Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 53
1.
N Engl J Med ; 390(17): 1549-1559, 2024 May 02.
Article En | MEDLINE | ID: mdl-38669354

BACKGROUND: Subcutaneous administration of the monoclonal antibody L9LS protected adults against controlled Plasmodium falciparum infection in a phase 1 trial. Whether a monoclonal antibody administered subcutaneously can protect children from P. falciparum infection in a region where this organism is endemic is unclear. METHODS: We conducted a phase 2 trial in Mali to assess the safety and efficacy of subcutaneous administration of L9LS in children 6 to 10 years of age over a 6-month malaria season. In part A of the trial, safety was assessed at three dose levels in adults, followed by assessment at two dose levels in children. In part B of the trial, children were randomly assigned, in a 1:1:1 ratio, to receive 150 mg of L9LS, 300 mg of L9LS, or placebo. The primary efficacy end point, assessed in a time-to-event analysis, was the first P. falciparum infection, as detected on blood smear performed at least every 2 weeks for 24 weeks. A secondary efficacy end point was the first episode of clinical malaria, as assessed in a time-to-event analysis. RESULTS: No safety concerns were identified in the dose-escalation part of the trial (part A). In part B, 225 children underwent randomization, with 75 children assigned to each group. No safety concerns were identified in part B. P. falciparum infection occurred in 36 participants (48%) in the 150-mg group, in 30 (40%) in the 300-mg group, and in 61 (81%) in the placebo group. The efficacy of L9LS against P. falciparum infection, as compared with placebo, was 66% (adjusted confidence interval [95% CI], 45 to 79) with the 150-mg dose and 70% (adjusted 95% CI, 50 to 82) with the 300-mg dose (P<0.001 for both comparisons). Efficacy against clinical malaria was 67% (adjusted 95% CI, 39 to 82) with the 150-mg dose and 77% (adjusted 95% CI, 55 to 89) with the 300-mg dose (P<0.001 for both comparisons). CONCLUSIONS: Subcutaneous administration of L9LS to children was protective against P. falciparum infection and clinical malaria over a period of 6 months. (Funded by the National Institute of Allergy and Infectious Diseases; ClinicalTrials.gov number, NCT05304611.).


Antibodies, Monoclonal, Humanized , Malaria, Falciparum , Adult , Child , Female , Humans , Male , Dose-Response Relationship, Drug , Double-Blind Method , Endemic Diseases/prevention & control , Injections, Subcutaneous , Kaplan-Meier Estimate , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , Mali/epidemiology , Plasmodium falciparum , Treatment Outcome , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Directly Observed Therapy , Artemether, Lumefantrine Drug Combination/administration & dosage , Artemether, Lumefantrine Drug Combination/therapeutic use , Young Adult , Middle Aged
2.
Res Sq ; 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38645126

Malaria is a major public health problem, but many of the factors underlying the pathogenesis of this disease are not well understood. Here, we demonstrate in Malian children that susceptibility to febrile malaria following infection with Plasmodium falciparum is associated with the composition of the gut microbiome prior to the malaria season. Gnotobiotic mice colonized with the fecal samples of malaria-susceptible children had a significantly higher parasite burden following Plasmodium infection compared to gnotobiotic mice colonized with the fecal samples of malaria-resistant children. The fecal microbiome of the susceptible children was enriched for bacteria associated with inflammation, mucin degradation, gut permeability and inflammatory bowel disorders (e.g., Ruminococcus gauvreauii, Ruminococcus torques, Dorea formicigenerans, Dorea longicatena, Lachnoclostridium phocaeense and Lachnoclostridium sp. YL32). However, the susceptible children also had a greater abundance of bacteria known to produce anti-inflammatory short-chain fatty acids and those associated with favorable prognosis and remission following dysbiotic intestinal events (e.g., Anaerobutyricum hallii, Blautia producta and Sellimonas intestinalis). Metabolomics analysis of the human fecal samples corroborated the existence of inflammatory and recovery-associated features within the gut microbiome of the susceptible children. There was an enrichment of nitric oxide-derived DNA adducts (deoxyinosine and deoxyuridine) and long-chain fatty acids, the absorption of which has been shown to be inhibited by inflamed intestinal epithelial cells, and a decrease in the abundance of mucus phospholipids. Nevertheless, there were also increased levels of pseudouridine and hypoxanthine, which have been shown to be regulated in response to cellular stress and to promote recovery following injury or hypoxia. Overall, these results indicate that the gut microbiome may contribute malaria pathogenesis and suggest that therapies targeting intestinal inflammation could decrease malaria susceptibility.

3.
Microbiol Spectr ; 11(6): e0155423, 2023 Dec 12.
Article En | MEDLINE | ID: mdl-37819130

IMPORTANCE: There is increasing evidence that microbes residing within the intestines (gut microbiota) play important roles in the well-being of humans. Yet, there are considerable challenges in determining the specific role of gut microbiota in human diseases owing to the complexity of diverse internal and environmental factors that can contribute to diseases. Mice devoid of all microorganisms (germ-free mice) can be colonized with human stool samples to examine the specific contribution of the gut microbiota to a disease. These approaches have been primarily focused on stool samples obtained from individuals in Western countries. Thus, there is limited understanding as to whether the same methods used to colonize germ-free mice with stool from Western individuals would apply to the colonization of germ-free mice with stool from non-Western individuals. Here, we report the results from colonizing germ-free mice with stool samples of Malian children.


Gastrointestinal Microbiome , Intestines , Child , Humans , Animals , Mice , Disease Models, Animal , Germ-Free Life , Feces
4.
Chemosphere ; 332: 138838, 2023 Aug.
Article En | MEDLINE | ID: mdl-37150453

The dielectric barrier discharge (DBD) multi-component system containing plasma, α-Fe2O3/FeVO4, and peroxymonosulfate (PMS) with high catalytic activity was successfully constructed. Thereinto, α-Fe2O3/FeVO4 was loaded on the honeycomb ceramic plate (HCP) surface (α-Fe2O3/FeVO4/HCP) and placed under the water surface below the discharge area. The catalytic activity was evaluated by the removal rate of gatifloxacin (GAT), and the DBD+α-Fe2O3/FeVO4+PMS system exhibited the optimal catalytic activity. The enhanced catalytic activity can be attributed to the fact that the occurrence of synergistic catalysis that simultaneously includes plasma oxidation, photocatalysis, PMS oxidation, O3 catalysis, and Fenton reaction. The effect of various initial degradation parameters including input power, PMS dosage, pH, etc. On GAT removal was investigated. DBD+α-Fe2O3/FeVO4+PMS system has a significant increase in the concentration of H2O2 and O3, and the role played in the multi-component system was analyzed. The identification and analysis of organic matters during GAT degradation were visualized with the help of 3D EEMs. HPLC-MS and theoretical calculations identified the major intermediates and further deduced the possible GAT degradation pathways. Additionally, the acute toxicity of the major intermediates was predicted by the QSAR model. Finally, the possible mechanisms of synergistic catalysis to enhance catalytic activity were discussed based on the characteristics of several advanced oxidation processes (AOPs) and the results of experimental and characterization. This work provides a feasible technical route and theoretical basis for wastewater treatment by plasma combined with other AOPs.


Hydrogen Peroxide , Peroxides , Gatifloxacin , Peroxides/chemistry , Catalysis
5.
Pediatr Nephrol ; 38(1): 237-247, 2023 01.
Article En | MEDLINE | ID: mdl-35467153

BACKGROUND: There is currently no specific equation for estimating glomerular filtration rate (GFR) in Chinese children with chronic kidney disease (CKD). The commonly used equations are less robust than expected; we therefore sought to derive more appropriate equations for GFR estimation. METHODS: A total of 751 Chinese children with CKD were divided into 2 groups, training group (n = 501) and validation group (n = 250). In the training group, a univariate linear regression model was used to calculate predictability of variables associated with GFR. Residuals were compared to determine multivariate predictability of GFR in the equation. Standard regression techniques for Gaussian data were used to determine coefficients of GFR-estimating equations after logarithmic transformation of measured GFR (iGFR), height/serum creatinine (height/Scr), cystatin C, blood urea nitrogen (BUN), and height. These were compared with other well-known equations using the validation group. RESULTS: Median 99mTc-DTPA GFR was 90.1 (interquartile range: 67.3-108.6) mL/min/1.73 m2 in training dataset. Our CKD equation, eGFR (mL/min/1.73 m2) = 91.021 [height(m)/Scr(mg/dL)/2.7]0.443 [1.2/Cystatin C(mg/L)]0.335 [13.7/BUN (mg/dL)]-0.095 [ 0.991male] [height(m)/1.4]0.275, was derived. This was further tested in the validation group, with percentages of eGFR values within 30% and 15% of iGFR (P30 and P15) of 76.00% and 48.40%, respectively. For centres with no access to cystatin C, a creatinine-based equation, eGFR (mL/min/1.73 m2) = 89.674 [height(m)/Scr(mg/dL)/2.7]0.579 [ 1.007male] [height(m)/1.4]0.187, was derived, with P30 and P15 73.60% and 49.20%, respectively. These were significantly higher compared to other well-known equations (p < 0.05). CONCLUSION: We developed equations for GFR estimation in Chinese children with CKD based on Scr, BUN and cystatin C. These are more accurate than commonly used equations in this population.


Cystatin C , Renal Insufficiency, Chronic , Child , Male , Humans , Glomerular Filtration Rate , East Asian People , Creatinine
6.
N Engl J Med ; 387(20): 1833-1842, 2022 Nov 17.
Article En | MEDLINE | ID: mdl-36317783

BACKGROUND: CIS43LS is a monoclonal antibody that was shown to protect against controlled Plasmodium falciparum infection in a phase 1 clinical trial. Whether a monoclonal antibody can prevent P. falciparum infection in a region in which the infection is endemic is unknown. METHODS: We conducted a phase 2 trial to assess the safety and efficacy of a single intravenous infusion of CIS43LS against P. falciparum infection in healthy adults in Mali over a 6-month malaria season. In Part A, safety was assessed at three escalating dose levels. In Part B, participants were randomly assigned (in a 1:1:1 ratio) to receive 10 mg of CIS43LS per kilogram of body weight, 40 mg of CIS43LS per kilogram, or placebo. The primary efficacy end point, assessed in a time-to-event analysis, was the first P. falciparum infection detected on blood-smear examination, which was performed at least every 2 weeks for 24 weeks. At enrollment, all the participants received artemether-lumefantrine to clear possible P. falciparum infection. RESULTS: In Part B, 330 adults underwent randomization; 110 were assigned to each trial group. The risk of moderate headache was 3.3 times as high with 40 mg of CIS43LS per kilogram as with placebo. P. falciparum infections were detected on blood-smear examination in 39 participants (35.5%) who received 10 mg of CIS43LS per kilogram, 20 (18.2%) who received 40 mg of CIS43LS per kilogram, and 86 (78.2%) who received placebo. At 6 months, the efficacy of 40 mg of CIS43LS per kilogram as compared with placebo was 88.2% (adjusted 95% confidence interval [CI], 79.3 to 93.3; P<0.001), and the efficacy of 10 mg of CIS43LS per kilogram as compared with placebo was 75.0% (adjusted 95% CI, 61.0 to 84.0; P<0.001). CONCLUSIONS: CIS43LS was protective against P. falciparum infection over a 6-month malaria season in Mali without evident safety concerns. (Funded by the National Institute of Allergy and Infectious Diseases; ClinicalTrials.gov number, NCT04329104.).


Antibodies, Monoclonal, Humanized , Antimalarials , Malaria, Falciparum , Adult , Humans , Antimalarials/adverse effects , Antimalarials/therapeutic use , Artemether, Lumefantrine Drug Combination/therapeutic use , Malaria, Falciparum/diagnosis , Malaria, Falciparum/drug therapy , Malaria, Falciparum/prevention & control , Mali , Plasmodium falciparum , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Headache/chemically induced
8.
Sci Immunol ; 7(71): eabn1250, 2022 05 13.
Article En | MEDLINE | ID: mdl-35559666

Several infectious and autoimmune diseases are associated with an expansion of CD21-CD27- atypical B cells (atBCs) that up-regulate inhibitory receptors and exhibit altered B cell receptor (BCR) signaling. The function of atBCs remains unclear, and few studies have investigated the biology of pathogen-specific atBCs during acute infection. Here, we performed longitudinal flow cytometry analyses and RNA sequencing of Plasmodium falciparum (Pf)-specific B cells isolated from study participants before and shortly after febrile malaria, with simultaneous analysis of influenza hemagglutinin (HA)-specific B cells as a comparator. At the healthy baseline before the malaria season, individuals had similar frequencies of Pf- and HA-specific atBCs that did not differ proportionally from atBCs within the total B cell population. BCR sequencing identified clonal relationships between Pf-specific atBCs, activated B cells (actBCs), and classical memory B cells (MBCs) and revealed comparable degrees of somatic hypermutation. At the healthy baseline, Pf-specific atBCs were transcriptionally distinct from Pf-specific actBCs and classical MBCs. In response to acute febrile malaria, Pf-specific atBCs and actBCs up-regulated similar intracellular signaling cascades. Pf-specific atBCs showed activation of pathways involved in differentiation into antibody-secreting cells and up-regulation of molecules that mediate B-T cell interactions, suggesting that atBCs respond to T follicular helper (TFH) cells. In the presence of TFH cells and staphylococcal enterotoxin B, atBCs of malaria-exposed individuals differentiated into CD38+ antibody-secreting cells in vitro, suggesting that atBCs may actively contribute to humoral immunity to infectious pathogens.


Influenza, Human , Malaria , Humans , Immunoglobulin M , Immunologic Memory , Plasmodium falciparum , T Follicular Helper Cells
9.
Environ Technol ; 43(15): 2380-2390, 2022 Jun.
Article En | MEDLINE | ID: mdl-33487132

Degradation of neonicotinoid insecticide dinotefuran (DIN) in dielectric barrier discharge (DBD) non-thermal plasma combined with lanthanum-doped titanium dioxide (La-TiO2) system was investigated. A La-TiO2 catalyst was prepared by the sol-gel method and characterized by SEM, XRD, and DRS. The effects of various factors (initial concentration, initial pH, input power, and addition of metal ions) on the removal rate of DIN were evaluated. The results indicated that when the initial concentration, input power, initial pH, and Fe2+ catalyst ions were 100 mg/L, 150 W, 10.5 and 50 mg/L, respectively, the DIN degradation efficiency was improved to 99.0% by coupling 10 wt% La-TiO2 at 180 min. La-TiO2 showed excellent catalytic performance on DIN degradation in a DBD system. The removal rate decreased with the presence of H2O2 and a scavenger, manifesting that HO∙ plays an imperative role in the degradation process. Furthermore, intermediate products were analyzed by MS and the possible degradation pathway of DIN was proposed.


Hydrogen Peroxide , Lanthanum/chemistry , Titanium , Catalysis , Guanidines , Hydrogen Peroxide/chemistry , Neonicotinoids , Nitro Compounds , Titanium/chemistry
10.
Sci Transl Med ; 13(616): eabj5413, 2021 Oct 20.
Article En | MEDLINE | ID: mdl-34519517

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern threatens the efficacy of existing vaccines and therapeutic antibodies and underscores the need for additional antibody-based tools that potently neutralize variants by targeting multiple sites of the spike protein. We isolated 216 monoclonal antibodies targeting SARS-CoV-2 from plasmablasts and memory B cells collected from patients with coronavirus disease 2019. The three most potent antibodies targeted distinct regions of the receptor binding domain (RBD), and all three neutralized the SARS-CoV-2 Alpha and Beta variants. The crystal structure of the most potent antibody, CV503, revealed that it binds to the ridge region of SARS-CoV-2 RBD, competes with the angiotensin-converting enzyme 2 receptor, and has limited contact with key variant residues K417, E484, and N501. We designed bispecific antibodies by combining nonoverlapping specificities and identified five bispecific antibodies that inhibit SARS-CoV-2 infection at concentrations of less than 1 ng/ml. Through a distinct mode of action, three bispecific antibodies cross-linked adjacent spike proteins using dual N-terminal domain­RBD specificities. One bispecific antibody was greater than 100-fold more potent than a cocktail of its parent monoclonals in vitro and prevented clinical disease in a hamster model at a dose of 2.5 mg/kg. Two bispecific antibodies in our panel comparably neutralized the Alpha, Beta, Gamma, and Delta variants and wild-type virus. Furthermore, a bispecific antibody that neutralized the Beta variant protected hamsters against SARS-CoV-2 expressing the E484K mutation. Thus, bispecific antibodies represent a promising next-generation countermeasure against SARS-CoV-2 variants of concern.


Antibodies, Bispecific , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Bispecific/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 , Humans , SARS-CoV-2
11.
Sci Transl Med ; 13(599)2021 06 23.
Article En | MEDLINE | ID: mdl-34162751

Immunoglobulin (Ig)A antibodies play a critical role in protection against mucosal pathogens. However, the role of serum IgA in immunity to nonmucosal pathogens, such as Plasmodium falciparum, is poorly characterized, despite being the second most abundant isotype in blood after IgG. Here, we investigated the circulating IgA response in humans to P. falciparum sporozoites that are injected into the skin by mosquitoes and migrate to the liver via the bloodstream to initiate malaria infection. We found that circulating IgA was induced in three independent sporozoite-exposed cohorts: individuals living in an endemic region in Mali, malaria-naïve individuals immunized intravenously with three large doses of irradiated sporozoites, and malaria-naïve individuals exposed to a single controlled mosquito bite infection. Mechanistically, we found evidence in an animal model that IgA responses were induced by sporozoites at dermal inoculation sites. From malaria-resistant individuals, we isolated several IgA monoclonal antibodies that reduced liver parasite burden in mice. One antibody, MAD2-6, bound to a conserved epitope in the amino terminus of the P. falciparum circumsporozoite protein, the dominant protein on the sporozoite surface. Crystal structures of this antibody revealed a unique mode of binding whereby two Fabs simultaneously bound either side of the target peptide. This study reveals a role for circulating IgA in malaria and identifies the amino terminus of the circumsporozoite protein as a target of functional antibodies.


Antibodies, Protozoan , Immunoglobulin A , Malaria , Animals , Antibodies, Protozoan/immunology , Humans , Immunoglobulin A/immunology , Malaria/immunology , Mice , Plasmodium falciparum , Protozoan Proteins , Sporozoites
12.
bioRxiv ; 2021 Apr 01.
Article En | MEDLINE | ID: mdl-33821267

The emergence of SARS-CoV-2 variants that threaten the efficacy of existing vaccines and therapeutic antibodies underscores the urgent need for new antibody-based tools that potently neutralize variants by targeting multiple sites of the spike protein. We isolated 216 monoclonal antibodies targeting SARS-CoV-2 from plasmablasts and memory B cells of COVID-19 patients. The three most potent antibodies targeted distinct regions of the RBD, and all three neutralized the SARS-CoV-2 variants B.1.1.7 and B.1.351. The crystal structure of the most potent antibody, CV503, revealed that it binds to the ridge region of SARS-CoV-2 RBD, competes with the ACE2 receptor, and has limited contact with key variant residues K417, E484 and N501. We designed bispecific antibodies by combining non-overlapping specificities and identified five ultrapotent bispecific antibodies that inhibit authentic SARS-CoV-2 infection at concentrations of <1 ng/mL. Through a novel mode of action three bispecific antibodies cross-linked adjacent spike proteins using dual NTD/RBD specificities. One bispecific antibody was >100-fold more potent than a cocktail of its parent monoclonals in vitro and prevented clinical disease in a hamster model at a 2.5 mg/kg dose. Notably, six of nine bispecific antibodies neutralized B.1.1.7, B.1.351 and the wild-type virus with comparable potency, despite partial or complete loss of activity of at least one parent monoclonal antibody against B.1.351. Furthermore, a bispecific antibody that neutralized B.1.351 protected against SARS-CoV-2 expressing the crucial E484K mutation in the hamster model. Thus, bispecific antibodies represent a promising next-generation countermeasure against SARS-CoV-2 variants of concern.

13.
PLoS Pathog ; 17(4): e1009430, 2021 04.
Article En | MEDLINE | ID: mdl-33822828

In malaria-naïve children and adults, Plasmodium falciparum-infected red blood cells (Pf-iRBCs) trigger fever and other symptoms of systemic inflammation. However, in endemic areas where individuals experience repeated Pf infections over many years, the risk of Pf-iRBC-triggered inflammatory symptoms decreases with cumulative Pf exposure. The molecular mechanisms underlying these clinical observations remain unclear. Age-stratified analyses of uninfected, asymptomatic Malian individuals before the malaria season revealed that monocytes of adults produced lower levels of inflammatory cytokines (IL-1ß, IL-6 and TNF) in response to Pf-iRBC stimulation compared to monocytes of Malian children and malaria-naïve U.S. adults. Moreover, monocytes of Malian children produced lower levels of IL-1ß and IL-6 following Pf-iRBC stimulation compared to 4-6-month-old infants. Accordingly, monocytes of Malian adults produced more IL-10 and expressed higher levels of the regulatory molecules CD163, CD206, Arginase-1 and TGM2. These observations were recapitulated in an in vitro system of monocyte to macrophage differentiation wherein macrophages re-exposed to Pf-iRBCs exhibited attenuated inflammatory cytokine responses and a corresponding decrease in the epigenetic marker of active gene transcription, H3K4me3, at inflammatory cytokine gene loci. Together these data indicate that Pf induces epigenetic reprogramming of monocytes/macrophages toward a regulatory phenotype that attenuates inflammatory responses during subsequent Pf exposure. Trial Registration: ClinicalTrials.gov NCT01322581.


Malaria, Falciparum/immunology , Malaria/immunology , Monocytes/metabolism , Phenotype , Adult , Child , Child, Preschool , Cytokines/metabolism , Erythrocytes/metabolism , Humans , Infant , Inflammation/immunology , Inflammation/metabolism , Macrophages/metabolism , Malaria/blood , Malaria, Falciparum/blood , Monocytes/immunology , Plasmodium falciparum/immunology , Plasmodium falciparum/metabolism
14.
J Exp Med ; 218(4)2021 04 05.
Article En | MEDLINE | ID: mdl-33661303

IgG antibodies play a role in malaria immunity, but whether and how IgM protects from malaria and the biology of Plasmodium falciparum (Pf)-specific IgM B cells is unclear. In a Mali cohort spanning infants to adults, we conducted longitudinal analyses of Pf- and influenza-specific B cells. We found that Pf-specific memory B cells (MBCs) are disproportionally IgM+ and only gradually shift to IgG+ with age, in contrast to influenza-specific MBCs that are predominantly IgG+ from infancy to adulthood. B cell receptor analysis showed Pf-specific IgM MBCs are somatically hypermutated at levels comparable to influenza-specific IgG B cells. During acute malaria, Pf-specific IgM B cells expand and upregulate activation/costimulatory markers. Finally, plasma IgM was comparable to IgG in inhibiting Pf growth and enhancing phagocytosis of Pf by monocytes in vitro. Thus, somatically hypermutated Pf-specific IgM MBCs dominate in children, expand and activate during malaria, and produce IgM that inhibits Pf through neutralization and opsonic phagocytosis.


Antibodies, Protozoan/immunology , B-Lymphocytes/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Malaria, Falciparum/immunology , Malaria/immunology , Plasmodium falciparum/immunology , Adolescent , Adult , Antibodies, Protozoan/blood , Antigens, Protozoan/immunology , Child , Child, Preschool , Female , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Immunologic Memory , Infant , Infant, Newborn , Longitudinal Studies , Malaria/blood , Malaria/epidemiology , Malaria/parasitology , Malaria, Falciparum/blood , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Male , Mali/epidemiology , Phagocytosis/immunology , Young Adult
15.
Malar J ; 20(1): 9, 2021 Jan 06.
Article En | MEDLINE | ID: mdl-33407502

BACKGROUND: Plasmodium falciparum causes the majority of malaria cases worldwide and children in sub-Saharan Africa are the most vulnerable group affected. Non-sterile clinical immunity that protects from symptoms develops slowly and is relatively short-lived. Moreover, current malaria vaccine candidates fail to induce durable high-level protection in endemic settings, possibly due to the immunomodulatory effects of the malaria parasite itself. Because dendritic cells play a crucial role in initiating immune responses, the aim of this study was to better understand the impact of cumulative malaria exposure as well as concurrent P. falciparum infection on dendritic cell phenotype and function. METHODS: In this cross-sectional study, the phenotype and function of dendritic cells freshly isolated from peripheral blood samples of Malian adults with a lifelong history of malaria exposure who were either uninfected (n = 27) or asymptomatically infected with P. falciparum (n = 8) was assessed. Additionally, plasma cytokine and chemokine levels were measured in these adults and in Malian children (n = 19) with acute symptomatic malaria. RESULTS: With the exception of lower plasmacytoid dendritic cell frequencies in asymptomatically infected Malian adults, peripheral blood dendritic cell subset frequencies and HLA-DR surface expression did not differ by infection status. Peripheral blood myeloid dendritic cells of uninfected Malian adults responded to in vitro stimulation with P. falciparum blood-stage parasites by up-regulating the costimulatory molecules HLA-DR, CD80, CD86 and CD40 and secreting IL-10, CXCL9 and CXCL10. In contrast, myeloid dendritic cells of asymptomatically infected Malian adults exhibited no significant responses above the uninfected red blood cell control. IL-10 and CXCL9 plasma levels were elevated in both asymptomatic adults and children with acute malaria. CONCLUSIONS: The findings of this study indicate that myeloid dendritic cells of uninfected adults with a lifelong history of malaria exposure are able to up-regulate co-stimulatory molecules and produce cytokines. Whether mDCs of malaria-exposed individuals are efficient antigen-presenting cells capable of mounting an appropriate immune response remains to be determined. The data also highlights IL-10 and CXCL9 as important factors in both asymptomatic and acute malaria and add to the understanding of asymptomatic P. falciparum infections in malaria-endemic areas.


Cytokines/blood , Dendritic Cells/parasitology , Malaria, Falciparum/blood , Adult , Asymptomatic Infections , Chemokines/blood , Child , Child, Preschool , Cross-Sectional Studies , Erythrocytes/parasitology , Female , Humans , Malaria/blood , Male , Mali , Middle Aged , Phenotype , Plasmodium falciparum/physiology
16.
Chemosphere ; 265: 129126, 2021 Feb.
Article En | MEDLINE | ID: mdl-33288288

This work investigated the preparation of Ti/Sb-SnO2 electrode co-doped with graphene and europium and the electrochemical degradation of clothianidin in aqueous solution with Ti/Sb-SnO2-Eu&rGO electrode. The physicochemical properties of different electrodes were characterized by using the scanning electron microscopy, X-ray diffraction, oxygen evolution potential and cyclic voltammetry tests. The results indicated that the Ti/Sb-SnO2-Eu&rGO electrodes have a compact structure and fine grain size and have a higher oxygen evolution overpotential than Ti/Sb-SnO2-None, Ti/Sb-SnO2-Eu and Ti/Sb-SnO2-rGO electrodes. Among the four electrodes, the Ti/Sb-SnO2-Eu&rGO electrode showed the highest efficiency and was chosen as the experimental electrode. The main influence factors on the degradation of clothianidin, such as initial pH, electrolyte concentration, current density and initial concentration of clothianidin, were analyzed. The results showed that the removal rate of clothianidin can reach 96.44% under the optimal conditions for 120 min treatment. Moreover, a possible degradation pathway including the fracture of internal bonds of clothianidin such as the N-N bond, the C-N bond that connects nitroguanidine to the thiazole ring and mineralization was elucidated by intermediate products identified by HPLC-MS method and Fourier transform infrared spectroscopy (FTIR). This paper introduces the Ti/Sb-SnO2-Eu&rGO electrode into an electrocatalytic degradation system and could provide basic data and technique support and guidance for the clothianidin wastewater pollution control.


Wastewater , Water Pollutants, Chemical , Electrochemical Techniques , Electrodes , Graphite , Guanidines , Neonicotinoids , Oxidation-Reduction , Thiazoles , Tin Compounds , Titanium
17.
Nat Med ; 26(12): 1929-1940, 2020 12.
Article En | MEDLINE | ID: mdl-33106664

The dry season is a major challenge for Plasmodium falciparum parasites in many malaria endemic regions, where water availability limits mosquito vectors to only part of the year. How P. falciparum bridges two transmission seasons months apart, without being cleared by the human host or compromising host survival, is poorly understood. Here we show that low levels of P. falciparum parasites persist in the blood of asymptomatic Malian individuals during the 5- to 6-month dry season, rarely causing symptoms and minimally affecting the host immune response. Parasites isolated during the dry season are transcriptionally distinct from those of individuals with febrile malaria in the transmission season, coinciding with longer circulation within each replicative cycle of parasitized erythrocytes without adhering to the vascular endothelium. Low parasite levels during the dry season are not due to impaired replication but rather to increased splenic clearance of longer-circulating infected erythrocytes, which likely maintain parasitemias below clinical and immunological radar. We propose that P. falciparum virulence in areas of seasonal malaria transmission is regulated so that the parasite decreases its endothelial binding capacity, allowing increased splenic clearance and enabling several months of subclinical parasite persistence.


Asymptomatic Infections/epidemiology , Host-Parasite Interactions/genetics , Malaria, Falciparum/epidemiology , Plasmodium falciparum/pathogenicity , Adolescent , Adult , Animals , Child , Child, Preschool , Endemic Diseases/prevention & control , Erythrocytes/parasitology , Female , Genotype , Humans , Infant , Malaria, Falciparum/genetics , Malaria, Falciparum/parasitology , Male , Mali/epidemiology , Middle Aged , Plasmodium falciparum/genetics , Seasons , Young Adult
18.
bioRxiv ; 2020 Nov 14.
Article En | MEDLINE | ID: mdl-33106806

In malaria-naïve children and adults, Plasmodium falciparum -infected red blood cells ( Pf -iRBCs) trigger fever and other symptoms of systemic inflammation. However, in endemic areas where individuals experience repeated Pf infections over many years, the risk of Pf -iRBC-triggered inflammatory symptoms decreases with cumulative Pf exposure. The molecular mechanisms underlying these clinical observations remain unclear. Age-stratified analyses of monocytes collected from uninfected, asymptomatic Malian individuals before the malaria season revealed an inverse relationship between age and Pf -iRBC-inducible inflammatory cytokine (IL-1ß, IL-6 and TNF) production, whereas Malian infants and malaria-naïve U.S. adults produced similarly high levels of inflammatory cytokines. Accordingly, monocytes of Malian adults produced more IL-10 and expressed higher levels of the regulatory molecules CD163, CD206, Arginase-1 and TGM2. These observations were recapitulated in an in vitro system of monocyte to macrophage differentiation wherein macrophages re-exposed to Pf -iRBCs exhibited attenuated inflammatory cytokine responses and a corresponding decrease in the epigenetic marker of active gene transcription, H3K4me3, at inflammatory cytokine gene loci. Together these data indicate that Pf induces epigenetic reprogramming of monocytes/macrophages toward a regulatory phenotype that attenuates inflammatory responses during subsequent Pf exposure. These findings also suggest that past malaria exposure could mitigate monocyte-associated immunopathology induced by other pathogens such as SARS-CoV-2. AUTHOR SUMMARY: The malaria parasite is mosquito-transmitted and causes fever and other inflammatory symptoms while circulating in the bloodstream. However, in regions of high malaria transmission the parasite is less likely to cause fever as children age and enter adulthood, even though adults commonly have malaria parasites in their blood. Monocytes are cells of the innate immune system that secrete molecules that cause fever and inflammation when encountering microorganisms like malaria. Although inflammation is critical to initiating normal immune responses, too much inflammation can harm infected individuals. In Mali, we conducted a study of a malaria-exposed population from infants to adults and found that participants' monocytes produced less inflammation as age increases, whereas monocytes of Malian infants and U.S. adults, who had never been exposed to malaria, both produced high levels of inflammatory molecules. Accordingly, monocytes exposed to malaria in the laboratory became less inflammatory when re-exposed to malaria again later, and these monocytes 'turned down' their inflammatory genes. This study helps us understand how people become immune to inflammatory symptoms of malaria and may also help explain why people in malaria-endemic areas appear to be less susceptible to the harmful effects of inflammation caused by other pathogens such as SARS-CoV-2.

19.
JCI Insight ; 5(12)2020 06 18.
Article En | MEDLINE | ID: mdl-32427581

BACKGROUNDMalaria pathogenicity is determined, in part, by the adherence of Plasmodium falciparum-infected erythrocytes to the microvasculature mediated via specific interactions between P. falciparum erythrocyte membrane protein (PfEMP1) variant domains and host endothelial receptors. Naturally acquired antibodies against specific PfEMP1 variants can play an important role in clinical protection against malaria.METHODSWe evaluated IgG responses against a repertoire of PfEMP1 CIDR domain variants to determine the rate and order of variant-specific antibody acquisition and their association with protection against febrile malaria in a prospective cohort study conducted in an area of intense, seasonal malaria transmission.RESULTSUsing longitudinal data, we found that IgG antibodies against the pathogenic domain variants CIDRα1.7 and CIDRα1.8 were acquired the earliest. Furthermore, IgG antibodies against CIDRγ3 were associated with reduced prospective risk of febrile malaria and recurrent malaria episodes.CONCLUSIONThis study provides evidence that acquisition of IgG antibodies against PfEMP1 variants is ordered and demonstrates that antibodies against CIDRα1 domains are acquired the earliest in children residing in an area of intense, seasonal malaria transmission. Future studies will need to validate these findings in other transmission settings and determine the functional activity of these naturally acquired CIDR variant-specific antibodies.TRIAL REGISTRATIONClinicalTrials.gov NCT01322581.FUNDINGDivision of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH.


Immunoglobulin G/blood , Malaria, Falciparum/immunology , Malaria/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Antibodies, Protozoan/blood , Erythrocytes/immunology , Humans , Prospective Studies
20.
Environ Sci Pollut Res Int ; 27(23): 29599-29611, 2020 Aug.
Article En | MEDLINE | ID: mdl-32445149

Clothianidin served as the model pollutant to investigate the performance and mechanism of pollutant removal by dielectric barrier discharge plasma (DBD) combined with the titanium dioxide-reduced graphene oxide (rGO-TiO2) composite catalyst. In this study, different ratios of titanium dioxide-graphene catalysts were loaded onto honeycomb ceramic plates via the sol-gel method, and the modified catalytic ceramic plates were characterized by XRD, SEM, FTIR, DRS, and energy dispersive X-ray. The results suggested that the rGO-TiO2 was well loaded on the surface of the honeycomb ceramic plates. According to the results of the characterization experiments and the degradation of the clothianidin solution with different proportions of the catalyst, 8 wt% rGO-TiO2 was selected as the optimum ratio for degradation. Clothianidin degradation efficiency was significantly influenced by input power, clothianidin concentration, pH value, liquid conductivity, free radical quencher. Finally, six degradation products of clothianidin were identified by HPLC-MS, and the possible transformation pathways of clothianidin degradation were identified. Graphical abstract.


Graphite , Catalysis , Guanidines , Neonicotinoids , Thiazoles , Titanium
...