Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
J Food Sci ; 89(5): 2611-2628, 2024 May.
Article En | MEDLINE | ID: mdl-38571450

Fructus Aurantii (FA) is an edible and medicinal functional food used worldwide that enhances digestion. Since raw FA (RFA) possesses certain side effects for some patients, processed FA (PFA) is commonly used in clinical practice. This study aimed to establish an objective and comprehensive quality evaluation of the PFA that employed the technique of steaming and fermentation. Combined with the volatile and non-volatile components, as well as the regulation of gut microbiota, the differentiation between RFA and PFA was analyzed. The results showed that the PFA considerably reduced the contents of flavonoid glycosides while increasing hesperidin-7-O-glucoside and flavonoid aglycones. The electronic nose and GC-MS (Gas chromatography/mass spectrometry) effectively detected the variation in flavor between RFA and PFA. Correlation analysis revealed that eight volatile components (relative odor activity value [ROAV] ≥ 0.1) played a key role in inducing odor modifications. The original floral and woody notes were subdued due to decreased levels of linalool, sabinene, α-terpineol, and terpinen-4-ol. After processing, more delightful flavors such as lemon and fruity aromas were acquired. Furthermore, gut microbiota analysis indicated a significant increase in beneficial microbial taxa. Particularly, Lactobacillus, Akkermansia, and Blautia exhibited higher abundance following PFA treatment. Conversely, a lower presence of pathogenic bacteria, including Proteobacteria, Flexispira, and Clostridium. This strategy contributes to a comprehensive analysis technique for the quality assessment of FA, providing scientific justifications for processing FA into high-value products with enhanced health benefits. PRACTICAL APPLICATION: This study provided an efficient approach to Fructus Aurantii quality evaluation. The methods of fermentation and steaming showed improved quality and safety.


Fermentation , Fruit , Gas Chromatography-Mass Spectrometry , Gastrointestinal Microbiome , Odorants , Taste , Volatile Organic Compounds , Fruit/chemistry , Fruit/microbiology , Odorants/analysis , Gas Chromatography-Mass Spectrometry/methods , Volatile Organic Compounds/analysis , Citrus/chemistry , Humans , Flavoring Agents/analysis , Bacteria/classification , Food Handling/methods , Quality Control , Flavonoids/analysis
2.
Sensors (Basel) ; 23(14)2023 Jul 18.
Article En | MEDLINE | ID: mdl-37514797

Statistical learning techniques and increased computational power have facilitated the development of self-driving car technology. However, a limiting factor has been the high expense of scaling and maintaining high-definition (HD) maps. These maps are a crucial backbone for many approaches to self-driving technology. In response to this challenge, we present an approach that fuses pre-built point cloud map data with images to automatically and accurately identify static landmarks such as roads, sidewalks, and crosswalks. Our pipeline utilizes semantic segmentation of 2D images, associates semantic labels with points in point cloud maps to pinpoint locations in the physical world, and employs a confusion matrix formulation to generate a probabilistic bird's-eye view semantic map from semantic point clouds. The approach has been tested in an urban area with different segmentation networks to generate a semantic map with road features. The resulting map provides a rich context of the environment that is valuable for downstream tasks such as trajectory generation and intent prediction. Moreover, it has the potential to be extended to the automatic generation of HD maps for semantic features. The entire software pipeline is implemented in the robot operating system (ROS), a widely used robotics framework, and made available.

3.
J Anal Methods Chem ; 2023: 6067647, 2023.
Article En | MEDLINE | ID: mdl-37305028

Fermented Fructus Aurantii (FFA) is widely used in South China for the treatment of functional dyspepsia. Naringin, neohesperidin, and other flavonoids are the main pharmacodynamic components of FFA. A new method is presented for the simultaneous determination of 10 flavonoids (including flavonoid glycosides and aglycones) in FFA using the quantitative analysis of multicomponents via a single marker (QAMS) approach and is used to investigate changes in flavonoids during fermentation. The viability and precision of QAMS were validated against the ultrahigh-performance liquid chromatography (UPLC), with various UPLC instruments and chromatographic conditions being evaluated. Differences between raw Fructus Aurantii (RFA) and FFA were examined using orthogonal partial least squares discrimination analysis (OPLS-DA) and content determination. The influence of various fermentation conditions on flavonoids was also investigated. There were no appreciable differences between the QAMS and the external standard method (ESM), demonstrating that QAMS is an improved method for the determination of FA and FFA. FFA and RFA can be readily distinguished based on OPLS-DA chemometric modelling and the corresponding chromatograms. In addition, the flavonoid changes after fermentation. Fermentation considerably reduced the contents of flavonoid glycosides, while increasing hesperidin-7-O-glucoside and flavonoid aglycones. Moreover, fermentation conditions impact multiple flavonoids in FA, so controlling these conditions is necessary for the quality control of fermented FA products. This QAMS approach is useful for detecting numerous components in RFA and FFA simply, quickly, and efficiently, thus strengthening the quality control of FA and its fermented products.

4.
Zhongguo Zhong Yao Za Zhi ; 48(1): 82-95, 2023 Jan.
Article Zh | MEDLINE | ID: mdl-36725261

With the approach of untargeted metabolomics and correlation analysis, this study aimed to explore the mechanism of Aurantii Fructus from Lingnan region in alleviating dryness by analyzing the different effects of raw Aurantii Fructus(RAF) and processed Aurantii Fructus(PAF) on fecal endogenous metabolism in normal rats. Eighteen Sprague-Dawley(SD) rats were randomly divided into a control group(C), an RAF group(10 g·kg~(-1)), and a PAF group(10 g·kg~(-1)). After seven days of administration, the effects of RAF and PAF on dryness-related indexes were compared, including water intake, fecal water content, salivary secretion, the expression of AQP5, VIP, and 5-HT in the submandibular gland, as well as the expression of AQP3, VIP, and 5-HT in the colon. The fecal samples in each group were determined by LC-MS. Multivariate statistical analysis and Pearson correlation coefficient were used for screening the differential metabolites and metabolic pathways in alleviating dryness of RAF. The results indicated that both RAF and PAF showed certain dryness, and the dryness of RAF was more significant. Moreover, PAF could alleviate dryness of RAF to a certain extent by reducing the water intake, fecal water content, and the expression of AQP3, VIP, and 5-HT in the colon and increasing the salivary secretion and the levels of AQP5, VIP, and 5-HT in the submandibular gland. According to the analysis of fecal metabolomics, 99 and 58 metabolites related to dryness were found in RAF and PAF respectively, where 16 of them played an important role in alleviating dryness of RAF. Pathway analysis revealed that the mechanism of PAF in alleviating dryness of RAF was presumably related to the regulation of riboflavin metabolism, purine metabolism, arginine biosynthesis, pyrimidine metabolism, alanine metabolism, aspartate metabolism, glutamate metabolism, and retinol metabolism pathways. This study suggested that PAF might alleviate dryness of RAF by affecting the metabolic levels of the body, which provides a new basis for further clarifying the processing mechanism of PAF.


Drugs, Chinese Herbal , Rats , Animals , Drugs, Chinese Herbal/pharmacology , Rats, Sprague-Dawley , Serotonin , Metabolomics , Water
5.
RSC Adv ; 9(48): 28089-28094, 2019 Sep 03.
Article En | MEDLINE | ID: mdl-35530448

A series of Pt/Fe co-loaded mesoporous zeolite beta (Pt/Fe-mBeta) catalysts with different Fe contents have been successfully synthesized by an ion exchange and subsequent ethylene glycol reduction method. The catalysts were characterized by XRD, N2 adsorption-desorption, TEM, SEM, XPS and H2-TPR. The optimized sample Pt/Fe(3)-mBeta shows high catalytic activity for CO oxidation under dry conditions, and the complete conversion temperature of CO is as low as 90 °C. More importantly, the sample Pt/Fe(3)-mBeta also shows excellent water resistance and good durability, which could meet the practical needs of exhaust purification of diesel vehicles. It is believed that the synergistic effect between varied-valence Pt/Fe species and the mesoporous zeolite support with high surface area and good water resistance jointly contribute to the excellent catalytic performance.

...