and death. A deep understanding of the variation of biological characteristics in severe COVID-19 patients is crucial for the detection of individuals at high risk of critical condition for the clinical management of the disease. Herein, by profiling the gene expression spectrum deduced from DNA coverage in regions surrounding transcriptional start site in plasma cell-free DNA (cfDNA) of COVID-19 patients, we deciphered the altered biological processes in the severe cases and demonstrated the feasibility of cfDNA in measuring the COVID-19 progression. The up- and downregulated genes in the plasma of severe patient were found to be closely related to the biological processes and functions affected by COVID-19 progression. More importantly, with the analysis of transcriptome data of blood cells and lung cells from control group and cases with severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection, we revealed that the upregulated genes were predominantly involved in the viral and antiviral activity in blood cells, reflecting the intense viral replication and the active reaction of immune system in the severe patients. Pathway analysis of downregulated genes in plasma DNA and lung cells also demonstrated the diminished adenosine triphosphate synthesis function in lung cells, which was evidenced to correlate with the severe COVID-19 symptoms, such as a cytokine storm and acute respiratory distress. Overall, this study revealed tissue involvement, provided insights into the mechanism of COVID-19 progression, and highlighted the utility of cfDNA as a noninvasive biomarker for disease severity inspections.

7.
Front Microbiol ; 11: 522164, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33391190

RESUMEN

The Asian citrus psyllid (ACP), Diaphorina citri (Kuwayama) (Hemiptera: Liviidae), is a notorious Rutaceae plant pest. Frequent and extensive use of pesticides has resulted in severe insecticide resistance in ACP populations. Fully understanding the mechanism of ACP resistance to pesticides is vital for us to control or delay the development of resistance. Therefore, we compared the difference in resistance to imidacloprid and thiamethoxam between Hunan (Yongzhou, Chenzhou) and Guangdong (Guangzhou) ACP populations and analyzed the correlations between the resistance level and genes and symbiotic fungi. The results showed that the resistance of the Guangdong ACP population to imidacloprid and thiamethoxam was lower than that of Hunan ACP population, and the relative expression of genes associated with P450 mono-oxygenase and acetylcholinesterase was significantly lower in the Guangdong ACP population than in Hunan ACP population. The differences of mean relative abundances of four symbiotic bacteria among three populations were marginally significant; however, the mean relative abundance of 16 fungi among three populations was significantly different, and positive linear correlations were observed between the resistance level and two fungi (Aspergillus niger and Aureobasidium pullulans) and two genes (CYP4C70 and CYP4DB1). Negative correlations were only observed between the resistance level and two fungi (Golubevia pallescens and Acremonium sclerotigenum). Moreover, four fungi were unique to the Chenzhou population which was the highest resistance to imidacloprid and thiamethoxam. These findings suggested the P450 mono-oxygenase and symbiotic fungi together affected ACP resistance to imidacloprid and thiamethoxam. In the future, we may use environmental G. pallescens and A. sclerotigenum to control or delay ACP resistance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...