Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123900, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38262292

This study aims to address the challenge of matrix interference of various types of edible oils on intrinsic fluorescence of aflatoxin B1 (AFB1) by developing a novel solution. Considering the fluorescence internal filtering effect, the absorption (µa) and reduced scattering (µ's) coefficients at dual wavelengths (excitation: 375 nm, emission: 450 nm) were obtained by using integrating sphere technique, and were used to improve the quantitative prediction results for AFB1 contents in six different kinds of edible oils. A research process of "Monte Carlo (MC) simulation - phantom verification - actual sample validation" was conducted. The MC simulation was used to determine interference rule and correction parameters for fluorescence, the results indicated that the escaped fluorescence flux nonlinearly decreased with the µa, µ's at emission wavelength (µa,em, µ's,em) and µa at excitation wavelength (µa,ex), however increased with the µ's at excitation wavelength (µ's,ex). And the required optical parameters to eliminate the interference of matrix on fluorescence intensity are: effective attenuation coefficients at excitation and emission wavelengths (µeff,ex, µeff,em) and µ's,ex. Phantom verification was conducted to explore the feasibility of fluorescence correction based on the identified parameters by MC simulation, and determine the optimal machine learning method. The modelling results showed that least squares support vector regression (LSSVR) model could reach the best performance. Three kinds of edible oil (peanut, rapeseed, corn), each with two brands were used to prepare oil samples with different AFB1 contamination. The LSSVR model for AFB1 based on µeff,ex, µeff,em, µ's,ex and fluorescence intensity at 450 nm was calibrated, both correlation coefficients for calibration (Rc) and the validation (Rv) sets could reach 1.000, root mean square errors for calibration (RMSEC) and the validation (RMSEV) sets were as low as 0.038 and 0.099 respectively. This study proposed a novel method which is based solely on the absorption, scattering, and fluorescence characteristics at excitation and emission wavelengths to achieve accurate prediction of AFB1 content in different types of vegetable oils.


Algorithms , Oils , Computer Simulation , Phantoms, Imaging , Monte Carlo Method
2.
Mikrochim Acta ; 189(11): 402, 2022 10 03.
Article En | MEDLINE | ID: mdl-36190561

A novel ratiometric fluorescence probe was designed for the determination of Al3+ by self-assembling of NH2-MIL-101(Fe) and [Ru(bpy)3]2+. Under the excitation wavelength of 360 nm, the NH2-MIL-101(Fe)@[Ru(bpy)3]2+ presented a dual-emitting luminescent property at 440 and 605 nm, respectively. In the presence of Al3+, the blue fluorescence of NH2-MIL-101(Fe)@[Ru(bpy)3]2+ at 440 nm was enhanced remarkably, while the red emission at 605 nm was almost not influenced. Therefore, taking the fluorescence at 440 nm as the report signal and 605 nm as the reference signal, quantitative determination was achieved for Al3+ concentration in the ranges 0.2-25 µM and 25-250 µM. The limit of detection (LOD) and limit of quantification (LOQ) were calculated to be 73 nM and 244 nM, respectively. The sensing mechanisms were studied by theoretical calculation and optical spectra. The analysis of real food samples confirmed the suitability of the proposed method. More importantly, portable fluorescent test papers were successfully manufactured to provide a strategy for visual, rapid, and on-site detection of Al3+.


Metal-Organic Frameworks , Ruthenium , Aluminum , Ions
3.
ACS Appl Mater Interfaces ; 14(11): 13848-13857, 2022 Mar 23.
Article En | MEDLINE | ID: mdl-35286802

As a special heavy metal ion, copper ions (Cu2+) play an indispensable role in the fields of environmental protection and safety. Their excessive intake not only easily leads to diseases but also affects human health. Therefore, it is particularly important to construct a facile, effective, and highly selective Cu2+ probe. Herein, a novel Zr-tetraphenylporphyrin tetrasulfonic acid hydrate (TPPS) metal-organic framework (ZTM) was fabricated using TPPS as the ligand and exhibited strong red fluorescence with a high quantum yield of 12.22%. In addition, we designed a ratiometric fluorescent probe by introducing green fluorescein isothiocyanate (FITC), which was not subject to environmental interference and had high accuracy. When exposed to different amounts of Cu2+, the fluorescence emission at 667 nm from ZTMs is remarkably quenched, while that at 515 nm from FITC is enhanced, accompanied by a change in the solutions' fluorescence color from red to green under a UV lamp. Besides, the ZTMs solutions display an excellent ratiometric colorimetric response for Cu2+ and produce an obvious color change (from green to colorless) that is visible to the naked eye. The fabricated ZTMs@FITC fluorescent probe exhibits distinguished performance for Cu2+ detection with linear ranges of 0.1 to 5 µM and 5 to 50 µM, as well as a low detection limit of 5.61 nM. Moreover, a colorimetric sensor based on ZTMs exhibits a good linear range from 0.1 to 20 µM for Cu2+ with the detection limit of 4.96 nM. Furthermore, the dual-signal ratiometric sensor has significant specificity for Cu2+ and is successfully applied for monitoring Cu2+ in water samples, which proves its practical application value in the environment and biological systems.

4.
Food Chem ; 374: 131774, 2022 Apr 16.
Article En | MEDLINE | ID: mdl-34896945

Tetracyclines (TCs) residues in animal products have attracted extensive concern due to their potential toxic to human health. Accordingly, it is urgent to develop an efficient method to determine TCs for providing consumers with risk pre-warning. Herein, a novel tungsten oxide quantum dots (WxOy QDs) fluorescence probe for tetracycline (TET) detection was constructed through ethanol-thermal method, which exhibited intense blue fluorescence under 365 nm UV light. Interestingly, blue-emitting WxOy QDs could be quenched obviously after the addition of TET, which may be attributed to the synergism of inner filter effect (IFE), fluorescence resonance energy transfer (FRET) and photo-induced electron transfer (PET). Thereby, the fluorescence method was established for TET detection based on WxOy QDs. Additionally, the presented method was demonstrated by monitoring TET in milk and milk powder with satisfactory recoveries. More importantly, this work offered good demonstration for the detection of food hazard factors.


Quantum Dots , Tetracyclines , Animals , Fluorescence , Fluorescent Dyes , Humans , Limit of Detection , Oxides , Spectrometry, Fluorescence , Tungsten
5.
Acta Biomater ; 135: 342-355, 2021 11.
Article En | MEDLINE | ID: mdl-34450338

Because of increasing antibiotic resistance, careful construction of an efficient phototherm-nanozyme-hydrogel synergistic antibacterial platform is imperative for the treatment of bacteria-infected wounds. In this study, a carrageenan-based hydrogel embedded with polyethylene glycol dicarboxylic acid (COOH-PEG-COOH)-functionalized zirconium-ferrocene metal-organic frames nanosheets (PEG@Zr-Fc MOF hydrogel) was successfully constructed through COOH-PEG-COOH modification and physical assembly. The PEG@Zr-Fc MOF hydrogel could capture Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria through reactive oxygen species (ROS) destruction and kill some bacteria by disintegration of H2O2 into toxic hydroxyl radicals (•OH). Significantly, by introducing the photothermal performance of the PEG@Zr-Fc MOF hydrogel, the catalytic activity of the target material could be improved to achieve a synergistic sterilization effect. The wound infection model experiment confirmed that the PEG@Zr-Fc MOF hydrogel had powerful bactericidal activity and could achieve a rapid tissue repair effect. More importantly, the PEG@Zr-Fc MOF hydrogel had negligible biological toxicity and reduced the risk of inflammation. This study reveals that phototherm-nanozyme-hydrogel synergy holds great potential for bacterial wound infection therapy. Additionally, this is the first study to use two-dimensional MOF nanozymes in combination with hydrogel for antimicrobial therapy. STATEMENT OF SIGNIFICANCE: Bacteria-infected wound is one of the serious threats to public health, and this topic has attracted tremendous attention worldwide in recent decades. Although numerous traditional therapeutic strategies that depend on antibiotics have been developed and applied for treating bacteria-infected wound disease, the effect of wound treatment is becoming increasingly unsatisfactory due to bacterial resistance. The present study provides a feasible method to treat bacterial wound infection by constructing a carrageenan-based hydrogel embedded with polyethylene glycol dicarboxylic acid (COOH-PEG-COOH) functionalized zirconium-ferrocene metal organic frame nanosheets (PEG@Zr-Fc MOF hydrogel). The experiments with the wound infection model confirmed that the PEG@Zr-Fc MOF hydrogel had powerful bactericidal activity and could achieve a rapid tissue repair. This strategy provides a promising avenue to further accelerate the development of antibacterial therapy in biomedical fields.


Hydrogels , Wound Infection , Anti-Bacterial Agents/pharmacology , Humans , Hydrogels/pharmacology , Hydrogen Peroxide , Metallocenes , Staphylococcus aureus , Wound Infection/drug therapy , Zirconium
...