Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 410
Filtrar
1.
Anticancer Res ; 44(7): 2775-2786, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38925849

RESUMEN

BACKGROUND/AIM: Ovarian cancer (OVC) is a common, aggressive, and heterogeneous malignancy, with a widely variable prognosis. With the advances of modern immunology, mast cells (MCs) have been shown to play a significant role in the prognosis of some malignant tumors. However, the role of mast cells in the prognosis of OVC is unknown. MATERIALS AND METHODS: In this study, MC-associated prognostic genes (MRGs) were used to classify OVC from The Cancer Genome Atlas (TCGA)-OVC cohort. Genes were evaluated using univariate cox regression analysis. Twenty-nine prognostic gene signatures were identified using LASSO-COX analysis. COX regression models and principal component analysis (PCA) algorithms were used to construct MRG scores and individual MRGs patterns. External validation was performed in the TCGA-breast cancer (BRCA) and IMvigor210 cohorts. Immunity analysis based on MRGs was performed using CIBERSORT, and GSVA methods, and immunotherapy response was evaluated using the TIDE website. RESULTS: Using TCGA-OVC data, we established a model for constructing MRG scores based on the twenty-nine identified prognostic gene signatures using the PCA algorithm. MRG scores were found to be strongly correlated with immune cell infiltration and were excellent predictors of prognosis in patients with OVC. Low MRG scores were associated with better prognosis and better response to immunotherapy and chemotherapy. CONCLUSION: MC-related prognosis signature characterizes the immune landscape and predicts the prognosis of OVC. Understanding the correlation between MC-related gene signatures and immunotherapy and chemotherapy may improve the development of personalized clinical treatment strategies.


Asunto(s)
Mastocitos , Neoplasias Ováricas , Humanos , Femenino , Mastocitos/inmunología , Mastocitos/patología , Pronóstico , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Neoplasias Ováricas/mortalidad , Biomarcadores de Tumor/genética , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Regulación Neoplásica de la Expresión Génica , Inmunoterapia/métodos , Perfilación de la Expresión Génica , Transcriptoma
2.
Cell Biol Toxicol ; 40(1): 48, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900277

RESUMEN

Aggregation of aberrant proteins is a common pathological hallmark in neurodegeneration such as polyglutamine (polyQ) and other repeat-expansion diseases. Here through overexpression of ataxin3 C-terminal polyQ expansion in Drosophila gut enterocytes, we generated an intestinal obstruction model of spinocerebellar ataxia type3 (SCA3) and reported a new role of nuclear-associated endosomes (NAEs)-the delivery of polyQ to the nucleoplasm. In this model, accompanied by the prominently increased RAB5-positive NAEs are abundant nucleoplasmic reticulum enriched with polyQ, abnormal nuclear envelope invagination, significantly reduced endoplasmic reticulum, indicating dysfunctional nucleocytoplasmic trafficking and impaired endomembrane organization. Consistently, Rab5 but not Rab7 RNAi further decreased polyQ-related NAEs, inhibited endomembrane disorganization, and alleviated disease model. Interestingly, autophagic proteins were enriched in polyQ-related NAEs and played non-canonical autophagic roles as genetic manipulation of autophagic molecules exhibited differential impacts on NAEs and SCA3 toxicity. Namely, the down-regulation of Atg1 or Atg12 mitigated while Atg5 RNAi aggravated the disease phenotypes both in Drosophila intestines and compound eyes. Our findings, therefore, provide new mechanistic insights and underscore the fundamental roles of endosome-centered nucleocytoplasmic trafficking and homeostatic endomembrane allocation in the pathogenesis of polyQ diseases.


Asunto(s)
Autofagia , Endosomas , Péptidos , Animales , Péptidos/metabolismo , Endosomas/metabolismo , Núcleo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Transporte Activo de Núcleo Celular , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Enfermedad de Machado-Joseph/metabolismo , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/patología , Enterocitos/metabolismo , Modelos Animales de Enfermedad , Ataxina-3/metabolismo , Ataxina-3/genética , Drosophila/metabolismo
3.
Mitochondrial DNA B Resour ; 9(6): 687-691, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38835639

RESUMEN

Arachis lutescens Krapov. & Rigoni 1958 is an important species due to their potentially extensive applications for cultivated peanut breeding. The whole chloroplast genome of A. lutescens was successfully assembled and annotated for the first time. The complete chloroplast genome of A. lutescens is a typically circular structure of 156,398 bp with a GC content of 36.3%. It comprises a large single-copy (LSC) region of 85,950 bp, a small single-copy (SSC) region of 18,800 bp, and two inverted repeat regions (IRs) of 25,824 bp, each. The plastome of A. lutescens contains a total of 125 genes, including 81 protein-coding genes, 36 tRNAs, and eight rRNAs. The phylogenetic analysis strongly supports the close relationship between A. lutescens and cultivated peanut clades. This study contributes to our understanding of the molecular characteristics and evolutionary relationships of this plant species.

4.
Opt Express ; 32(9): 15546-15554, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38859202

RESUMEN

Carbon-based inorganic CsPbIBr2 perovskite solar cells (C-IPSC) have attracted widespread attention due to their low cost and excellent thermal stability. Unfortunately, due to the soft ion crystal nature of perovskite, inherent bulk defects and energy level mismatch at the CsPbIBr2/carbon interface limit the performance of the device. In this study, we introduced aromatic benzyltrimethylammonium chloride (BTACl) as a passivation layer to passivate the surface and grain boundaries of the CsPbIBr2 film. Due to the reduction of perovskite defects and better energy level arrangement, carrier recombination is effectively suppressed and hole extraction is improved. The champion device achieves a maximum power conversion efficiency (PCE) of 11.30% with reduces hysteresis and open circuit voltage loss. In addition, unencapsulated equipment exhibits excellent stability in ambient air.

5.
Opt Express ; 32(12): 20618-20628, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38859439

RESUMEN

Quantum dot (QD) light-emitting diodes (QLEDs) are promising for next-generation lighting and displays. Considering the optimization design of both the QD and device structure is expected to improve the QLED's performance significantly but has rarely been reported. Here, we use the thick-shell QDs combined with a dual-hole transport layer device structure to construct a high-efficiency QLED. The optimized thick-shell QDs with CdS/CdSe/CdS/ZnS seed/spherical quantum well/shell/shell geometry exhibit a high photoluminescence quantum yield of 96% at a shell thickness of 5.9 nm. The intermediate emissive CdSe layer with coherent strain ensures defect-free growth of the thick CdS and ZnS outer shells. Based on the orthogonal solvents assisted Poly-TPD&PVK dual-hole transport layer device architecture, the champion QLED achieved a maximum external quantum efficiency of 22.5% and a maximum luminance of 259955 cd m-2, which are 1.6 and 3.7 times that of thin-shell QDs based devices with single hole transport layer, respectively. Our study provides a feasible idea for further improving the performance of QLED devices.

6.
J Environ Manage ; 361: 121248, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38820798

RESUMEN

One of the main reasons for the decline in global freshwater biodiversity can be attributed to alterations in hydrological conditions resulting from dam construction. However, the majority of current research has focused on single or limited numbers of dams. Here, we carried out a seasonal fish survey, using environmental DNA (eDNA) method, on the Wujiang River mainstream (Tributaries of the Yangtze River, China) to investigate the impact of large-scale cascade hydropower development on changes in fish diversity patterns. eDNA survey revealed that native fish species have decreased in contrast to alien fish. There was also a shift in fish community structure, with declines of the dominant rheophilic fish species, an increase of the small-size fish species, and homogenization of species composition across reservoirs. Additionally, environmental factors, such as temperature, dissolved oxygen and reservoir age, had a significant effect on fish community diversity. This study provides basic information for the evaluation of the impact of cascade developments on fish diversity patterns.


Asunto(s)
Biodiversidad , Peces , Ríos , Animales , Peces/genética , China , ADN Ambiental/análisis
7.
Molecules ; 29(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38731531

RESUMEN

Actinomycetes have long been recognized as an important source of antibacterial natural products. In recent years, actinomycetes in extreme environments have become one of the main research directions. Streptomyces sp. KN37 was isolated from the cold region of Kanas in Xinjiang. It demonstrated potent antimicrobial activity, but the primary active compounds remained unclear. Therefore, we aimed to combine genomics with traditional isolation methods to obtain bioactive compounds from the strain KN37. Whole-genome sequencing and KEGG enrichment analysis indicated that KN37 possesses the potential for synthesizing secondary metabolites, and 41 biosynthetic gene clusters were predicted, some of which showed high similarity to known gene clusters responsible for the biosynthesis of antimicrobial antibiotics. The traditional isolation methods and activity-guided fractionation were employed to isolate and purify seven compounds with strong bioactivity from the fermentation broth of the strain KN37. These compounds were identified as 4-(Diethylamino)salicylaldehyde (1), 4-Nitrosodiphenylamine (2), N-(2,4-Dimethylphenyl)formamide (3), 4-Nitrocatechol (4), Methylsuccinic acid (5), Phenyllactic acid (6) and 5,6-Dimethylbenzimidazole (7). Moreover, 4-(Diethylamino)salicylaldehyde exhibited the most potent inhibitory effect against Rhizoctonia solani, with an EC50 value of 14.487 mg/L, while 4-Nitrosodiphenylamine showed great antibacterial activity against Erwinia amylovora, with an EC50 value of 5.715 mg/L. This study successfully isolated several highly active antimicrobial compounds from the metabolites of the strain KN37, which could contribute as scaffolds for subsequent chemical synthesis. On the other hand, the newly predicted antibiotic-like substances have not yet been isolated, but they still hold significant research value. They are instructive in the study of active natural product biosynthetic pathways, activation of silent gene clusters, and engineering bacteria construction.


Asunto(s)
Genómica , Familia de Multigenes , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Streptomyces/química , Genómica/métodos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Antibacterianos/biosíntesis , Pruebas de Sensibilidad Microbiana , Productos Biológicos/farmacología , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antiinfecciosos/aislamiento & purificación , Agricultura/métodos , Secuenciación Completa del Genoma
8.
Sci Total Environ ; 934: 173283, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38759927

RESUMEN

Conventional concentration-oriented approaches for nitrate risk diagnosis only provide overall risk levels without identifying risk values of individual sources or sources accountable for potential health risks. Therefore, a hybrid model combining the end-member mixing model tool on Excel™ (EMMTE) with human health risk assessment (HHRA) was developed to assess the source-oriented health risks for groundwater nitrate, particularly in the Poyang Lake Plain (PLP) region. The results indicated that the EMMTE and the Bayesian stable isotope mixing model (MixSIAR) exhibited remarkable consistency in source apportionment of groundwater nitrate. The source contribution of groundwater nitrate in PLP was related to land use types, hydrogeological conditions, and soil properties. Notably, manure and sewage sources, contributing up to 53.4 %, represented the largest nitrate pollution sources, with a significant contribution of soil nitrogen and nitrogen fertilizers. The non-carcinogenic risk for four potential sources was below the acceptable threshold of 1. Given the factors including rainfall dilution and economic development, attention should be directed towards mitigating the health risks posed by manure and sewage. This study can verify the efficacy of EMMTE in source apportionment and offer valuable insights for decision-makers to regulate the largest sources of nitrate contamination and enhance groundwater management efficiency.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Nitratos , Contaminantes Químicos del Agua , Agua Subterránea/química , Nitratos/análisis , Contaminantes Químicos del Agua/análisis , Medición de Riesgo , Monitoreo del Ambiente/métodos , Humanos , Teorema de Bayes , China
9.
Front Oncol ; 14: 1365474, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38812777

RESUMEN

Genomic imprinting plays an important role in the growth and development of mammals. When the original imprint status of these genes is lost, known as loss of imprinting (LOI), it may affect growth, neurocognitive development, metabolism, and even tumor susceptibility. The LOI of imprint genes has gradually been found not only as an early event in tumorigenesis, but also to be involved in progression. More than 120 imprinted genes had been identified in humans. In this review, we summarized the most studied LOI of two gene clusters and 13 single genes in cancers. We focused on the roles they played, that is, as growth suppressors and anti-apoptosis agents, sustaining proliferative signaling or inducing angiogenesis; the molecular pathways they regulated; and especially their clinical significance. It is notable that 12 combined forms of multi-genes' LOI, 3 of which have already been used as diagnostic models, achieved good sensitivity, specificity, and accuracy. In addition, the methods used for LOI detection in existing research are classified into detection of biallelic expression (BAE), differentially methylated regions (DMRs), methylation, and single-nucleotide polymorphisms (SNPs). These all indicated that the detection of imprinting genes' LOI has potential clinical significance in cancer diagnosis, treatment, and prognosis.

10.
Animal Model Exp Med ; 7(2): 98-105, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38567747

RESUMEN

BACKGROUND: Gut microbiota exert an immense effect on host health and host environmental adaptation. Furthermore, the composition and structure of gut microbiota are determined by the environment and host genetic factors. However, the relative contribution of the environment and host genetic factors toward shaping the structure of gut microbiota has been poorly understood. METHODS: In this study, we characterized the fecal microbial communities of the closely related voles Neodon fuscus, Lasiopodomys brandtii, and L. mandarinus after caged feeding in the laboratory for 6 months, through high-throughput sequencing and bioinformatics analysis. RESULTS: The results of pairwise comparisons of N. fuscus vs. L. brandtii and L. mandarinus vs. L. brandtii revealed significant differences in bacterial diversity and composition after domestication. While 991 same operational taxonomic units (OTUs) were shared in three voles, there were 362, 291, and 303 species-specific OTUs in N. fuscus, L. brandtii, and L. mandarinus, respectively. The relative abundances of Proteobacteria and Prevotella, which are reported to be enriched in high-altitude populations, were significantly higher in high-altitude N. fuscus than in low-altitude L. brandtii after domestication. Firmicutes, which produce various digestive enzymes for energy metabolism, and Spirochaetes, which can degrade cellulose, were found in higher abundance in subterranean L. mandarinus than that in L. brandtii which dwells on the earth surface. CONCLUSION: Our findings showed that some components of gut microbiota still maintained dominance even when different host species are reared under the same environmental conditions, suggesting that these bacteria are substantially influenced by host factors.


Asunto(s)
Arvicolinae , Microbioma Gastrointestinal , Animales , Arvicolinae/microbiología , Heces/microbiología , Especificidad de la Especie
11.
Environ Sci Technol ; 58(18): 8032-8042, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38670935

RESUMEN

Accumulation of geogenic phosphorus (P) in groundwater is an emerging environmental concern, which is closely linked to coupled processes involving FeOOH and organic matter under methanogenic conditions. However, it remains unclear how P enrichment is associated with methane cycling, particularly the anaerobic methane oxidation (AMO). This study conducted a comprehensive investigation of carbon isotopes in dissolved inorganic carbon (DIC), CO2, and CH4, alongside Fe isotopes, microbial communities, and functions in quaternary aquifers of the central Yangtze River plain. The study found that P concentrations tended to increase with Fe(II) concentrations, δ56Fe, and δ13C-DIC, suggesting P accumulation due to the reductive dissolution of FeOOH under methanogenic conditions. The positive correlations of pmoA gene abundance versus δ13C-CH4 and Fe concentrations versus δ13C-CH4, and the prevalent presence of Candidatus_Methanoperedens, jointly demonstrated the potential significance of Fe(III)-mediated AMO process (Fe-AMO) alongside traditional methanogenesis. The increase of P concentration with δ13C-CH4 value, pmoA gene abundance, and Fe concentration suggested that the Fe-AMO process facilitated P enrichment in groundwater. Redundancy analysis confirmed this assertion, identifying P concentration as the primary determinant and the cooperative influence of Fe-AMO microorganisms such as Candidatus_Methanoperedens and Geobacter on P enrichment. Our work provided new insights into P dynamics in subsurface environments.


Asunto(s)
Agua Subterránea , Metano , Oxidación-Reducción , Fósforo , Agua Subterránea/química , Metano/metabolismo , Fósforo/metabolismo , Anaerobiosis , Compuestos Férricos/metabolismo
12.
Mil Med Res ; 11(1): 27, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685116

RESUMEN

BACKGROUND: The channel-forming protein Pannexin1 (Panx1) has been implicated in both human studies and animal models of chronic pain, but the underlying mechanisms remain incompletely understood. METHODS: Wild-type (WT, n = 24), global Panx1 KO (n = 24), neuron-specific Panx1 KO (n = 20), and glia-specific Panx1 KO (n = 20) mice were used in this study at Albert Einstein College of Medicine. The von Frey test was used to quantify pain sensitivity in these mice following complete Freund's adjuvant (CFA) injection (7, 14, and 21 d). The qRT-PCR was employed to measure mRNA levels of Panx1, Panx2, Panx3, Cx43, Calhm1, and ß-catenin. Laser scanning confocal microscopy imaging, Sholl analysis, and electrophysiology were utilized to evaluate the impact of Panx1 on neuronal excitability and morphology in Neuro2a and dorsal root ganglion neurons (DRGNs) in which Panx1 expression or function was manipulated. Ethidium bromide (EtBr) dye uptake assay and calcium imaging were employed to investigate the role of Panx1 in adenosine triphosphate (ATP) sensitivity. ß-galactosidase (ß-gal) staining was applied to determine the relative cellular expression levels of Panx1 in trigeminal ganglia (TG) and DRG of transgenic mice. RESULTS: Global or neuron-specific Panx1 deletion markedly decreased pain thresholds after CFA stimuli (7, 14, and 21 d; P < 0.01 vs. WT group), indicating that Panx1 was positively correlated with pain sensitivity. In Neuro2a, global Panx1 deletion dramatically reduced neurite extension and inward currents compared to the WT group (P < 0.05), revealing that Panx1 enhanced neurogenesis and excitability. Similarly, global Panx1 deletion significantly suppressed Wnt/ß-catenin dependent DRG neurogenesis following 5 d of nerve growth factor (NGF) treatment (P < 0.01 vs. WT group). Moreover, Panx1 channels enhanced DRG neuron response to ATP after CFA injection (P < 0.01 vs. Panx1 KO group). Furthermore, ATP release increased Ca2+ responses in DRGNs and satellite glial cells surrounding them following 7 d of CFA treatment (P < 0.01 vs. Panx1 KO group), suggesting that Panx1 in glia also impacts exaggerated neuronal excitability. Interestingly, neuron-specific Panx1 deletion was found to markedly reduce differentiation in cultured DRGNs, as evidenced by stunted neurite outgrowth (P < 0.05 vs. Panx1 KO group; P < 0.01 vs. WT group or GFAP-Cre group), blunted activation of Wnt/ß-catenin signaling (P < 0.01 vs. WT, Panx1 KO and GFAP-Cre groups), and diminished cell excitability (P < 0.01 vs. GFAP-Cre group) and response to ATP stimulation (P < 0.01 vs. WT group). Analysis of ß-gal staining showed that cellular expression levels of Panx1 in neurons are significantly higher (2.5-fold increase) in the DRG than in the TG. CONCLUSIONS: The present study revealed that neuronal Panx1 is a prominent driver of peripheral sensitivity in the setting of inflammatory pain through cell-autonomous effects on neuronal excitability. This hyperexcitability dependence on neuronal Panx1 contrasts with inflammatory orofacial pain, where similar studies revealed a prominent role for glial Panx1. The apparent differences in Panx1 expression in neuronal and non-neuronal TG and DRG cells are likely responsible for the distinct impact of these cell types in the two pain models.


Asunto(s)
Conexinas , Proteínas del Tejido Nervioso , Animales , Conexinas/genética , Ratones , Proteínas del Tejido Nervioso/genética , Modelos Animales de Enfermedad , Dolor/fisiopatología , Dolor/etiología , Neuronas/metabolismo , Inflamación/fisiopatología , Ratones Noqueados , Masculino
13.
Exp Eye Res ; 242: 109880, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552713

RESUMEN

Age-related macular degeneration (AMD) is a progressive, degenerative disease of the macula. The formation of macular neovascularization (MNV) and subretinal fibrosis of AMD is the most classic cause of the loss of vision in older adults worldwide. While the underlying causes of MNV and subretinal fibrosis remain elusive, the common feature of many common retinal diseases is changes the proportions of protein deposition in extracellular matrix (ECM) when compared to normal tissue. In ECM, fibronectin (FN) is a crucial component and plays a pivotal part not only in fibrotic diseases but also in the process of angiogenesis. The study aims to understand the role of ligand FN and its common integrin receptor α5ß1 on MNV, and to understand the molecular mechanism involved. To study this, the laser-induced MNV mouse model and the rhesus macaque choroid-retinal endothelial cell line (RF/6A) chemical hypoxia mode were established, and the FN-α5ß1 expression levels were detected by immunohistochemistry (IHC) and quantitative real-time PCR analysis (qRT-PCR). Fibronectin expression was silenced using small interfering RNA (siRNA) targeting FN. The tube formation and vitro scratch assays were used to assess the ability to form blood vessels and cell migration. To measure the formation of MNV, immunofluorescence, and Western blot assays were used. These results revealed that the expressions of FN and integrin α5ß1 were distinctly increased in the laser-induced MNV mouse model and in the RF/6A cytochemically induced hypoxia model, and the expression tendency was identical. After the use of FN siRNA, the tube formation and migration abilities of the RF/6A cells were lower, the ability of endothelial cells to proliferate was confined and the scope of damage caused by the laser in animal models was significantly cut down. In addition, FN gene knockdown dramatically inhibited the expression of Wnt/ß-catenin signal. The interaction of FN with the integrin receptor α5ß1 in the constructed model, which may act through the Wnt/ß-catenin signaling pathway, was confirmed in this study. In conclusion, FN may be a potential new molecular target for the prevention and treatment of subretinal fibrosis and MNV.


Asunto(s)
Modelos Animales de Enfermedad , Fibronectinas , Integrina alfa5beta1 , Ratones Endogámicos C57BL , Vía de Señalización Wnt , Animales , Fibronectinas/metabolismo , Integrina alfa5beta1/metabolismo , Integrina alfa5beta1/genética , Ratones , Vía de Señalización Wnt/fisiología , Movimiento Celular/fisiología , Western Blotting , Macaca mulatta , Neovascularización Retiniana/metabolismo , Neovascularización Retiniana/patología , beta Catenina/metabolismo , Inmunohistoquímica , Reacción en Cadena en Tiempo Real de la Polimerasa , Masculino , Células Cultivadas
14.
ACS Appl Mater Interfaces ; 16(11): 13858-13868, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38441545

RESUMEN

Large volume strain and slow kinetics are the main obstacles to the application of high-specific-capacity alloy-type metal tellurides in potassium-ion storage systems. Herein, Bi2Te3-x nanocrystals with abundant Te-vacancies embedded in nitrogen-doped porous carbon nanofibers (Bi2Te3-x@NPCNFs) are proposed to address these challenges. In particular, a hierarchical porous fiber structure can be achieved by the polyvinylpyrrolidone-etching method and is conducive to increasing the Te-vacancy concentration. The unique porous structure together with defect engineering modulates the potassium storage mechanism of Bi2Te3, suppresses structural distortion, and accelerates K+ diffusion capacity. The meticulously designed Bi2Te3-x@NPCNFs electrode exhibits ultrastable cycling stability (over 3500 stable cycles at 1.0 A g-1 with a capacity degradation of only 0.01% per cycle) and outstanding rate capability (109.5 mAh g-1 at 2.0 A g-1). Furthermore, the systematic ex situ characterization confirms that the Bi2Te3-x@NPCNFs electrode undergoes an "intercalation-conversion-step alloying" mechanism for potassium storage. Kinetic analysis and density functional theory calculations reveal the excellent pseudocapacitive performance, attractive K+ adsorption, and fast K+ diffusion ability of the Bi2Te3-x@NPCNFs electrode, which is essential for fast potassium-ion storage. Impressively, the assembled Bi2Te3-x@NPCNFs//activated-carbon potassium-ion hybrid capacitors achieve considerable energy/power density (energy density up to 112 Wh kg-1 at a power density of 1000 W kg-1) and excellent cycling stability (1600 cycles at 10.0 A g-1), indicating their potential practical applications.

15.
Sensors (Basel) ; 24(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38543997

RESUMEN

The fusion of infrared and visible images is a well-researched task in computer vision. These fusion methods create fused images replacing the manual observation of single sensor image, often deployed on edge devices for real-time processing. However, there is an issue of information imbalance between infrared and visible images. Existing methods often fail to emphasize temperature and edge texture information, potentially leading to misinterpretations. Moreover, these methods are computationally complex, and challenging for edge device adaptation. This paper proposes a method that calculates the distribution proportion of infrared pixel values, allocating fusion weights to adaptively highlight key information. It introduces a weight allocation mechanism and MobileBlock with a multispectral information complementary module, innovations which strengthened the model's fusion capabilities, made it more lightweight, and ensured information compensation. Training involves a temperature-color-perception loss function, enabling adaptive weight allocation based on image pair information. Experimental results show superiority over mainstream fusion methods, particularly in the electric power equipment scene and publicly available datasets.

16.
J Contam Hydrol ; 262: 104308, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38301511

RESUMEN

Elevated nitrate (NO3-) loadings in groundwater may cause health effects in drinking water and nutrient enrichment of aquatic ecosystems. To reveal the sources and seasonal variations of NO3- in the coastal groundwater of Beihai, southern China, we carried out hydrochemical and isotopic (δ15N-δ18O in NO3-) investigations in the summer and winter, respectively, concerning multiple-aquifer groundwater, rainwater, seawater, and surface water. The sources of the main elements present in the waters were interpreted by ionic ratios. NO3- sources were identified by combined use of the δ15N values and δ18O values or NO3-/Na+ molar ratios, with estimations of the proportional contribution by the Bayesian stable isotope mixing model. Denitrification was interpreted along the flow paths. The results show groundwater main elements are originated primarily from silicate weathering, and secondarily from anthropogenic inputs and carbonate dissolution. Its qualities are largely affected by seawater intrusion along the coastline. Because of difference in the predominant minerals within the aquifers and in scale and extent of seawater intrusion, the groundwater displays distinct ionic ratio characters. NO3- concentrations are up to 33.9 mg/L, with higher loadings in the plains relative to along the coastline. Soil N, domestic sewage, rainwater, chemical fertilizers, and algae are NO3- sources, with average proportional contributions of 0.255, 0.221, 0.207, 0.202, and 0.116, respectively. In relation to the winter, higher production of NO3- from nitrification of soil N- and algae-derived ammonium induced by higher temperatures in the summer accounts for increases in groundwater NO3- loadings. In the rural areas, elevated loadings of NO3- in the winter may be due to larger infiltration fractions of sewage. Seasonal variations of atmospheric NO3- deposition and farming may also cause the dynamics. Our results improve the understanding of sources and seasonal dynamics of NO3- in coastal groundwater.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Nitratos/análisis , Isótopos de Nitrógeno/análisis , Estaciones del Año , Ecosistema , Aguas del Alcantarillado , Teorema de Bayes , Monitoreo del Ambiente/métodos , Suelo , China , Contaminantes Químicos del Agua/análisis
17.
Nanomicro Lett ; 16(1): 77, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38190031

RESUMEN

Metal tellurides (MTes) are highly attractive as promising anodes for high-performance potassium-ion batteries. The capacity attenuation of most reported MTe anodes is attributed to their poor electrical conductivity and large volume variation. The evolution mechanisms, dissolution properties, and corresponding manipulation strategies of intermediates (K-polytellurides, K-pTex) are rarely mentioned. Herein, we propose a novel structural engineering strategy to confine ultrafine CoTe2 nanodots in hierarchical nanogrid-in-nanofiber carbon substrates (CoTe2@NC@NSPCNFs) for smooth immobilization of K-pTex and highly reversible conversion of CoTe2 by manipulating the intense electrochemical reaction process. Various in situ/ex situ techniques and density functional theory calculations have been performed to clarify the formation, transformation, and dissolution of K-pTex (K5Te3 and K2Te), as well as verifying the robust physical barrier and the strong chemisorption of K5Te3 and K2Te on S, N co-doped dual-type carbon substrates. Additionally, the hierarchical nanogrid-in-nanofiber nanostructure increases the chemical anchoring sites for K-pTex, provides sufficient volume buffer space, and constructs highly interconnected conductive microcircuits, further propelling the battery reaction to new heights (3500 cycles at 2.0 A g-1). Furthermore, the full cells further demonstrate the potential for practical applications. This work provides new insights into manipulating K-pTex in the design of ultralong-cycling MTe anodes for advanced PIBs.

18.
Heliyon ; 10(1): e22766, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38163107

RESUMEN

A transient ischemic attack (TIA) affects millions of people worldwide. Although TIA risk factors have been identified individually, a systemic quantitative analysis of all health factors relevant to TIA using electronic medical records (EMR) remains lacking. This study employed a data-driven approach, leveraging hospital EMR data to create a TIA patient health factor graph. This graph consisted of 737 TIA and 737 control patient nodes, 740 health factor nodes, and over 33,000 relations between patients and factors. For all health factors in the graph, the connection delta ratios (CDRs) were determined and ranked, generating a quantitative distribution of TIA health factors. A literature review confirmed 56 risk factors in the distribution and unveiled a potential new risk factor "rhinosinusitis" for future validation. Moreover, the patient graph was visualized together with the TIA knowledge graph in the Unified Medical Language System. This integration enables clinicians to access and visualize patient data and international standard knowledge within a unified graph. In conclusion, graph CDR analysis can effectively quantify the distribution of TIA risk factors. The resulting TIA risk factor distribution might be instrumental in developing new risk prediction machine learning models for screening and early detection of TIA.

19.
Res Gerontol Nurs ; 17(2): 57-64, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38285909

RESUMEN

PURPOSE: To assess the reliability and validity of a subset of the Minimum Data Set (MDS) 3.0 Section GG data elements (i.e., standardized self-care, mobility) among 147 long-stay nursing home residents in seven nursing homes in five states. METHOD: Trained clinicians assessed residents' functional abilities using select Section GG items and Section G activities of daily living items. We examined the reliability and construct validity of the data using Cronbach's alpha, correlations between Section G and Section GG items, confirmatory factor analysis (CFA), and Rasch measurement analysis. RESULTS: We observed acceptable internal consistency values for all (0.98), self-care (0.93), and mobility (0.98) standardized items. Correlations between conceptually related Section G and Section GG items ranged from -0.53 to -0.84. CFA findings found acceptable values for all fit indices. Rasch analysis showed most items had acceptable fit statistics, except for the easiest and most difficult activities. CONCLUSION: These findings establish the feasibility of data collection, internal consistency reliability, and construct validity of the selected Section GG items among long-stay nursing home residents. Use of the same standardized data elements in post-acute and long-term care populations can support improved coding of function and enhance our understanding of resident functioning. [Research in Gerontological Nursing, 17(2), 57-64.].


Asunto(s)
Actividades Cotidianas , Autocuidado , Humanos , Reproducibilidad de los Resultados , Casas de Salud , Cuidados a Largo Plazo
20.
CNS Neurosci Ther ; 30(2): e14388, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37563991

RESUMEN

OBJECTIVES: This study investigated the prognostic effect of electroencephalography (EEG) instant effects of single spinal cord stimulation (SCS) on clinical outcome in disorders of consciousness (DOC) and the time-dependent brain response during the recovery of consciousness prompted by SCS. METHODS: Twenty three patients with DOC underwent short-term SCS (stSCS) implantation operation. Then, all patients received the postoperative EEG test including EEG record before (T1) and after (T2) single SCS session. Subsequently, 2 weeks stSCS treatment was performed and revised coma recovery scale (CRS-R) and EEG data were collected. Finally, they were classified into effective and ineffective groups at 3-month follow-up (T6). RESULTS: The parietal-occipital (PO) connectivity and clustering coefficients (CC) in the beta band of the effective group at the 1 week after the treatment (T5) were found to be higher than preoperative assessment (T0). Correlation analysis showed that the change in beta CC at T1/T2 was correlated with the change in CRS-R at T0/T6. In addition, the change in PO connectivity and CC in the beta at T0/T5 were also correlated with the change in CRS-R at T0/T5. CONCLUSION: SCS may facilitate the recovery of consciousness by enhancing local information interaction in posterior brain regions. And the recovery can be predicted by beta CC in the EEG test.


Asunto(s)
Estimulación de la Médula Espinal , Humanos , Trastornos de la Conciencia/terapia , Electroencefalografía , Encéfalo , Pronóstico , Estado de Conciencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...