Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Plant Physiol Biochem ; 214: 108890, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38950462

RESUMEN

Drought stress affects plant photosynthesis, leading to a reduction in the quality and yield of crop production. Non-foliar organs play a complementary role in photosynthesis during plant growth and development and are important sources of energy. However, there are limited studies on the performance of non-foliar organs under drought stress. The photosynthetic-responsive differences of oat spikelet organs (glumes, lemmas and paleas) and flag leaves to drought stress during the grain-filling stage were examined. Under drought stress, photosynthetic performance of glume is more stable. Intercellular CO2 concentration (Ci), chlorophyll b, maximum photochemical efficiency of photosystem II. (Fv/Fm), and electron transport rate (ETR) were significantly higher in the glume compared to the flag leaf. The transcriptome data revealed that stable expression of the RCCR gene under drought stress was the main reason for maintaining higher chlorophyll content in the glume. Additionally, no differential expression genes (DEGs) related to Photosystem Ⅰ (PSI) reaction centers were found, and drought stress primarily affects the Photosystem II (PSII) reaction center. In spikelets, the CP43 and CP47 subunits of PSII and the AtpB subunit of ATP synthase were increased on the thylakoid membrane, contributing to photosynthetic stabilisation of spikelets as a means of supplementing the limited photosynthesis of the leaves under drought stress. The results enhanced understanding of the photosynthetic performance of oat spikelet during the grain-filling stage, and also provided an important basis on improving the photosynthetic capacity of non-foliar organs for the selection and breeding new oat varieties with high yield and better drought resistance.


Asunto(s)
Avena , Sequías , Fotosíntesis , Complejo de Proteína del Fotosistema II , Fotosíntesis/fisiología , Avena/genética , Avena/metabolismo , Avena/crecimiento & desarrollo , Avena/fisiología , Complejo de Proteína del Fotosistema II/metabolismo , Clorofila/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Estrés Fisiológico , Regulación de la Expresión Génica de las Plantas , Complejo de Proteína del Fotosistema I/metabolismo , Grano Comestible/fisiología , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
3.
Vaccine ; 42(2): 175-185, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38103966

RESUMEN

OBJECTIVES: To investigate factors that may influence humoral immunity post-vaccination with a COVID-19-inactivated vaccine (SC2IV). METHODS: A total of 1596 healthy individuals from the Seventh Affiliated Hospital, Sun Yat-sen University (1217) and Shenzhen Baotian Hospital (379) were enrolled in this study among which 694 and 218 participants were vaccinated with two-dose SC2IV, respectively. Physical examination indices were recorded. The levels of neutralizing antibody (NA), Spike IgG, receptor-binding domain (RBD) IgG, RBD IgG + IgM + IgA, and nucleocapsid IgG of SARS-CoV-2 were measured by a non-virus ELISA kit. Multiple statistical analyses were carried out to identify factors that influence humoral immunity post-vaccination. RESULTS: The two-dosage vaccination could induce NA in more than 90 % of recipients. The NA has the strongest correlation with anti-RBD IgG. Age is the most important independent index that affects the NA level, while basophil count, creatine kinase-MB, mean corpuscular hemoglobin, the ratio of albumin to urine creatinine, and thyroglobulin antibody have relatively minor contributions. Indices that affect the NA level were different between males and females. Antibodies targeting other epitopes of SARS-CoV-2 were detected in recipients without anti-RBD. CONCLUSIONS: The factors identified in association with the NA level post-vaccination may help to evaluate the protective effect, risk of re-infection, the severity of symptoms, and prognosis for vaccine recipients in clinical.


Asunto(s)
COVID-19 , Inmunidad Humoral , Femenino , Masculino , Humanos , SARS-CoV-2 , COVID-19/prevención & control , Vacunación , Anticuerpos Neutralizantes , Vacunas contra la COVID-19 , Inmunoglobulina G , Anticuerpos Antivirales
4.
Physiol Plant ; 175(5): e14020, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37882312

RESUMEN

Germination of aged seeds may be associated with specific metabolic changes. The objective of this study was to examine physiological and metabolic alterations before and after germination of control and aged oat (Avena sativa) seeds. The activity of antioxidant enzymes and the level of storage compounds were measured in the embryo and endosperm at 0, 4, 16, and 32 h of imbibition for control seeds and 0, 4, 16, 32, and 60 h of imbibition for medium vigor seeds after artificially accelerated aging; metabolomic changes were determined in embryos at 16 and 32 h of seed imbibition. In aged oat seeds, superoxide dismutase activity and catalase activity increased in the late imbibition stage. The content of soluble sugars decreased significantly in the later stages of imbibition, while the content of proteins increased in 32 h of seed imbibition eventually producing mannitol and proline. The mobilization of fat in deteriorated seeds was mainly through the sphingolipid metabolic pathway generated by cell growth-promoting dihydrosphingosine-1-phosphate. Ascorbic acid, avenanthramide and proline levels increased significantly at 60 h of imbibition, playing an important role in the germination of aged oat seeds.


Asunto(s)
Antioxidantes , Germinación , Antioxidantes/metabolismo , Germinación/fisiología , Avena/metabolismo , Semillas/metabolismo , Prolina/metabolismo
5.
Antioxidants (Basel) ; 12(9)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37760071

RESUMEN

Seed aging, a common physiological phenomenon during forage seed storage, is a crucial factor contributing to a loss of vigor, resulting in delayed seed germination and seedling growth, as well as limiting the production of hay. Extensive bodies of research are dedicated to the study of seed aging, with a particular focus on the role of the production and accumulation of reactive oxygen species (ROS) and the ensuing oxidative damage during storage as a primary cause of decreases in seed vigor. To preserve optimal seed vigor, ROS levels must be regulated. The excessive accumulation of ROS can trigger programmed cell death (PCD), which causes the seed to lose vigor permanently. LESION SIMULATING DISEASE (LSD) is one of the proteins that regulate PCD, encodes a small C2C2 zinc finger protein, and plays a molecular function as a transcriptional regulator and scaffold protein. However, genome-wide analysis of LSD genes has not been performed for alfalfa (Medicago sativa), as one of the most important crop species, and, presently, the molecular regulation mechanism of seed aging is not clear enough. Numerous studies have also been unable to explain the essence of seed aging for LSD gene regulating PCD and affecting seed vigor. In this study, we obtained six MsLSD genes in total from the alfalfa (cultivar Zhongmu No. 1) genome. Phylogenetic analysis demonstrated that the MsLSD genes could be classified into three subgroups. In addition, six MsLSD genes were unevenly mapped on three chromosomes in alfalfa. Gene duplication analysis demonstrated that segmental duplication was the key driving force for the expansion of this gene family during evolution. Expression analysis of six MsLSD genes in various tissues and germinating seeds presented their different expressions. RT-qPCR analysis revealed that the expression of three MsLSD genes, including MsLSD2, MsLSD5, and MsLSD6, was significantly induced by seed aging treatment, suggesting that they might play an important role in maintaining seed vigor. Although this finding will provide valuable insights into unveiling the molecular mechanism involved in losing vigor and new strategies to improve alfalfa seed germinability, additional research must comprehensively elucidate the precise pathways through which the MsLSD genes regulate seed vigor.

6.
Front Plant Sci ; 14: 1215084, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37396634

RESUMEN

Abiotic stresses have deleterious effects on seed germination and seedling establishment, leading to significant crop yield losses. Adverse environmental conditions can cause the accumulation of methylglyoxal (MG) within plant cells, which can negatively impact plant growth and development. The glyoxalase system, which consists of the glutathione (GSH)-dependent enzymes glyoxalase I (GLX1) and glyoxalase II (GLX2), as well as the GSH-independent glyoxalase III (GLX3 or DJ-1), plays a crucial role in detoxifying MG. However, genome-wide analysis of glyoxalase genes has not been performed for one of the agricultural important species, oat (Avena sativa). This study identified a total of 26 AsGLX1 genes, including 8 genes encoding Ni2+-dependent GLX1s and 2 genes encoding Zn2+-dependent GLX1s. Additionally, 14 AsGLX2 genes were identified, of which 3 genes encoded proteins with both lactamase B and hydroxyacylglutathione hydrolase C-terminal domains and potential catalytic activity, and 15 AsGLX3 genes encoding proteins containing double DJ-1 domains. The domain architecture of the three gene families strongly correlates with the clades observed in the phylogenetic trees. The AsGLX1, AsGLX2, and AsGLX3 genes were evenly distributed in the A, C, and D subgenomes, and gene duplication of AsGLX1 and AsGLX3 genes resulted from tandem duplications. Besides the core cis-elements, hormone responsive elements dominated the promoter regions of the glyoxalase genes, and stress responsive elements were also frequently observed. The subcellular localization of glyoxalases was predicted to be primarily in the cytoplasm, chloroplasts, and mitochondria, with a few presents in the nucleus, which is consistent with their tissue-specific expression. The highest expression levels were observed in leaves and seeds, indicating that these genes may play important roles in maintaining leaf function and ensuring seed vigor. Moreover, based on in silico predication and expression pattern analysis, AsGLX1-7A, AsGLX2-5D, AsDJ-1-5D, AsGLX1-3D2, and AsGLX1-2A were suggested as promising candidate genes for improving stress resistance or seed vigor in oat. Overall, the identification and analysis of the glyoxalase gene families in this study can provide new strategies for improving oat stress resistance and seed vigor.

7.
Ecotoxicol Environ Saf ; 263: 115285, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37517306

RESUMEN

Selenium (Se) as an essential nutrient for human beings at trace concentrations, the allowable concentration for the human is only 40 µg/L. Iron sulfide (FeS) nanoparticles have been applied for excessive of selenium (Se) remediation in surface water and groundwater. In this study, FeS nanoparticles were anchored onto biochar (BC) to reduce agglomeration of FeS and prepared into the composite of FeS-BC by pyrolysis to economically and efficiently remove Se(IV) from simulated wastewater based on the excellent performance of FeS and the low cost of BC. Characterizations presented the uniform anchorage of FeS on the BC surface to prevent agglomeration. The results of batch experiments revealed that the removal of Se(IV) by FeS-BC nanomaterials significantly depended on the pH value, with the maximum removal of ∼174.96 mg/g at pH 3.0. A pseudo-second-order kinetic model well reflected the kinetic removal of Se(IV) in pure Se(IV) solution with different concentration, as well as the coexistence of K+, Ca2+, Cl-, and SO42- ions. The presence of K+ ions significantly inhibited the removal of Se(IV) with the increase of K+ ion concentration compared with the effect of the other three ions. SEM-EDS and XPS analyses indicated that the removal process was achieved through adsorption by surface complexation, and reductive precipitation of Se(IV) into Se0 with the electron donor of Fe(II) and S(-II) ions. The FeS-BC nanomaterial exhibited an excellent application prospect in the remediation of Se(IV).


Asunto(s)
Selenio , Contaminantes Químicos del Agua , Humanos , Selenio/análisis , Aguas Residuales , Descontaminación , Contaminantes Químicos del Agua/análisis , Carbón Orgánico/química , Adsorción , Cinética , Agua/análisis
8.
Front Plant Sci ; 14: 1170947, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152128

RESUMEN

Advances in optical imaging technology using rapid and non-destructive methods have led to improvements in the efficiency of seed quality detection. Accurately timing the harvest is crucial for maximizing the yield of higher-quality Siberian wild rye seeds by minimizing excessive shattering during harvesting. This research applied integrated optical imaging techniques and machine learning algorithms to develop different models for classifying Siberian wild rye seeds based on different maturity stages and grain positions. The multi-source fusion of morphological, multispectral, and autofluorescence data provided more comprehensive information but also increases the performance requirements of the equipment. Therefore, we employed three filtering algorithms, namely minimal joint mutual information maximization (JMIM), information gain, and Gini impurity, and set up two control methods (feature union and no-filtering) to assess the impact of retaining only 20% of the features on the model performance. Both JMIM and information gain revealed autofluorescence and morphological features (CIELab A, CIELab B, hue and saturation), with these two filtering algorithms showing shorter run times. Furthermore, a strong correlation was observed between shoot length and morphological and autofluorescence spectral features. Machine learning models based on linear discriminant analysis (LDA), random forests (RF) and support vector machines (SVM) showed high performance (>0.78 accuracies) in classifying seeds at different maturity stages. Furthermore, it was found that there was considerable variation in the different grain positions at the maturity stage, and the K-means approach was used to improve the model performance by 5.8%-9.24%. In conclusion, our study demonstrated that feature filtering algorithms combined with machine learning algorithms offer high performance and low cost in identifying seed maturity stages and that the application of k-means techniques for inconsistent maturity improves classification accuracy. Therefore, this technique could be employed classification of seed maturity and superior physiological quality for Siberian wild rye seeds.

9.
Neuropsychiatr Dis Treat ; 18: 2891-2903, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36540673

RESUMEN

Objective: In order to determine research hotspots and prospective directions, this work used VOSviewer and CiteSpace to assess the current state of insular epilepsy research. Methods: We looked for pertinent research about insular epilepsy published between the first of January 2000 and the thirtieth of April 2022 in the Web of Science Core Collection (WoSCC) database. CiteSpace and VOSviewer were used to build a knowledge atlas by analyzing authors, institutions, countries, keywords with citation bursts, keyword clustering, keyword co-occurrence, publishing journals, reference co-citation patterns, and other factors. Results: A total of 305 publications on insular epilepsy were found. Nguyen DK had the most articles published (37), whereas Mauguière F and Isnard J had the highest average number of citations/publications (39.37 and 38.09, respectively). The leading countries and institutions in this field were the United States (82 papers) and Université de Montréal (40 papers). Authors, countries, and institutions appear to be actively collaborating. Hot topics and research frontiers included surgical treatment, functional network connectivity, and the application of neuroimaging methods to study insular epilepsy. Conclusion: In summary, the most influential articles, authors, journals, organizations, and countries on the subject of insular epilepsy were determined by this analysis. This study investigated the area of insular epilepsy research and forecasted upcoming trends using co-occurrence and evolution methods.

10.
Heliyon ; 8(11): e11406, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36387567

RESUMEN

Background: Sleep is critical to human beings in a surprisingly diverse set of ways, and there is, thus, continual investigation into the mechanisms of sleep. Although current studies have confirmed that multiple brain regions are involved in the regulation of both sleep and wakefulness, the association between certain important brain regions such as the insula and sleep is still unclear. Objective: The purpose of this study was to systematically review studies on the insula and sleep and to discuss the relationship between the insula and sleep. Methods: We searched the PubMed and Web of Science Core Collection (WoSCC) for articles on sleep and the insula. The time span was from inception to June 30, 2022. The search results were then narratively summarized. Results: A total of 939 studies were identified in the PubMed and WoSCC of which 115 studies were finally included in the narrative synthesis. These 115 studies can be roughly divided into 41 studies on insomnia, 39 on sleep deprivation, 33 on sleep-related experiments examining the insula, and 2 studies using basic experiments. Conclusion: The combined findings of many sleep-related studies have confirmed a close link between the insula and sleep loss, including insomnia, sleep deprivation, sleep-related disorders, and more. Although these results do not directly confirm that the insula is involved in sleep, a overall analysis of the results indicates that the insula may be a potential key brain region involved in sleep.

11.
Sensors (Basel) ; 22(19)2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36236620

RESUMEN

Multispectral imaging (MSI) has become a new fast and non-destructive detection method in seed identification. Previous research has usually focused on single models in MSI data analysis, which always employed all features and increased the risk to efficiency and that of system cost. In this study, we developed a stacking ensemble learning (SEL) model for successfully identifying a single seed of sickle alfalfa (Medicago falcata), hybrid alfalfa (M. varia), and alfalfa (M. sativa). SEL adopted a three-layer structure, i.e., level 0 with principal component analysis (PCA), linear discriminant analysis (LDA), and quadratic discriminant analysis (QDA) as models of dimensionality reduction and feature extraction (DRFE); level 1 with support vector machine (SVM), multiple logistic regression (MLR), generalized linear models with elastic net regularization (GLMNET), and eXtreme Gradient Boosting (XGBoost) as basic learners; and level 3 with XGBoost as meta-learner. We confirmed that the values of overall accuracy, kappa, precision, sensitivity, specificity, and sensitivity in the SEL model were all significantly higher than those in basic models alone, based on both spectral features and a combination of morphological and spectral features. Furthermore, we also developed a feature filtering process and successfully selected 5 optimal features out of 33 ones, which corresponded to the contents of chlorophyll, anthocyanin, fat, and moisture in seeds. Our SEL model in MSI data analysis provided a new way for seed identification, and the feature filter process potentially could be used widely for development of a low-cost and narrow-channel sensor.


Asunto(s)
Antocianinas , Medicago , Clorofila , Semillas , Máquina de Vectores de Soporte
12.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36232950

RESUMEN

Abiotic stress disturbs plant cellular redox homeostasis, inhibiting seed germination and plant growth. This is a crucial limitation to crop yield. Glutathione reductase (GR) is an important component of the ascorbate-glutathione (AsA-GSH) cycle which is involved in multiple plant metabolic processes. In the present study, GRs in A. sativa (AsGRs) were selected to explore their molecular characterization, phylogenetic relationship, and RNA expression changes during seed imbibition under abiotic stress. Seven AsGR genes were identified and mapped on six chromosomes of A, C, and D subgenomes. Phylogenetic analysis and subcellular localization of AsGR proteins divided them into two sub-families, AsGR1 and AsGR2, which were predicted to be mainly located in cytoplasm, mitochondrion, and chloroplast. Cis-elements relevant to stress and hormone responses are distributed in promoter regions of AsGRs. Tissue-specific expression profiling showed that AsGR1 genes were highly expressed in roots, leaves, and seeds, while AsGR2 genes were highly expressed in leaves and seeds. Both AsGR1 and AsGR2 genes showed a decreasing-increasing expression trend during seed germination under non-stress conditions. In addition, their responses to drought, salt, cold, copper, H2O2, and ageing treatments were quite different during seed imbibition. Among the seven AsGR genes, AsGR1-A, AsGR1-C, AsGR2-A, and AsGR2-D responded more significantly, especially under drought, ageing, and H2O2 stress. This study has laid the ground for the functional characterization of GR and the improvement of oat stress tolerance and seed vigor.


Asunto(s)
Avena , Peróxido de Hidrógeno , Avena/metabolismo , Cobre/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glutatión/metabolismo , Glutatión Reductasa/metabolismo , Hormonas/metabolismo , Peróxido de Hidrógeno/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN/metabolismo , Semillas/metabolismo , Estrés Fisiológico/genética
13.
World J Clin Cases ; 10(23): 8352-8359, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36159532

RESUMEN

BACKGROUND: Incontinentia pigmenti (IP) is a rare X-linked dominant genetic disorder that can be fatal in male infants. It is a disease that affects many systems of the human body. In addition to characteristic skin changes, patients may also have pathological features of the eyes, teeth, and central nervous system. Therefore, the lesions in these systems may be the first symptoms for which patients seek treatment. To date, no cases of IP complicated by intracranial arachnoid cyst (IAC) have been reported. This paper aims to report a case of IP with IAC in order to share the diagnosis and treatment experience of this rare case with other clinicians. CASE SUMMARY: An 11-year-old female patient suffered intermittent limb convulsions for five months and was sent to hospital. In the initial stage, the patient was considered to have primary epilepsy. Further investigation of the patient's medical history, physical examination and imaging examination led to the diagnosis of IP combined with intracranial space-occupying lesions, and secondary epilepsy. The patient was treated with craniotomy, and postoperative pathology revealed an IAC. The patient recovered well after craniotomy and had no obvious surgery-related complications. During the follow-up period, the patient did not have recurrent epilepsy symptoms. CONCLUSION: IP is a multi-system disease that presents with typical skin lesions at birth, but the long-term prognosis of this disease depends on the involvement of systems other than the skin, especially nervous system and ocular lesions.

14.
Front Med (Lausanne) ; 9: 939149, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36177332

RESUMEN

Chronic kidney disease (CKD) is often accompanied by dyslipidemia, and abnormal lipid metabolism in proximal tubule cells is considered closely related to the dysfunction of proximal tubule cells and eventually leads to accelerated kidney damage. Nuclear factor E2-related factor 2 (Nrf2), known as a redox-sensitive transcription factor, is responsible for regulating cellular redox homeostasis. However, the exact role of Nrf2 in dyslipidemia-induced dysfunction of proximal tubule cells is still not fully elucidated. In the present study, we showed that palmitic acid (PA) induced mitochondrial damage, excessive mitochondrial reactive oxygen species (ROS) (mtROS) generation, and cell injury in HK-2 cells. We further found that mtROS generation was involved in PA-induced mitochondrial dysfunction, cytoskeletal damage, and cell apoptosis in HK-2 cells. In addition, we demonstrated that the Nrf2/ARE signaling pathway was activated in PA-induced HK-2 cells and that silencing Nrf2 dramatically aggravated PA-induced mtROS production, mitochondrial damage, cytoskeletal damage and cell apoptosis in HK-2 cells. However, the mitochondrial antioxidant MitoTEMPOL effectively eliminated these negative effects of Nrf2 silencing in HK-2 cells under PA stimulation. Moreover, activation of the Nrf2/ARE signaling pathway with tBHQ attenuated renal injury, significantly reduced mtROS generation, and improved mitochondrial function in rats with HFD-induced obesity. Taken together, these results suggest that the Nrf2/ARE-mediated antioxidant response plays a protective role in hyperlipidemia-induced renal injury by ameliorating mtROS-mediated mitochondrial dysfunction and that enhancing Nrf2 antioxidant signaling provides a potential therapeutic strategy for kidney injury in CKD with hyperlipidemia.

15.
Int J Mol Sci ; 23(8)2022 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-35457004

RESUMEN

Zoysiagrass (Zoysia japonica) is a popular turfgrass species and is widely used for sport turf and urban landscape. Zoysiagrass is often infected by Puccinia zoysiae, which causes a loss in turf quality. The physiological and molecular mechanisms of rust resistance are poorly understood in this species. In this study, the rust-resistant and susceptible lines of zoysiagrass were inoculated with P. zoysiae, and alterations of leaf cell structure, physiological indicators and transcriptomic response were investigated at the various stages of inoculation. After inoculation, the cell membranes, nucleus, mitochondria, and chloroplast were all impaired, followed by abnormal physiological metabolism. The damage occurred earlier and more severely in the susceptible line. Changes in electrolyte leakage and chlorophyll content varied with the genotype and the inoculation stages. The transcriptome analysis showed that plant hormones, MAPK signal transduction pathway, photosynthesis and energy generation pathways were significantly enriched in the early response, in both the resistant and susceptible lines. The results provided insights into the physiological and molecular mechanisms of rust disease resistance and would benefit the breeding of rust-resistant varieties in zoysiagrass and related turfgrass species.


Asunto(s)
Basidiomycota , Fitomejoramiento , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Hojas de la Planta/genética , Poaceae/genética
16.
Sensors (Basel) ; 22(7)2022 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-35408374

RESUMEN

Seed vigor is an important index to evaluate seed quality in plant species. How to evaluate seed vigor quickly and accurately has always been a serious problem in the seed research field. As a new physical testing method, multispectral technology has many advantages such as high sensitivity and accuracy, nondestructive and rapid application having advantageous prospects in seed quality evaluation. In this study, the morphological and spectral information of 19 wavelengths (365, 405, 430, 450, 470, 490, 515, 540, 570, 590, 630, 645, 660, 690, 780, 850, 880, 940, 970 nm) of alfalfa seeds with different level of maturity and different harvest periods (years), representing different vigor levels and age of seed, were collected by using multispectral imaging. Five multivariate analysis methods including principal component analysis (PCA), linear discriminant analysis (LDA), support vector machine (SVM), random forest (RF) and normalized canonical discriminant analysis (nCDA) were used to distinguish and predict their vigor. The results showed that LDA model had the best effect, with an average accuracy of 92.9% for seed samples of different maturity and 97.8% for seed samples of different harvest years, and the average sensitivity, specificity and precision of LDA model could reach more than 90%. The average accuracy of nCDA in identifying dead seeds with no vigor reached 93.3%. In identifying the seeds with high vigor and predicting the germination percentage of alfalfa seeds, it could reach 95.7%. In summary, the use of Multispectral Imaging and multivariate analysis in this experiment can accurately evaluate and predict the seed vigor, seed viability and seed germination percentages of alfalfa, providing important technical methods and ideas for rapid non-destructive testing of seed quality.


Asunto(s)
Germinación , Medicago sativa , Análisis Discriminante , Semillas , Tecnología
17.
Antioxidants (Basel) ; 11(2)2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35204277

RESUMEN

Seed aging is a major challenge for food security, agronomic production, and germplasm conservation, and reactive oxygen species (ROS) and methylglyoxal (MG) are highly involved in the aging process. However, the regulatory mechanisms controlling the abundance of ROS and MG are not well characterized. To characterize dynamic response of antioxidant and glyoxalase systems during seed aging, oat (Avena sativa L.) aged seeds with a range of germination percentages were used to explore physiological parameters, biochemical parameters and relevant gene expression. A reference transcriptome based on PacBio sequencing generated 67,184 non-redundant full-length transcripts, with 59,050 annotated. Subsequently, eleven seed samples were used to investigate the dynamic response of respiration, ROS and MG accumulation, antioxidant enzymes and glyoxalase activity, and associated genes expression. The 48 indicators with high correlation coefficients were divided into six major response patterns, and were used for placing eleven seed samples into four groups, i.e., non-aged (Group N), higher vigor (Group H), medium vigor (Group M), and lower vigor (Group L). Finally, we proposed a putative model for aging response and self-detoxification mechanisms based on the four groups representing different aging levels. In addition, the outcomes of the study suggested the dysfunction of antioxidant and glyoxalase system, and the accumulation of ROS and MG definitely contribute to oat seed aging.

18.
Chem Commun (Camb) ; 58(14): 2355-2358, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35080537

RESUMEN

A simple, sensitive and repeatable D2O-single cell Raman spectroscopy method is developed to quantify the inhibitory activity of anticancer drugs on cancer cell metabolism. The IC50 values obtained from A549 cells incubated with cisplatin and taxol are comparable with results of CCK-8 and ATP luminescent cell viability assays.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , Paclitaxel/farmacología , Análisis de la Célula Individual , Células A549 , Antineoplásicos/química , Supervivencia Celular/efectos de los fármacos , Cisplatino/química , Óxido de Deuterio/antagonistas & inhibidores , Óxido de Deuterio/farmacología , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Paclitaxel/química , Espectrometría Raman , Relación Estructura-Actividad
19.
Rapid Commun Mass Spectrom ; 36(5): e9237, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34904282

RESUMEN

RATIONALE: Polycyclic aromatic hydrocarbons (PAHs) are a class of environmental contaminants with carcinogenic effect drawing worldwide attention. PAHs can be converted into hydroxylated PAHs (OH-PAHs) through metabolic processes. Thus, they are commonly considered as an important class of biomarkers of PAH exposure. However, direct analysis of related metabolites of these environmental pollutants in biological samples using mass spectrometry is still challenging because of matrix effect and ion suppression during nanoelectrospray ionization (nano-ESI). METHODS: In our previous work, a polarity-reversed nanoelectrospray ionization (PR-nESI) technique was developed for the analysis of biomolecules in complex matrices. In this work, we further optimized PR-nESI for direct and sensitive analysis of OH-PAHs in different samples under severe salt interference in negative polarity. RESULTS: Compared with conventional nano-ESI, the optimized PR-nESI method realized sensitive detection of 1-naphthol in samples with a concentration of salt up to millimolar level. The signal-to-noise ratio (S/N) of OH-PAHs was increased by 1-2 orders of magnitude compared with conventional nano-ESI. Six different OH-PAHs were successfully detected with high S/N ratio using PR-nESI. PR-nESI was further successfully applied in the analysis of OH-PAHs in spiked fetal blood serum, human urine, and single-cell samples. For environmentally exposed subjects, the detections of OH-PAHs in single-cell samples and urines from human smokers were successfully conducted. CONCLUSION: The optimized PR-nESI method was successfully applied for the sensitive analysis of OH-PAHs in complex biological samples with severe salt effects. Based on the present study, PR-nESI can have a promising prospect for the sensitive analysis of other metabolites of environmental pollutants in negative polarity.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Contaminantes Ambientales/sangre , Contaminantes Ambientales/química , Contaminantes Ambientales/orina , Humanos , Hidroxilación , Estructura Molecular , Hidrocarburos Policíclicos Aromáticos/sangre , Hidrocarburos Policíclicos Aromáticos/orina , Sensibilidad y Especificidad , Suero/química , Orina/química
20.
World J Clin Cases ; 9(29): 8871-8878, 2021 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-34734069

RESUMEN

BACKGROUND: Synovial sarcoma (SS) is a highly malignant tumor of unknown histological origin. This tumor can occur in various parts of the body, including those without synovial structures, but mainly in and around the joints, mostly in the lower extremities. Primary intracranial SSs are remarkably rare. This paper aims to report a case of primary intracranial SS with hemorrhage. CASE SUMMARY: A 35-year-old male patient suffered a headache and slurred speech during manual labor and was sent to the emergency department. Through imaging examination, the patient was considered to have high-grade glioma complicated with hemorrhage and was treated with craniotomy. Postoperative pathology revealed SS. positron emission tomography/computed tomography was performed, which ruled out the possibility of metastasis to the intracranial from other parts of the body. Postoperative radiotherapy was given to the patient, during which radiation necrosis occurred. Sixteen months after craniotomy, cranial magnetic resonance imaging revealed recurrence of the tumor. CONCLUSION: Primary intracranial SS is a rare malignant tumor. Primary intracranial SS with hemorrhage and radiation necrosis should be carefully monitored during postoperative radiotherapy. Surgical resection of the tumor combined with postoperative radiotherapy and chemotherapy is currently used, but the prognosis is poor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA