Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Eur Arch Psychiatry Clin Neurosci ; 274(2): 353-362, 2024 Mar.
Article En | MEDLINE | ID: mdl-37148307

BACKGROUND: Relapse remains the major challenge in treatment of alcohol use disorder (AUD). Aberrant decision-making has been found as important cognitive mechanism underlying relapse, but factors associated with relapse vulnerability are unclear. Here, we aim to identify potential computational markers of relapse vulnerability by investigating risky decision-making in individuals with AUD. METHODS: Forty-six healthy controls and fifty-two individuals with AUD were recruited for this study. The risk-taking propensity of these subjects was investigated using the balloon analog risk task (BART). After completion of clinical treatment, all individuals with AUD were followed up and divided into a non-relapse AUD group and a relapse AUD group according to their drinking status. RESULTS: The risk-taking propensity differed significantly among healthy controls, the non-relapse AUD group, and the relapse AUD group, and was negatively associated with the duration of abstinence in individuals with AUD. Logistic regression models showed that risk-taking propensity, as measured by the computational model, was a valid predictor of alcohol relapse, and higher risk-taking propensity was associated with greater risk of relapse to drink. CONCLUSION: Our study presents new insights into risk-taking measurement and identifies computational markers that provide prospective information for relapse to drink in individuals with AUD.


Alcoholism , Humans , Prospective Studies , Alcoholism/psychology , Ethanol , Alcohol Drinking/psychology , Recurrence
2.
J Exp Clin Cancer Res ; 42(1): 230, 2023 Sep 05.
Article En | MEDLINE | ID: mdl-37667311

BACKGROUND: Most of the endometrial cancer (EC) patients are diagnosis in early stage with a good prognosis while the patients with locally advanced recurrent or metastatic result in a poor prognosis. Adjuvant therapy could benefit the prognosis of patients with high-risk factors. Unfortunately, the molecular classification of great prognostic value has not yet reached an agreement and need to be further refined. The present study aims to identify new targets that have prognostic value in EC based on the method of EC patient-derived organ-like organs (PDOs), and further investigate their efficacy and mechanism. METHODS: The Cancer Genome Atlas (TCGA) database was used to determine SNORD14E expression. The effects of SNORD14E were investigated using CCK8, Transwell, wound-healing assays, and a xenograft model experiment; apoptosis was measured by flow cytometry. Antisense oligonucleotide (ASO) targeting SNORD14E was designed and patient-derived organoids (PDO) models in EC patients was established. A xenograft mouse and PDO model were employed to evaluate the effects of ASO targeting SNORD14E. RNA-seq, Nm-seq, and RNA immunoprecipitation (RIP) experiments were employed to confirm the alternative splicing (AS) and modification induced by SNORD14E. A minigene reporter gene assay was conducted to confirm AS and splicing factors on a variable exon. Actinomycin-d (Act-D) and Reverse Transcription at Low deoxy-ribonucleoside triphosphate concentrations followed by PCR (RTL-P) were utilized to confirm the effects of 2'-O methylation modification on FOXM1. RESULTS: We found that SNORD14E was overexpressed in EC tissues and patients with high expressed SNORD14E were distributed in the TCGA biomolecular classification subgroups without difference. Further, SNORD14E could reduce disease-free survival (DFS) and recurrence free survival (RFS) of EC patients. SNORD14E promoted proliferation, migration, and invasion and inhibited the apoptosis of EC cells in vitro. ASOs targeting SNORD14E inhibited cell proliferation, migration, invasion while promoted cell apoptosis. ASOs targeting SNORD14E inhibited tumor growth in the xenograft mouse model. TCGA-UCEC database showed that the proportion of patients with high expression of SNORD14E in middle-high risk and high-risk patients recommended by EMSO-ESGO-ESTRO guidelines for adjuvant therapy is more than 50%. Next, we enrolled 8 cases of high-risk and high-risk EC patients according to EMSO-ESGO-ESTRO guidelines and successfully constructed EC-PDOs. ASOs targeting SNORD14E inhibited the EC-PDO growth. Mechanistically, SNORD14E could recognize the mRNA of FOXM1 and recruit SRSF1 to promote the shearing of the variable exon VIIa of FOXM1, resulting in the overexpression of the FOXM1 malignant subtypes FOXM1b and FOXM1c. In addition, SNORD14E modified FOXM1 mRNA with 2`-O-methylation, which prolonged the half-life of FOXM1 mRNA. The nucleus accumulation of ß-catenin caused by aberrant FOXM1 expression led to EC progression. CONCLUSIONS: ASO targeting SNORD14E can be an effective treatment for EC.


Endometrial Neoplasms , Oligonucleotides, Antisense , Humans , Animals , Mice , Female , beta Catenin , Oligonucleotides , Endometrial Neoplasms/genetics , Exons , Forkhead Box Protein M1/genetics , Serine-Arginine Splicing Factors
3.
J Cell Mol Med ; 27(19): 2890-2905, 2023 10.
Article En | MEDLINE | ID: mdl-37488742

Endometrial cancer (EC) is a common gynaecological malignant tumour with unclear pathogenesis. Small nucleolar RNA (snoRNA) is involved in many biological processes, including those of cancers. Using the Cancer Genome Atlas (TCGA) database, the expression pattern of a snoRNA, SNORA73B, was analysed. The biological functions of SNORA73B were assessed by in vitro proliferation, apoptosis, migration, and invasion assays and in vivo by the xenograft model. RNA sequencing (RNA-seq) and RNA immunoprecipitation assays were performed to determine the relationship between SNORA73B and its target genes. High-performance liquid chromatography (HPLC) was performed to detect the pseudouridine content of the mindbomb E3 ubiquitin protein ligase 1 gene (MIB1). The stability of MIB1 mRNA was evaluated using a transcription inhibitor, actinomycin D. By performing co-immunoprecipitation assays, the change in the ubiquitin levels of the Jagged canonical Notch ligand 1 (Jag 1), caused by SNORA73B and MIB1, was identified. RNA-seq and qRT-PCR were performed to detect the alternative splicing of the regulator of the chromosome condensation 1 gene (RCC1). The TCGA database analysis showed that SNORA73B was highly expressed in EC. SNORA73B promoted cell proliferation, migration, and invasion and inhibited apoptosis. SNORA73B modified the pseudouridine content in MIB1 and increased the stability of MIB1 mRNA and protein; thus, it affected Jag 1 ubiquitination and further activated the Notch pathway. SNORA73B also affected the alternative splicing of RCC1, increasing the number of transcripts, RCC1-T2 and RCC1-T3, which promoted cell proliferation, migration, and invasion. SNORA73B can be a potential target for EC.


Endometrial Neoplasms , Ubiquitin-Protein Ligases , Female , Humans , Ubiquitin-Protein Ligases/metabolism , Alternative Splicing/genetics , Pseudouridine/metabolism , RNA, Small Nucleolar/genetics , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , RNA, Messenger/metabolism , Cell Proliferation/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Nuclear Proteins/genetics , Cell Cycle Proteins/metabolism , Guanine Nucleotide Exchange Factors/genetics
4.
Mol Carcinog ; 62(4): 413-426, 2023 04.
Article En | MEDLINE | ID: mdl-36562475

Endometrial carcinoma is a common gynecological malignant tumor, small nucleolar RNAs (snoRNAs) are involved in cancer development. However, researches on the roles of snoRNAs in endometrial carcinoma are limited. The expression levels of snoRNAs in endometrial cancer tissues were analyzed using The Cancer Genome Atlas (TCGA) database. Antisense oligonucleotides (ASOs) and plasmids were used for transfection. Moreover, CCK-8, EdU, wound-healing assay, transwell, cell apoptosis, western blotting, and xenograft model were employed to examine the biological functions of related molecules. real-time reverse transcription polymerase chain reaction and western blotting were performed to detect messenger RNA (mRNA) and protein levels. Including bioinformatics, fluorescence in situ hybridization, RNA pulldown, actinomycin D and RTL-P assays were also carried out to explore the molecular mechanism. Analysis of data from TCGA showed that the expression level of small nucleolar RNA, C/D box 60 (SNORD60) in endometrial cancer tissues is observably higher than that in normal endometrial tissues. Further research suggested that SNORD60 played a carcinogenic role both in vitro and in vivo, and significantly upregulated the expression of PIK3CA. However, the carcinogenic effects can be reversed by knocking down fibrillarin (FBL) or PIK3CA. SNORD60 forms complexes by binding with 2'-O-methyltransferase fibrillarin, thus catalyzes the 2'-O-methylation (Nm) modification of PIK3CA mRNA and modulates the PI3K/AKT/mTOR signaling pathway, so as to promote the development of endometrial cancer. In short, SNORD60 might become a new biomarker for the therapy of endometrial cancer in the future and provide new strategies for diagnosis and treatment.


Endometrial Neoplasms , Proto-Oncogene Proteins c-akt , Female , Humans , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , In Situ Hybridization, Fluorescence , Cell Line, Tumor , Signal Transduction/genetics , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Endometrial Neoplasms/pathology , Carcinogenesis/genetics , Carcinogenesis/pathology , RNA, Messenger/genetics , Cell Transformation, Neoplastic , Class I Phosphatidylinositol 3-Kinases/genetics , Cell Proliferation/genetics
5.
J Cell Mol Med ; 26(20): 5150-5164, 2022 10.
Article En | MEDLINE | ID: mdl-36056690

The present study demonstrated for the first time that SNORA70E, which belongs to box H/ACA small nucleolar noncoding RNAs (snoRNAs) who could bind and induce pseudouridylation of RNAs, was significantly elevated in ovarian cancer tissues and was an unfavourable prognostic factor of ovarian cancer. The over-expression of SNORA70E showed increased cell proliferation, invasion and migration in vitro and induced tumour growth in vivo. Further research found that SNORA70E regulates RAS-Related Protein 1B (RAP1B) mRNA through pseudouracil modification by combing with the pyrimidine synthase Dyskerin Pseudouridine Synthase 1 (DKC1) and increase RAP1B protein level. What's more, the silencing of DKC1/RAP1B in SNORA70E overexpression cells both inhibited cell proliferation, migration and invasion through reducing ß-catenin, PI3K, AKT1, mTOR, and MMP9 protein levels. Besides, RNA-Seq results revealed that SNORA70E regulates the alternative splicing of PARP-1 binding protein (PARPBP), leading to the 4th exon-skipping in PARPBP-88, forming a new transcript PARPBP-15, which promoted cell invasion, migration and proliferation. Finally, ASO-mediated silencing of SNORA70E could inhibit ovarian cancer cell proliferation, invasion, migration ability in vitro and inhibit tumorigenicity in vivo. In conclusion, SNORA70E promotes the occurrence and development of ovarian cancer through pseudouridylation modification of RAP1B and alternative splicing of PARPBP. Our results demonstrated that SNORA70E may be a new diagnostic and therapeutic target for ovarian cancer.


DNA-Binding Proteins , Ovarian Neoplasms , RNA, Small Nucleolar , rap GTP-Binding Proteins , Alternative Splicing , Cell Cycle Proteins/genetics , Cell Line, Tumor , DNA-Binding Proteins/genetics , Female , Humans , Matrix Metalloproteinase 9/genetics , Nuclear Proteins/genetics , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Phosphatidylinositol 3-Kinases/genetics , Poly(ADP-ribose) Polymerase Inhibitors , RNA, Messenger , RNA, Small Nucleolar/genetics , TOR Serine-Threonine Kinases/genetics , beta Catenin/genetics , rap GTP-Binding Proteins/genetics
6.
Cell Death Discov ; 8(1): 309, 2022 Jul 05.
Article En | MEDLINE | ID: mdl-35790714

The small nucleolar RNA (snoRNA) is a type of small non-coding RNA widely distributed in the nucleoli of eukaryotic cells, promoting cancer development. The aim of this study was to assess box C/D snoRNA 89 (SNORD89) dysregulations in endometrial cancer. According to the TCGA database as well as the International Federation of Gynecology and Obstetrics (FIGO), higher SNORD89 expression is found in endometrial cancer tissues. In addition, the SNORD89 expression level was higher in endometrial carcinoma with lymph node metastasis than in endometrial carcinoma without lymph node metastasis. By interacting with the conservative chaperone protein methylase fibrillarin (Fbl), SNORD89 inhibits the translation process of the Bim gene, leading to a decrease in Bim protein. Cancer-promoting effect of SNORD89 can be reversed by Fbl knockdown or Bim overexpressing. What's more, ASO-mediated silencing of SNORD89 could inhibit endometrial cancer cell proliferation and migration ability. Taken together, SNORD89 can modify Bim through 2'-O-methylation and affect downstream signaling pathways to promote endometrial cancer occurrence and development. The role of methylation modification in the prevention and treatment of endometrial cancer provides a new understanding and SNORD89 may be a new diagnostic and therapeutic target for endometrial cancer.

7.
Free Radic Res ; 56(3-4): 229-244, 2022.
Article En | MEDLINE | ID: mdl-35703738

Mitochondrial oxidative injury can result in many cardiovascular diseases including cardiac ischemia-reperfusion (I/R) injury. This study was designed to investigate whether microRNA-34a (miR-34a) influences cardiac I/R or hypoxia/reoxygenation (H/R) injury by regulating the mitochondrial apoptotic pathway from oxidative injury.In vivo, myocardial infarction size was examined by Evan blue/TTC staining. Apoptosis was assessed by TUNEL assay. Heart function was measured by echocardiography. Lactate dehydrogenase (LDH) and creatine kinase (CK) were evaluated. In vitro, H9c2 cardiomyocytes were exposed to H/R stimulation. Cell viability was assessed by the CCK-8 assay and apoptosis was detected by Annexin V/PI staining. Mitochondrial superoxide, mitochondrial membrane potential (MMP) and ATP production was evaluated by detection kits, and related proteins were detected by western blotting analysis. We observed that the level of miR-34a was significantly upregulated in I/R rats compared to the sham group. Injection of adenovirus inhibiting miR-34a into the left ventricular anterior wall improved heart function and decreased I/R injury. H9c2 cardiomyocytes exposed to H/R stimulation displayed an obvious increase in miR-34a expression. In addition, miR-34a inhibitor alleviated, whereas miR-34a mimic aggravated H/R-induced mitochondrial injury. Bcl-2 was identified as a target gene of miR-34a by dual-luciferase reporter gene detection. Knockdown of Bcl-2 abolished the cardioprotection of the miR-34a inhibitor in H9c2 cells. In summary,our study demonstrates that inhibition of miR-34a exhibits therapeutic potential in treatment of myocardial I/R injury by restraining mitochondrial apoptosis.


MicroRNAs , Myocardial Reperfusion Injury , Animals , Apoptosis/physiology , MicroRNAs/metabolism , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats , Rats, Sprague-Dawley , Up-Regulation
8.
Cell Death Discov ; 7(1): 388, 2021 Dec 14.
Article En | MEDLINE | ID: mdl-34907180

A large number of small non-coding RNAs derived from tRNAs, called tRNA-derived small RNA (tsRNAs), have been identified by high-throughput RNA sequencing of cell lines. Further research has revealed that they are not produced via random tRNA degradation, but through degradation by specific nuclease cleavages, such as Elac Ribonuclease Z 2 (ELAC2)/RNase Z, RNase L, Dicer, and angiogenin (ANG), the tsRNAs can be classified into the following types based on the location from which they have been derived from the parental tRNA: tRF-1s, tRF-3s, tRF-5s, tiRNA, and tRF-2s/i-tRFs. Moreover, tsRNAs are a type of small RNAs with diverse functions, including gene expression regulation, anti-apoptosis, translation inhibition, participation in epigenetic regulation, initial virus reverse transcription, promote virus replication and cell-to-cell communication. Certain types of tsRNAs are overexpressed in cancer tissues, but are underexpressed in normal tissues. Therefore, the relationship between tsRNAs and the occurrence and development of cancer has attracted significant research attention. Research advancements have contributed to further discoveries of the biological activities of tsRNAs, but the mechanisms of their biogenesis and functions have not been fully elucidated. This article reviews the classification and biological functions of tsRNAs, and introduces the research progress in gynecological malignancies.

9.
Zhongguo Gu Shang ; 34(7): 674-9, 2021 Jul 25.
Article Zh | MEDLINE | ID: mdl-34318647

OBJECTIVE: To construct and identify adenovirus vector co-expressing hBMP2 and hVEGF165 fusion protein which labeled with green fluorescence protein, and laying the foundtion of the effect of hBMP2 and hVEGF165 gene inducing BMMSCs differentiation to osteoblast and bone defect repaired in the body. METHODS: BMP2 and VEGF165 gene was amplified from cDNA library by PCR and inserted to the polyclonal site of adenovirus shuttle plasmid pAd-MCMV-GFP. Ad-BMP2- VEGF165 was recombinated and propagated in HEK293 cells by co-transfecting with the constructed recombinant shuttle plasmid pAd-MCMV-BMP2-VEGF165 and adenovirus helper plasmid pBHGloxΔ E1, 3Cre. The recombinant adenovirus was purified and virustiter was determined, and then to research GFP expression and to calculate the adenovirus transfection rate in rabbit BMMSCs. RESULTS: The recombinant adenovirus vector Ad-BMP2-VEGF165 was successfully constructed by the methods of gene analyzing, colony PCR, Western blotting and observing GFP expression, and the titer of the adenovirus was 1×1010 PFU /ml. CONCLUSION: Recombinant adenovirus vector containing hBMP2 and hVEGF165 gene was successfully constructed and its high titer was obtained.


Mesenchymal Stem Cells , Adenoviridae/genetics , Animals , Bone Marrow Cells , Genetic Vectors/genetics , HEK293 Cells , Humans , Rabbits , Transfection
10.
Zhongguo Zhong Yao Za Zhi ; 46(6): 1460-1466, 2021 Mar.
Article Zh | MEDLINE | ID: mdl-33787144

This project aimed to explore the protective effect of ginsenoside Rg_1 on hypoxia/reoxygenation(H/R)-induced H9 c2 cardiomyocyte injury and its underlying signaling pathway. The H/R model of H9 c2 cardiomyocytes was established and then the cells were divided into different treatment groups. CCK-8(cell counting kit-8) was used to detect the activity of cardiomyocytes; Brdu assay was used to detect the proliferation of H9 c2 cells; the caspase-3 activity was tested, and then the protein expression was assessed by Western blot. Flow cytometry was used to evaluate the apoptosis level of cardiomyocytes. Ginsenoside Rg_1 inhibited H/R-induced cardiomyocyte apoptosis and caspase-3 activity, promoted nuclear transcription of nuclear factor erythroid-2 related factor 2(Nrf2), and enhanced the expression of the downstream heme oxygenase-1(HO-1). Ginsenoside Rg_1 could increase Nrf2 nuclear transcription and HO-1 expression with the increase of concentration(10, 20, 40, 60 µmol·L~(-1)). However, the protective effect of ginsenoside Rg_1 on cardiomyocytes was significantly weakened after the transfection of Nrf2-siRNA. Ginsenoside Rg_1 could protect cardiomyocytes by activating the Nrf2/HO-1 pathway.


Ginsenosides , Apoptosis , Ginsenosides/pharmacology , Heme Oxygenase-1/genetics , Humans , Hypoxia , Myocytes, Cardiac , NF-E2-Related Factor 2/genetics
11.
Soft Matter ; 17(11): 3242-3249, 2021 Mar 21.
Article En | MEDLINE | ID: mdl-33625436

A new arylene ethynylene macrocycle (AEM) molecule bearing endo-acetamide groups was obtained by a Pd/Cu mediated homo-coupling reaction. Introducing tetraethylene glycol ether as a linkage between two C-shaped fragments substantially improved the final cyclization yield (30%). Concentration-dependent 1HNMR experiments indicated that strong aggregates formed through H-bonds were observed for this new macrocycle with amide groups in solution. And also, this macrocycle was fluorescent in solution and showed a highly selective fluorescence quenching response toward the highly toxic Hg2+. More importantly, this macrocycle could induce gelation of several solvents. Significantly, an interesting aggregation-induced enhanced emission (AIEE) behavior was observed for this macrocycle upon gelation. Both SEM and TEM investigations revealed that nanoporous structures existed in the xerogels. This study offers a new molecular design approach to develop fluorescent gels from planar AEM molecules with a functional cavity.

12.
Cell Death Discov ; 7(1): 22, 2021 Jan 22.
Article En | MEDLINE | ID: mdl-33483472

Circular RNAs (circRNAs) play important roles in cancer tumorigenesis and progression, representing prognostic biomarkers and therapeutic targets. In this case, we demonstrated the role of circ-NOLC1 in epithelial ovarian cancer (EOC). Our results have shown that Circ-NOLC1 expression was higher in EOC tissues than in normal tissues, and was positively associated with FIGO stage, differentiation. Among ovarian cancer cell lines, circ-NOLC1 expression was the highest in A2780, and lowest in CAOV3. Overexpression of circ-NOLC1 in CAOV3 cells increased cell proliferation, migration, and invasion ability, whereas silencing of circ-NOLC1 in A2780 cells had the opposite effect: however, neither circ-NOLC1 downregulation nor overexpression influenced NOLC1 mRNA expression. In nude mice with subcutaneous tumors, circ-NOLC1 downregulation decreased tumor growth. Bioinformatic analysis and RNA-binding protein immunoprecipitation showed that circ-NOLC1 could bind to ESRP1. In addition, the overexpression of circ-NOLC1 significantly increased ESRP1, RhoA, and CDK1 protein and mRNA expression level; circ-NOLC1 downregulation had the opposite effects. The tumor-promoting effect of circ-NOLC1 was inhibited by knockdown of ESRP1, CDK1, or RhoA expression in circ-NOLC1-overexpressing cells, which might act by modulating RhoA and CDK1 expression. In conclusion, our study demonstrated that Circ-NOLC1 might promote EOC tumorigenesis and development by binding ESRP1 and modulating CDK1 and RhoA expression.

13.
Biomed Pharmacother ; 114: 108832, 2019 Jun.
Article En | MEDLINE | ID: mdl-30965236

Circular RNAs are known to participate in tumorigenesis through a variety of pathways, and as such, have potential to serve as molecular markers in tumor diagnosis and treatment. Here, using quantitative reverse transcription (qRT)-PCR, we showed that circ-CSPP1 is highly expressed in ovarian cancer (OC) tissues. Particularly, we detected circ-CSPP1 expression in three OC cell lines; of which, OVCAR3 and A2780 demonstrated higher levels of circ-CSPP1 expression, and CAOV3 showed lower circ-CSPP1 expression level. Subsequent silencing of circ-CSPP1 in OVCAR3 and A2780 cell lines revealed decreased cell growth, migration and invasion, while overexpression of circ-CSPP1 caused opposite results We also found that miR-1236-3p is a target of circ-CSPP1. Circ-CSPP1 silencing increased the expression of miR-1236-3p, and circ-CSPP1 overexpression decreased miR-1236-3p expression. MiR-1236-3p reportedly plays a tumor-suppressor role in OC by targeting zinc finger E-box binding homeobox 1 (ZEB1). In agreement with this, we showed that silencing circ-CSPP1 significantly decreased ZEB1 expression at both RNA and protein levels, and epithelial-mesenchymal transition (EMT) related markers (E-cadherin and N-cadherin) varied with ZEB1 expression. Circ-CSPP1 silencing also caused decreased expression of matrix metalloproteinase-2 (MMP-2) and vascular endothelial growth factor A (VEGFA), both of which are related to tumorigenesis. Overexpression of circ-CSPP1 had opposite effects. In addition, we indicated that the tumor-promoting effect was inhibited after we transfected miR-1236-3p into circ-CSPP1 overexpressing OC cells. Altogether, our findings suggest that by acting as a miR-1236-3p sponge, circ-CSPP1 impairs the inhibitory effect of miR-1236-3p on ZEB1, which subsequently promotes EMT and OC development.


Cell Cycle Proteins/genetics , Cell Movement/genetics , Cell Proliferation/genetics , MicroRNAs/genetics , Microtubule-Associated Proteins/genetics , Ovarian Neoplasms/genetics , RNA/genetics , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Line , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , HEK293 Cells , Humans , Matrix Metalloproteinase 2/genetics , Ovarian Neoplasms/pathology , RNA, Circular , Vascular Endothelial Growth Factor A/genetics , Zinc Finger E-box-Binding Homeobox 1/genetics
14.
Biosci Rep ; 37(3)2017 Jun 30.
Article En | MEDLINE | ID: mdl-28522550

The study aims to explore the effects of miR-135b-5p on myocardial ischemia/reperfusion (I/R) injuries by regulating Janus protein tyrosine kinase 2 (JAK2)/signal transducer and activator of transcription (STAT) signaling pathway by mediating inhalation anesthesia with sevoflurane. A sum of 120 healthy Wistar male mice was assigned into six groups. Left ventricular ejection fraction (LVEF) and left ventricular shortening fraction (LVSF) were detected. Cardiomyocyte apoptosis was determined by terminal dexynucleotidyl transferase mediated dUTP-biotin nick end labeling (TUNEL) assay. MiR-135b-5p expression, mRNA and protein expression of p-STAT3, p-JAK2, STAT3, JAK2, B-cell lymphoma-2 (Bcl-2) and Bcl-2 associated X protein B (Bax) were detected by quantitative real-time PCR (qRT-PCR) and Western blotting. Target relationship between miR-135b-5p and JAK2 was confirmed by dual-luciferase reporter assay. The other five groups exhibited increased cardiomyocyte necrosis, apoptosis, miR-135b-5p and Bax expression, mRNA expression of JAK2 and STAT3, and protein expression of p-STAT3 and p-JAK2 compared with the sham group, but showed decreased LVEF, LVFS, and Bcl-2 expression. Compared with the model and AG490 + Sevo groups, the Sevo, inhibitor + Sevo and inhibitor + AG490 + Sevo groups displayed reduced cardiomyocyte necrosis, apoptosis, miR-135b-5p and Bax expression, but displayed elevated mRNA expression of JAK2 and STAT3, protein expression of p-STAT3 and p-JAK2, LVEF, LVFS and Bcl-2 expression. Compared with the Sevo and inhibitor + AG490 + Sevo groups, the AG490 + Sevo group showed decreased LVEF, LVFS, Bcl-2 expression, mRNA expressions of JAK2 and STAT3, and protein expressions of p-STAT3 and p-JAK2, but increased cardiomyocyte necrosis, apoptosis, and Bax expressions. MiR-135b-5p negatively targetted JAK2. Inhibition of miR-135b-5p can protect against myocardial I/R injury by activating JAK2/STAT3 signaling pathway through mediation of inhalation anesthesia with sevoflurane.


Anesthetics, Inhalation/therapeutic use , Janus Kinase 2/genetics , Methyl Ethers/therapeutic use , MicroRNAs/antagonists & inhibitors , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/therapy , STAT3 Transcription Factor/genetics , Animals , Apoptosis/drug effects , Down-Regulation/drug effects , Gene Expression Regulation/drug effects , Janus Kinase 2/metabolism , Male , Mice , MicroRNAs/genetics , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , STAT3 Transcription Factor/metabolism , Sevoflurane , Signal Transduction/drug effects
15.
Zhen Ci Yan Jiu ; 41(1): 40-4, 2016 Feb.
Article Zh | MEDLINE | ID: mdl-27141619

OBJECTIVE: To observe the protective effect of electroacupuncture (EA) intervention on the expression of brain-derived-neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) proteins and genes in the hippocampus areas in myocardial ischemia (MI) rats, so as to reveal its underlying mechanisms in protecting hippocampal cells under MI. METHODS: Eighty healthy male SD rats were randomized into sham-operation (sham), MI model, Shenmen (HT 7), HT 7-Zhizheng (SI 7) and HT 7-Xinshu (BL 15) groups (n = 15 in each group). The MI model was established by occlusion of the anterior descending branch of the left coronary artery. EA (2 Hz, 2 mA) was applied to bilateral HT 7, HT 7-SI 7, and HT 7-BL 15, respectively for 15 min, once per day for a week. The number of BDNF and its receptor TrkB positive cells in the left hippocampus and that of mRNAs in the right hippocampus tissue were determined by immunohistochemistry and real-time fluorescence quantitative PCR, respectively. RESULTS: In comparison with the sham group, the numbers of both BDNF and TrkB positive cells in the left hippocampus and the expression levels of BDNF mRNA and TrkB mRNA in the right hippocampus were increased slightly (P > 0.05). After EA intervention, the numbers of hippocampal BDNF and TrkB positive cells and the expression levels of BDNF mRNA and TrkB mRNA were evidently up-regulated (P < 0.05, P < 0.01), and the effects of HT 7-SI 7 and HT 7-BL 15 were obviously superior to those of simple HT 7 in up-regulating BDNF and TrkB expression (P < 0.01, P < 0.05). No significant differences were found between the HT 7-SI 7 and HT 7-BL 15 groups in increasing the number of hippocampal BDNF and TrkB positive cells and in up-regulating expression of both BDNF mRNA and TrkB mRNA (P > 0.05). CONCLUSION: EA intervention is effective in increasing the expression of hippocampal BDNF and TrkB in MI rats, which may contribute to its effect in protecting hippocampal cells from injury under MI condition. The effect of EA stimulation of HT 7-SI 7 and HT 7-BL 15 was obviously superior to that of simple HT 7 in up-regulating BDNF and TrkB expression.


Brain-Derived Neurotrophic Factor/genetics , Electroacupuncture , Hippocampus/metabolism , Myocardial Ischemia/therapy , Protein-Tyrosine Kinases/genetics , Acupuncture Points , Animals , Brain-Derived Neurotrophic Factor/metabolism , Hippocampus/enzymology , Humans , Male , Myocardial Ischemia/enzymology , Myocardial Ischemia/genetics , Myocardial Ischemia/metabolism , Protein-Tyrosine Kinases/metabolism , Rats , Rats, Sprague-Dawley
16.
Asian Pac J Cancer Prev ; 15(5): 2309-12, 2014.
Article En | MEDLINE | ID: mdl-24716975

Esophageal squamous cell carcinoma (ESCC) is the most common histologic subtype of esophageal cancer and is characterized by a poor prognosis. Determining gene changes in ESCCs should improve understanding of putative risk factors and provide potential targets for therapy. We sequenced about 55 million pair-end reads from a pair of adjacent normal and ESCC samples to identify the gene expression level and gene fusion. Sanger sequencing was used to verify the result. About 17 thousand genes were expressed in the tissues, of which approximately 2400 demonstrated significant differences between tumor and adjacent non tumor tissue. GO and KEGG pathway analysis revealed that many of these genes were associated with cellular adherence and movement, simulation responses and immune responses. Notably we identified and validated one fusion gene, HLA-E and HLA-B, located 1 MB apart. We also identified thousands of remarkably expressed transcripts. In conclusion, a novel fusion gene HLA-E and HLA-B was identified in ESCC via whole transcriptome sequencing, which would be a biomarker for ESCC diagnosis and target for therapy, shedding new light for better understanding of ESCC tumorigenesis.


Carcinoma, Squamous Cell/genetics , Esophageal Neoplasms/genetics , HLA-B Antigens/genetics , Histocompatibility Antigens Class I/genetics , Oncogene Proteins, Fusion/genetics , Cell Adhesion/genetics , Cell Movement/genetics , Esophageal Squamous Cell Carcinoma , Humans , Male , Risk Factors , Sequence Analysis, RNA/methods , Transcriptome/genetics , HLA-E Antigens
...