Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 58
1.
Mol Cancer ; 23(1): 85, 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38678233

Nuclear condensates have been shown to regulate cell fate control, but its role in oncogenic transformation remains largely unknown. Here we show acquisition of oncogenic potential by nuclear condensate remodeling. The proto-oncogene SS18 and its oncogenic fusion SS18-SSX1 can both form condensates, but with drastically different properties and impact on 3D genome architecture. The oncogenic condensates, not wild type ones, readily exclude HDAC1 and 2 complexes, thus, allowing aberrant accumulation of H3K27ac on chromatin loci, leading to oncogenic expression of key target genes. These results provide the first case for condensate remodeling as a transforming event to generate oncogene and such condensates can be targeted for therapy. One sentence summary: Expulsion of HDACs complexes leads to oncogenic transformation.


Histone Deacetylase 1 , Histone Deacetylase 2 , Proto-Oncogene Mas , Humans , Histone Deacetylase 1/metabolism , Histone Deacetylase 1/genetics , Histone Deacetylase 2/metabolism , Histone Deacetylase 2/genetics , Cell Nucleus/metabolism , Chromatin/metabolism , Chromatin/genetics , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Histones/metabolism , Animals
2.
J Hazard Mater ; 470: 134130, 2024 May 15.
Article En | MEDLINE | ID: mdl-38555668

Biogenic nanoparticle (NP), derived from plant sources, is gaining prominence as a viable, cost-effective, sustainable, and biocompatible alternative for mitigating the extensive environmental impact of arsenic on the interplay between plant-soil system. Herein, the impact of green synthesized zinc oxide nanoparticles (ZnONPs) was assessed on Catharanthus roseus root system-associated enzymes and their possible impact on microbiome niches (rhizocompartments) and overall plant performance under arsenic (As) gradients. The application of ZnONPs at different concentrations successfully modified the arsenic uptake in various plant parts, with the root arsenic levels increasing 1.5 and 1.4-fold after 25 and 50 days, respectively, at medium concentration compared to the control. Moreover, ZnONPs gradients regulated the various soil enzyme activities. Notably, urease and catalase activities showed an increase when exposed to low concentrations of ZnONPs, whereas saccharase and acid phosphatase displayed the opposite pattern, showing increased activities under medium concentration which possibly in turn influence the plant root system associated microflora. The use of nonmetric multidimensional scaling ordination revealed a significant differentiation (with a significance level of p < 0.05) in the structure of both bacterial and fungal communities under different treatment conditions across root associated niches. Bacterial and fungal phyla level analysis showed that Proteobacteria and Basidiomycota displayed a significant increase in relative abundance under medium ZnONPs concentration, as opposed to low and high concentrations, respectively. Similarly, in depth genera level analysis revealed that Burkholderia, Halomonas, Thelephora and Sebacina exhibited a notably high relative abundance in both the rhizosphere and rhizoplane (the former refers to the soil region influenced by root exudates, while the latter is the root surface itself) under medium concentrations of ZnONPs, respectively. These adjustments to the plant root-associated microcosm likely play a role in protecting the plant from oxidative stress by regulating the plant's antioxidant system and overall biomass.


Arsenic , Plant Roots , Soil Microbiology , Soil Pollutants , Soil Pollutants/metabolism , Arsenic/metabolism , Arsenic/chemistry , Plant Roots/metabolism , Plant Roots/drug effects , Catharanthus/metabolism , Catharanthus/drug effects , Green Chemistry Technology , Metal Nanoparticles/chemistry , Microbiota/drug effects , Bacteria/metabolism , Bacteria/drug effects , Rhizosphere
3.
ACS Nano ; 18(5): 3851-3870, 2024 Feb 06.
Article En | MEDLINE | ID: mdl-38266182

Polymer nanocomposites combine the merits of polymer matrices and the unusual effects of nanoscale reinforcements and have been recognized as important members of the material family. Being a fundamental material property, thermal conductivity directly affects the molding and processing of materials as well as the design and performance of devices and systems. Polymer nanocomposites have been used in numerous industrial fields; thus, high demands are placed on the thermal conductivity feature of polymer nanocomposites. In this Perspective, we first provide roadmaps for the development of polymer nanocomposites with isotropic, in-plane, and through-plane high thermal conductivities, demonstrating the great effect of nanoscale reinforcements on thermal conductivity enhancement of polymer nanocomposites. Then the significance of the thermal conductivity of polymer nanocomposites in different application fields, including wearable electronics, thermal interface materials, battery thermal management, dielectric capacitors, electrical equipment, solar thermal energy storage, biomedical applications, carbon dioxide capture, and radiative cooling, are highlighted. In future research, we should continue to focus on methods that can further improve the thermal conductivity of polymer nanocomposites. On the other hand, we should pay more attention to the synergistic improvement of the thermal conductivity and other properties of polymer nanocomposites. Emerging polymer nanocomposites with high thermal conductivity should be based on application-oriented research.

4.
Small Methods ; : e2301386, 2024 Jan 18.
Article En | MEDLINE | ID: mdl-38236164

Boron nitride nanosheets (BNNSs) have garnered significant attention across diverse fields; however, accomplishing on-demand, large-scale, and highly efficient preparation of BNNSs remains a challenge. Here, an on-demand preparation (OdP) method combining high-pressure homogenization and short-time ultrasonication is presented; it enables a highly efficient and controllable preparation of BNNSs from bulk hexagonal boron nitride (h-BN). The homogenization pressure and number of cycles are adjusted, and the production efficiency and yield of BNNSs reach 0.95 g g-1 h-1 and 82.8%, respectively, which significantly exceed those attained by using existing methods. The universality of the OdP method is demonstrated on h-BN raw materials of various bulk sizes from various producers. Furthermore, this method allows the preparation of BNNSs having specific sizes based on the final requirements. Both simulation and experimental results indicate that large BNNSs are particularly suitable for enhancing the thermal conductivity and electrical insulation properties of dielectric polymer nanocomposites. Interestingly, the small BNNS-filled photonic nanocomposite films fabricated via the OdP method exhibit superior daytime radiative cooling properties. Additionally, the OdP method offers the benefits of low energy consumption and reduced greenhouse gas emissions and fossil energy use. These findings underscore the unique advantages of the OdP method over other techniques for a high-efficiency and controllable preparation of large BNNSs.

5.
Adv Mater ; 36(18): e2308799, 2024 May.
Article En | MEDLINE | ID: mdl-38270498

The heterogeneity, species diversity, and poor mechanical stability of solid electrolyte interphases (SEIs) in conventional carbonate electrolytes result in the irreversible exhaustion of lithium (Li) and electrolytes during cycling, hindering the practical applications of Li metal batteries (LMBs). Herein, this work proposes a solvent-phobic dynamic liquid electrolyte interphase (DLEI) on a Li metal (Li-PFbTHF (perfluoro-butyltetrahydrofuran)) surface that selectively transports salt and induces salt-derived SEI formation. The solvent-phobic DLEI with C-F-rich groups dramatically reduces the side reactions between Li, carbonate solvents, and humid air, forming a LiF/Li3PO4-rich SEI. In situ electrochemical impedance spectroscopy and Ab-initio molecular dynamics demonstrate that DLEI effectively stabilizes the interface between Li metal and the carbonate electrolyte. Specifically, the LiFePO4||Li-PFbTHF cells deliver 80.4% capacity retention after 1000 cycles at 1.0 C, excellent rate capacity (108.2 mAh g-1 at 5.0 C), and 90.2% capacity retention after 550 cycles at 1.0 C in full-cells (negative/positive (N/P) ratio of 8) with high LiFePO4 loadings (15.6 mg cm-2) in carbonate electrolyte. In addition, the 0.55 Ah pouch cell of 252.0 Wh kg-1 delivers stable cycling. Hence, this study provides an effective strategy for controlling salt-derived SEI to improve the cycling performances of carbonate-based LMBs.

6.
J Environ Manage ; 351: 119978, 2024 Feb.
Article En | MEDLINE | ID: mdl-38169258

Global climate change exerts a significant impact on sustainable horticultural crop production and quality. Rising Global temperatures have compelled the agricultural community to adjust planting and harvesting schedules, often necessitating earlier crop cultivation. Notably, climate change introduces a suite of ominous factors, such as greenhouse gas emissions (CGHs), including elevated temperature, increased carbon dioxide (CO2) concentrations, nitrous oxide (N2O) and methane (CH4) ozone depletion (O3), and deforestation, all of which intensify environmental stresses on crops. Consequently, climate change stands poised to adversely affect crop yields and livestock production. Therefore, the primary objective of the review article is to furnish a comprehensive overview of the multifaceted factors influencing horticulture production, encompassing fruits, vegetables, and plantation crops with a particular emphasis on greenhouse gas emissions and environmental stressors such as high temperature, drought, salinity, and emission of CO2. Additionally, this review will explore the implementation of novel horticultural crop varieties and greenhouse technology that can contribute to mitigating the adverse impact of climate change on agricultural crops.


Greenhouse Gases , Greenhouse Gases/analysis , Climate Change , Carbon Dioxide/analysis , Agriculture , Crops, Agricultural , Horticulture , Nitrous Oxide/analysis , Methane/analysis , Soil
7.
Semin Dial ; 37(2): 101-109, 2024.
Article En | MEDLINE | ID: mdl-37743062

OBJECTIVE: To perform a systematic review of risk prediction models for cardiovascular (CV) events in hemodialysis (HD) patients, and provide a reference for the application and optimization of related prediction models. METHODS: PubMed, The Cochrane Library, Web of Science, and Embase databases were searched from inception to 1 February 2023. Two authors independently conducted the literature search, selection, and screening. The Prediction model Risk Of Bias Assessment Tool (PROBAST) was applied to evaluate the risk of bias and applicability of the included literature. RESULTS: A total of nine studies containing 12 models were included, with performance measured by the area under the receiver operating characteristic curve (AUC) lying between 0.70 and 0.88. Age, diabetes mellitus (DM), C-reactive protein (CRP), and albumin (ALB) were the most commonly identified predictors of CV events in HD patients. While the included models demonstrated good applicability, there were still certain risks of bias, primarily related to inadequate handling of missing data and transformation of continuous variables, as well as a lack of model performance validation. CONCLUSION: The included models showed good overall predictive performance and can assist healthcare professionals in the early identification of high-risk individuals for CV events in HD patients. In the future, the modeling methods should be improved, or the existing models should undergo external validation to provide better guidance for clinical practice.


Cardiovascular Diseases , Renal Dialysis , Humans , Prognosis , Renal Dialysis/adverse effects , Risk Assessment , C-Reactive Protein , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology
8.
Science ; 382(6676): 1247, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-38096287

A wearable device allows the human body to adapt to changes in ambient temperature.

9.
Int J Mol Sci ; 24(18)2023 Sep 12.
Article En | MEDLINE | ID: mdl-37762295

Affected by global warming; heat stress is the main limiting factor for crop growth and development. Brassica rapa prefers cool weather, and heat stress has a significant negative impact on its growth, development, and metabolism. Understanding the regulatory patterns of heat-resistant and heat-sensitive varieties under heat stress can help deepen understanding of plant heat tolerance mechanisms. In this study, an integrative analysis of transcriptome and metabolome was performed on the heat-tolerant ('WYM') and heat-sensitive ('AJH') lines of Brassica rapa to reveal the regulatory networks correlated to heat tolerance and to identify key regulatory genes. Heat stress was applied to two Brassica rapa cultivars, and the leaves were analyzed at the transcriptional and metabolic levels. The results suggest that the heat shock protein (HSP) family, plant hormone transduction, chlorophyll degradation, photosynthetic pathway, and reactive oxygen species (ROS) metabolism play an outstanding role in the adaptation mechanism of plant heat tolerance. Our discovery lays the foundation for future breeding of horticultural crops for heat resistance.


Brassica rapa , Thermotolerance , Brassica rapa/genetics , Transcriptome , Plant Breeding , Metabolome , Thermotolerance/genetics
10.
Biosens Bioelectron ; 236: 115441, 2023 Sep 15.
Article En | MEDLINE | ID: mdl-37271097

CdIn2S4 is an interesting ternary metal sulfide whose narrow band gap and tunable optical properties offer new opportunities for the development of novel ECL emitters. Here, we use a simple hydrothermal synthesis to obtain hollow spindle CdIn2S4 (S-CIS), which exhibits strong near-infrared electrochemiluminescence (ECL) emission with K2S2O8 as a coreactant at a low excitation potential (-1.3 V), which is encouraging. The lower excitation potential of S-CIS is probably due to the low band gap energy, which makes the excitation potential positively shift. This lower excitation potential reduces the side-reactions caused by high voltages, effectively avoiding irreversible damage to biomolecules, and protecting the biological activity of antigens and antibodides. In this work, new features of S-CIS in ECL studies are also presented, demonstrating that the ECL emission mechanism of S-CIS is generated by surface state transitions and that S-CIS exhibits excellent near-infrared (NIR) characteristics. Importantly, we introduced S-CIS into electrochemical impedance spectroscopy (EIS) and ECL to the construct a dual-mode sensing platform to achieve AFP detection. The two models with intrinsic reference calibration and high accuracy showed outstanding analytical performance in AFP detection. The detection limits were 0.862 pg mL-1 and 16.8 fg mL-1, respectively. This study demonstrates the key role and great application potential of S-CIS as a novel NIR emitter with easy preparation, low cost and great performance in the development of a simple, efficient and ultrasensitive dual-mode response sensing platform for early clinical use.


Biosensing Techniques , Electrochemical Techniques , Electrochemical Techniques/methods , alpha-Fetoproteins , Luminescent Measurements/methods , Biosensing Techniques/methods , Antigens , Limit of Detection
11.
Adv Mater ; 35(38): e2303460, 2023 Sep.
Article En | MEDLINE | ID: mdl-37269455

Ultrathin and super-toughness gel polymer electrolytes (GPEs) are the key enabling technology for durable, safe, and high-energy density solid-state lithium metal batteries (SSLMBs) but extremely challenging. However, GPEs with limited uniformity and continuity exhibit an uneven Li+ flux distribution, leading to nonuniform deposition. Herein, a fiber patterning strategy for developing and engineering ultrathin (16 µm) fibrous GPEs with high ionic conductivity (≈0.4 mS cm-1 ) and superior mechanical toughness (≈613%) for durable and safe SSLMBs is proposed. The special patterned structure provides fast Li+ transport channels and tailoring solvation structure of traditional LiPF6 -based carbonate electrolyte, enabling rapid ionic transfer kinetics and uniform Li+ flux, and boosting stability against Li anodes, thus realizing ultralong Li plating/stripping in the symmetrical cell over 3000 h at 1.0 mA cm-2 , 1.0 mAh cm-2 . Moreover, the SSLMBs with high LiFePO4 loading of 10.58 mg cm-2 deliver ultralong stable cycling life over 1570 cycles at 1.0 C with 92.5% capacity retention and excellent rate capacity of 129.8 mAh g-1 at 5.0 C with a cut-off voltage of 4.2 V (100% depth-of-discharge). Patterned GPEs systems are powerful strategies for producing durable and safe SSLMBs.

12.
Anal Chem ; 95(18): 7109-7117, 2023 05 09.
Article En | MEDLINE | ID: mdl-37098252

In this paper, a novel donor-acceptor pair was creatively proposed based on the principle of electrochemiluminescence resonance energy transfer (ECL-RET): luminol immobilized on polyethyleneimine (PEI)-functionalized manganese-based single-atom nanozymes (Mn SANE/PEI-luminol, donor) and a PtCu-grafted hollow metal polydopamine framework (PtCu/h-MPF, acceptor). A quenched ECL immunosensor was constructed for the ultrasensitive analysis of carcinoembryonic antigen (CEA). Mn SANE, as an efficient novel coreaction accelerator with the outstanding performance of significantly activating H2O2 to produce large amounts of ROS, was further modified by the coreactant PEI, which efficiently immobilized luminol to form a self-enhanced emitter. As a result, the electron transport distance was effectively shortened, the energy loss was reduced, and luminol achieved a high ECL efficiency. More importantly, PtCu-grafted h-MPF (PtCu/h-MPF) was proposed as a novel quencher. The UV-vis spectra of PtCu/h-MPF partially overlap with the ECL spectra of Mn SANE/PEI-luminol, which can effectively trigger the ECL-RET behavior between the donor and the acceptor. The multiple quenching effect on Mn SANE/PEI-luminol was achieved, which significantly improved the sensitivity of the immunosensor. The prepared immunosensor exhibited good linearity in the concentration range of 10-5 to 80 ng/mL. The results indicate that this work provides a new method for the early detection of CEA in clinical diagnosis.


Biosensing Techniques , Metal Nanoparticles , Luminol , Carcinoembryonic Antigen/analysis , Polyethyleneimine , Biosensing Techniques/methods , Hydrogen Peroxide , Electrochemical Techniques/methods , Luminescent Measurements/methods , Immunoassay/methods , Limit of Detection
13.
Anal Chim Acta ; 1257: 341143, 2023 May 29.
Article En | MEDLINE | ID: mdl-37062562

Effective signal amplification is a prerequisite for ultrasensitive detection by electrochemical immunosensors. For quantitative and ultrasensitive detection of alpha-fetoprotein (AFP), we designed a competitive electrochemical immunosensor and transferred the immunoreactivity from the electrode surface to the cuvette. AFP antigen was captured using AFP primary antibody (Ab1) immobilized on magnetic nanobeads (MBs), and ZIF-8 nanomaterials attached to secondary antibody (Ab2) were used as probes. MBs helped retain the sandwich structure in the test tube through incubation and washing steps. Then, an appropriately fixed excess of sodium ethylenediaminetetraacetic acid (EDTA) solution was added to the cuvettes, resulting in etching of Zn ions from ZIF-8 and formation of Zn-EDTA complexes. After magnetic separation, a certain amount of supernatant is added dropwise to the Prussian blue (PB)-modified electrode (GCE), and Fe ions (from PB) complex with the remaining EDTA in the supernatant, thus reducing the signal response value of PB. The higher the AFP concentration, the lower the amount of free EDTA in the supernatant, the less the destruction of PB, and therefore the higher the current. Under optimal conditions, the immunosensor achieved ultra-sensitive detection of AFP in the range of 10-4 ng/mL-100 ng/mL with a limit of detection (LOD) as low as 0.032 pg/mL (S/N = 3). The excellent performance provides an important tool for the early screening and detection of AFP.


Biosensing Techniques , Metal Nanoparticles , alpha-Fetoproteins , Biosensing Techniques/methods , Edetic Acid , Immunoassay/methods , Limit of Detection , Electrochemical Techniques/methods , Gold/chemistry , Metal Nanoparticles/chemistry
14.
Nature ; 615(7950): 62-66, 2023 03.
Article En | MEDLINE | ID: mdl-36859585

For capacitive energy storage at elevated temperatures1-4, dielectric polymers are required to integrate low electrical conduction with high thermal conductivity. The coexistence of these seemingly contradictory properties remains a persistent challenge for existing polymers. We describe here a class of ladderphane copolymers exhibiting more than one order of magnitude lower electrical conductivity than the existing polymers at high electric fields and elevated temperatures. Consequently, the ladderphane copolymer possesses a discharged energy density of 5.34 J cm-3 with a charge-discharge efficiency of 90% at 200 °C, outperforming the existing dielectric polymers and composites. The ladderphane copolymers self-assemble into highly ordered arrays by π-π stacking interactions5,6, thus giving rise to an intrinsic through-plane thermal conductivity of 1.96 ± 0.06 W m-1 K-1. The high thermal conductivity of the copolymer film permits efficient Joule heat dissipation and, accordingly, excellent cyclic stability at elevated temperatures and high electric fields. The demonstration of the breakdown self-healing ability of the copolymer further suggests the promise of the ladderphane structures for high-energy-density polymer capacitors operating under extreme conditions.

15.
Anal Chim Acta ; 1239: 340647, 2023 Jan 25.
Article En | MEDLINE | ID: mdl-36628745

The present protocol develops an electrochemical immunosensor with poly(o-phenylene diamine) attached gold nanoparticles (PPD@Au NPs) as the immune platform, polydopamine-loaded cobalt ions (Co2+-PDA) as the immune probe, and K2S2O8 as the signal amplifying substance with pH-driven cascade reaction. The application of conventional immunosensors often leads to easy leakage of the current signal and increases the impedance due to assembly. However, this new immunosensor offers the following advantages: (1) The signal substance PPD is modified on the electrode surface, effectively reducing the signal loss and leakage of the immunosensor; (2) The pH response reduces the impedance of the immunosensor while destroying the Co2+-PDA secondary antibody label; (3) The pH response releases a small amount of Co2+, leading to SO4-· generation by K2S2O8 through a cascade reaction, further amplifying the PPD response current signal; (4) The pH response generates excess Co2+ and the by-product PDA fragments can consume the SO4-· generated by K2S2O8, so that the final response signal decreases with the increasing antigen concentration. The experimental results showed that the immunosensor exhibited good selectivity, long-term stability, and reproducibility for AFP detection in the range of 1 pg/mL-100 ng/mL, with a detection limit of 0.214 pg/mL. Interestingly, it is expected to be used for detecting AFP in actual blood samples.


Biosensing Techniques , Metal Nanoparticles , alpha-Fetoproteins , Metal Nanoparticles/chemistry , Biosensing Techniques/methods , Gold/chemistry , Reproducibility of Results , Limit of Detection , Immunoassay/methods , Hydrogen-Ion Concentration , Electrochemical Techniques/methods
16.
Bioelectrochemistry ; 149: 108280, 2023 Feb.
Article En | MEDLINE | ID: mdl-36335790

A method for detecting of Carcinoembryonic antigen(CEA) with improved accuracy is urgently needed. In this work, a dual-mode immunosensor for accurate detection of CEA was fabricated, which used a Cu-doped Mo2C co-catalyst as an enhancer. Especially, Cu-doped Mo2C presents a strong different pulse voltammetry (DPV) signal for the electron transfer between Cu2+ and Cu+, without the addition of K3[Fe(CN6)] and other electron transfer mediators, but also shows high electrocatalytic activity towards H2O2 redox reactions. So that detection sensitivity of the chronoamperometry (CA) was enhanced. Furthermore, characterized by excellent conductivity, highly ordered pore distribution and great surface area, Ti3C2 Mxenes can be effective in promoting electron transfer and loading a large number of AuNPs. In the meantime, AuNPs can also immobilize CEA-Ab1 through Au-N bonds. Based on a Cu-Mo2C-Au dual-signal indicator, Ti3C2 Mxene-Au as the matrix, the immunsosensor was developed to achieve dual-signal detection of CEA. Satisfactory detection ranges (1 fg.mL-1 to 40 ng.mL-1) were obtained with limits of detection of 0.33 fg.ml-1 (DPV) and 1.67 fg.ml-1 (CA), respectively. Therefore, the prepared electrochemical immunosensor has good application prospects for the detection of CEA.


Biosensing Techniques , Metal Nanoparticles , Biosensing Techniques/methods , Carcinoembryonic Antigen , Electrochemical Techniques/methods , Gold/chemistry , Hydrogen Peroxide/chemistry , Immunoassay/methods , Limit of Detection , Metal Nanoparticles/chemistry , Copper/chemistry
17.
BMC Anesthesiol ; 22(1): 413, 2022 12 31.
Article En | MEDLINE | ID: mdl-36585610

PURPOSE: Soluble triggering receptor expressed on myeloid cells 2 (sTREM2) concentration is increased in cerebrospinal fluid (CSF) in early symptomatic phase of Alzheimer's disease (AD). This study investigated whether CSF sTREM2 has a relationship with early cognitive dysfunction following surgery in cardiac surgery patients. METHODS: A total of 82 patients undergoing thoracoabdominal aortic replacement were recruited in this study. Neuropsychological testing battery was conducted before and after surgery. Postoperative cognitive dysfunction (POCD) was defined as a Z-score > 1.96 on at least 2 different tests or Telephone Interviews for Cognitive Status-Modified (TICS-M) score < 27. The CSF and serum sTREM2, Aß42, T-tau and P-tau were collected and measured by ELISA on day before surgery and postoperative day 3. RESULTS: Patients were classified into POCD (n = 34) and non-POCD (n = 48) groups according to Z-score. Compared to non-POCD group, the levels of CSF sTREM2 (p < 0.001) and serum sTREM2 (p = 0.001) were significantly higher in POCD group on postoperative day 3. The levels of Aß42 (p = 0.005) and Aß42/T-tau ratio (p = 0.036) were significantly lower in POCD group on postoperative day 3. Multivariate logistic regression analysis revealed that higher value of postoperative CSF sTREM2 (odds ratio: 1.06, 95% confidence interval: 1.02-1.11, p = 0.009), age (OR: 1.15, 95%CI: 1.03-1.28, p = 0.014) and POD duration (OR: 2.47, 95%CI: 1.15-5.29, p = 0.02) were the risk factors of POCD. CONCLUSION: This study indicates that anesthesia and surgery-induced elevation of CSF sTREM2 is associated with an increased risk of early cognitive dysfunction following surgery.


Anesthesia , Cognitive Dysfunction , Dissection, Abdominal Aorta , Humans , Amyloid beta-Peptides/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Cognitive Dysfunction/etiology
18.
Sci Bull (Beijing) ; 67(19): 1991-2000, 2022 Oct 15.
Article En | MEDLINE | ID: mdl-36546209

The long-term safe operation of high-power equipment and integrated electronic devices requires efficient thermal management, which in turn increases the energy consumption further. Hence, the sustainable development of our society needs advanced thermal management with low, even zero, energy consumption. Harvesting water from the atmosphere, followed by moisture desorption to dissipate heat, is an efficient and feasible approach for zero-energy-consumption thermal management. However, current methods are limited by the low absorbance of water, low water vapor transmission rate (WVTR) and low stability, thus resulting in low thermal management capability. In this study, we report an innovative electrospinning method to process hierarchically porous metal-organic framework (MOF) composite fabrics with high-efficiency and zero-energy-consumption thermal management. The composite fabrics are highly loaded with MOF (75 wt%) and their WVTR value can be up to 3138 g m-2 d-1. The composite fabrics also exhibit stable microstructure and performance. Under a conventional environment (30 ℃, 60% relative humidity), the composite fabrics adsorb water vapor for regeneration within 1.5 h to a saturated value Wsat of 0.614 g g-1, and a corresponding equivalent enthalpy of 1705.6 J g-1. In the thermal management tests, the composite fabrics show a strong cooling capability and significantly improve the performance of thermoelectric devices, portable storage devices and wireless chargers. These results suggest that hierarchically porous MOF composite fabrics are highly promising for thermal management of intermittent-operation electronic devices.

19.
Int J Mol Sci ; 23(20)2022 Oct 11.
Article En | MEDLINE | ID: mdl-36292929

Phosphate (Pi) deficiency is a common phenomenon in agricultural production and limits plant growth. Recent work showed that long-term Pi deficiency caused the inhibition of photosynthesis and inefficient electron transport. However, the underlying mechanisms are still unknown. In this study, we used the physiological, histochemical, and transcriptomic methods to investigate the effect of low-Pi stress on photosynthetic gas exchange parameters, cell membrane lipid, chloroplast ultrastructure, and transcriptional regulation of key genes in melon seedlings. The results showed that Pi deficiency significantly downregulated the expression of aquaporin genes, induced an increase in ABA levels, and reduced the water content and free water content of melon leaves, which caused physiological drought in melon leaves. Therefore, gas exchange was disturbed. Pi deficiency also reduced the phospholipid contents in leaf cell membranes, caused the peroxidation of membrane lipids, and destroyed the ultrastructure of chloroplasts. The transcriptomic analysis showed that 822 differentially expressed genes (DEGs) were upregulated and 1254 downregulated by Pi deficiency in leaves. GO and KEGG enrichment analysis showed that DEGs significantly enriched in chloroplast thylakoid membrane composition (GO:0009535), photosynthesis-antenna proteins (map00196), and photosynthesis pathways (map00195) were downregulated by Pi deficiency. It indicated that Pi deficiency regulated photosynthesis-related genes at the transcriptional level, thereby affecting the histochemical properties and physiological functions, and consequently causing the reduced light assimilation ability and photosynthesis efficiency. It enriches the mechanism of photosynthesis inhibition by Pi deficiency.


Cucumis melo , Cucumis melo/genetics , Transcriptome , Photosynthesis/genetics , Plant Leaves/metabolism , Phosphates/metabolism , Water/metabolism , Membrane Lipids/metabolism , Phospholipids/metabolism
20.
Mikrochim Acta ; 189(9): 334, 2022 08 16.
Article En | MEDLINE | ID: mdl-35970980

To accomplish ultra-sensitive detection of alpha-fetoprotein(AFP), a novel electrochemical immunosensor using polydopamine-coated Fe3O4 nanoparticles (PDA@Fe3O4 NPs) as a smart label and polyaniline (PANI) and Au NPs as substrate materials has been created. The sensor has the following advantages over typical immunoassay technology: (1) The pH reaction causes PDA@Fe3O4 NPs to release Prussian blue (PB) prosoma while also destroying the secondary antibody label and immunological platform and lowering electrode impedance; (2) PB has a highly efficient catalytic effect on H2O2, allowing for the obvious amplification of electrical impulses; (3) PANI was electrodeposited on the electrode surface to avoid PB loss and signal leakage, which effectively absorbed and fixed PB while considerably increasing electron transmission efficiency. The sensor's detection limit was 0.254 pg·mL-1 (S/N = 3), with a detection range of 1 pg·mL-1 to 100 ng·mL-1. The sensor has a high level of selectivity, repeatability, and stability, and it is predicted to be utilized to detect AFP in real-world samples.


Biosensing Techniques , alpha-Fetoproteins , Delayed-Action Preparations , Electrochemical Techniques , Ferric Compounds/chemistry , Gold , Hydrogen Peroxide , Hydrogen-Ion Concentration , Immunoassay , Indoles/analysis , Indoles/chemistry , Polymers/chemistry
...