Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biosens Bioelectron ; 263: 116552, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39038400

RESUMEN

Sulfadiazine (SDZ) is frequently detected in environmental samples, arousing much concern due to its toxicity and hard degradation. This study investigated the electricity generation capabilities, SDZ removal and microbial communities of a highly efficient mixed-culture system using repeated transfer enrichments in a bio-electrochemical system. The mixed-culture biofilm (S160-T2) produced a remarkable current density of 954.12 ± 15.08 µA cm-2 with 160 mg/L SDZ, which was 32.9 and 1.8 times higher than that of Geobacter sulfurreducens PCA with 40 mg/L SDZ and without additional SDZ, respectively. Especially, the impressive SDZ removal rate of 98.76 ± 0.79% was achieved within 96 h using the further acclimatized mixed-culture. The removal efficiency of this mixed-culture for SDZ through the bio-electrochemical system was 1.1 times higher than that using simple anaerobic biodegradation. Furthermore, the current density and removal efficiency in this system gradually decreased with increasing SDZ concentrations from 0 to 800 mg/L. In addition, community diversity data demonstrated that the dominant genera, Geobacter and Escherichia-Shigella, were enriched in mixed-culture biofilm, which might be responsible for the current production and SDZ removal. This work confirmed the important roles of acclimatized microbial consortia and co-substrates in the simultaneous removal of SDZ and electricity generation in an electrochemical system.

3.
ACS Appl Mater Interfaces ; 14(43): 48897-48906, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36268902

RESUMEN

Vanadium(V)-substituted cerium niobate [Ce(Nb1-xVx)O4, CNVx] ceramics were prepared to explore their structure-microwave (MW) property relations and application in C-band dielectric resonator antennas (DRAs). X-ray diffraction and Raman spectroscopy revealed that CNVx (0.0 ≤ x ≤ 0.4) ceramics exhibited a ferroelastic phase transition at a critical content of V (xc = 0.3) from a monoclinic fergusonite structure to a tetragonal scheelite structure (TF-S), which decreased in temperature as a function of x according to thermal expansion analysis. Optimum microwave dielectric performance was obtained for CNV0.3 with permittivity (εr) of ∼16.81, microwave quality factor (Qf) of ∼41 300 GHz (at ∼8.7 GHz), and temperature coefficient of the resonant frequency (TCF) of ∼ -3.5 ppm/°C. εr is dominated by Ce-O phonon absorption in the microwave band; Qf is mainly determined by the porosity, grain size, and proximity of TF-S; and TCF is controlled by the structural distortions associated with TF-S. Terahertz (THz) (0.20-2.00 THz, εr ∼ 12.52 ± 0.70, and tan δ ∼ 0.39 ± 0.17) and infrared measurements are consistent, demonstrating that CNVx (0.0 ≤ x ≤ 0.4) ceramics are effective in the sub-millimeter as well as MW regime. A cylindrical DRA prototype antenna fabricated from CNV0.3 resonated at 7.02 GHz (|S11| = -28.8 dB), matching simulations, with >90% radiation efficiency and 3.34-5.93 dB gain.

4.
Org Lett ; 24(40): 7410-7415, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36197136

RESUMEN

The efficient electrochemically promoted [3 + 2] annulation of imidazo[1,2-a]pyridines with alkynes using traceless electrons as green reagents has been developed, leading to the synthesis of a large class of polycyclic heteroaromatics in good yields with a broad substrate scope under mild and green conditions. The scaled-up experiment, follow-up procedures, and potential biological applications show the practicability and feasibility of the electrochemical method.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA