Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 49
1.
ACS Omega ; 9(16): 18429-18437, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38680302

The mixed ligand 3-amino-1,2,4-triazole (Hatz) and terephthalic acid (H2pta) reacted with Zn(NO3)2·6H2O to synthesize a three-dimensional binuclear Zn(II) metal-organic framework: {[Zn2·(atz)2·(pta)]·3H2O}n (3D-Zn-MOF). This 3D-Zn-MOF has two different types of pores (4.5 × 4.5 Å2, 5.7 × 5.7 Å2). The crystalline 3D-Zn-MOF could be prepared into nanomaterials (3D-N-Zn-MOF) with particles of approximately 100 nm by a cell fragmentation apparatus. Compared with the solid-state luminescence of Hatz and H2pta, it was found that 3D-N-Zn-MOF exhibited strong luminescence performance and significant red-shift phenomenon. Due to the decrease in electronegativity and rigidity of ligands, as well as the effect of ligand metal charge transfer (LMCT), the fluorescence lifetime and quantum yield of 3D-ZN-N-MOF were 2.7241 ns and 3.02%, respectively. The maximum experimental adsorption capacity of 3D-N-Zn-MOF could reach 125.52 mg/g, which was superior to the majority of MOF adsorbents under the optimal adsorption conditions (25 °C, pH = 7, and the adsorbent concentration is 0.2000 g/L). The thermodynamic analysis of adsorption showed that the adsorption of Cr(VI) by 3D-N-Zn-MOF was a spontaneous (△G < 0) and exothermic (△H < 0) process. It could be found that 3D-N-Zn-MOF was a bifunctional material with potential applications by comprehensive analysis of the fluorescence and adsorption Cr(VI) performance.

2.
J Mol Model ; 30(5): 123, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38573432

CONTEXT: To gain a deeper understanding of zinc-doped boron clusters, theoretical calculations were performed to investigate the size effects and electronic properties of zinc-doped boron clusters. The study of the electronic properties, spectral characteristics, and geometric structures of Zn B n (n = 1-15) is of great significance in the fields of semiconductor materials science, material detection, and improving catalytic efficiency. The results indicate that Zn B n (n = 1-15) clusters predominantly exhibit planar or quasi-planar structures, with the Zn atom positioned in the outer regions of the B n framework. The second stable structure of Zn B 3 is a three-dimensional configuration, indicating that the structures of zinc-doped boron clusters begin to convert from the planar or quasi-planar structures to the 3D configurations. The second low-energy structure of Zn B 15 is a novel configuration. Relative stability analyses show that the Zn B 12 has better chemical stability than other clusters with a HOMO-LUMO gap of 2.79 eV. Electric charge analysis shows that part electrons on zinc atoms are transferred to boron atoms, and electrons prefer to cluster near the B n framework. According to the electron localization function, it gets harder to localize electrons as the equivalent face value drops, and it's challenging to see covalent bond formation between zinc and boron atoms. The spectrograms of Zn B n (n = 1-15) exhibit distinct properties and notable spectral features, which can be used as a theoretical basis for the identification and confirmation of boron clusters doped with single-atom transition metals. METHODS: The calculations were performed using the ABCluster global search technique combined with density functional theory (DFT) methods. The selected low-energy structures were subjected to geometric optimization and frequency calculations at the PBE0/6-311 + G(d) level to ensure structural stability and eliminate any imaginary frequencies. To acquire more precise relative energies, we performed single-point energies calculations for the low-lying isomers of Zn B n (n = 1-15) at the CCSD(T)/6-311 + G(d)//PBE0/6-311 + G(d) level of theory. All calculations were performed using Gaussian 09 software. To facilitate analysis, we utilized software tools such as Multiwfn, and VMD.

4.
J Viral Hepat ; 31(4): 208-215, 2024 04.
Article En | MEDLINE | ID: mdl-38326936

Hepatitis C virus (HCV) represents a formidable menace to human health, necessitating urgent attention. The objective of this study was to assess the efficacy and safety of HCV health management in the city of Guigang which consists of five districts, employing a comprehensive multi-modal approach. The study systematically carried out HCV screening in Guigang city which consists of five districts, such as Gangbei District, Gangnan District, Guiping District, Qintang District, and Pingnan District from 1 January 2016 to 30 December 2022. The target population consisted of individuals residing in these aforementioned districts, falling within the age range of 30-75 years. A multidisciplinary HCV management team was established to deliver anti-HCV screening, diagnosis, and direct-acting antiviral (DAA) therapy. The primary outcome of interest was the achievement of sustained virologic response (SVR). A total of 2489 individuals were included as the target population, with 1694 individuals residing in Gangbei District, 202 in Gangnan District, 111 in Qintang District, 167 in Pingnan District, and 315 in Guiping District. Out of these individuals, 2478 were subjected to anti-HCV screening. The screening rates varied across the districts, ranging from a peak of 99.55% in Guigang City to a nadir of 98.41% in Guiping District. Remarkably, within Guigang City, a noteworthy enhancement was observed in the HCV-RNA diagnosis rate from 23.4% prior to program implementation to a remarkable 100% following 7 years of intervention and management. Furthermore, the diagnosis and treatment coordination rate experienced a substantial improvement, rising from 26.8% before program inception to 80%. Importantly, a total of 1180 individuals affected by hepatitis C were successfully cured, equating to a 100% cure rate. Logistic regression analysis revealed a significant association between serological status and factors such as Aging, bilirubin, and glutamic oxalacetic transaminase. The findings from our investigation unveil a pioneering HCV management model, exemplified by the Guigang model, which has contributed crucially to HCV microclearance efforts and serves as an invaluable reference for future initiatives.


Hepatitis C, Chronic , Hepatitis C , Telemedicine , Humans , Adult , Middle Aged , Aged , Hepatitis C, Chronic/diagnosis , Hepatitis C, Chronic/drug therapy , Hepatitis C, Chronic/epidemiology , Antiviral Agents/therapeutic use , Hepatitis C/diagnosis , Hepatitis C/drug therapy , Hepatitis C/epidemiology , Hepacivirus/genetics , Sustained Virologic Response
5.
ACS Omega ; 8(47): 44831-44838, 2023 Nov 28.
Article En | MEDLINE | ID: mdl-38046297

A new kind of nonmetallic atom-doped boron cluster is described herein theoretically. When a phosphorus atom is added to the B12 motif and loses an electron, a novel B12 cage is obtained, composed of two B3 rings at both ends and one B6 ring in the middle, forming a triangular bifrustum. Interestingly, this B12 cage is formed by three B7 units joined together from three directions at an angle of 120°. When two P atoms are added to the B12 motif, this novel B12 cage is also obtained, and two P atoms are attached to the B3 rings at both ends of the triangular bifrustum, forming a triangular bipyramid (Johnson solid). Amazingly, the global minimums of neutral, monocationic, and monoanionic P2B12+/0/- have the same cage structure with a D3h symmetry; this is the smallest boron cage with the same structure. The P atom has five valence electrons, according to adaptive natural density partitioning bonding analyses of cage PB12+ and P2B12, in addition to one lone pair, the other three electrons of the P atom combine with an electron of each B atom on the B3 ring to form three 2c-2e σ bonds and form three electron sharing bonds with B atoms through covalent interactions, stabilizing the B12 cage. The calculated photoelectron spectra can be compared with future experimental values and provide a theoretical basis for the identification and confirmation of PnB12- (n = 1-2).

6.
Viruses ; 15(12)2023 12 09.
Article En | MEDLINE | ID: mdl-38140642

Despite the effective antivirals and vaccines, COVID-19 remains a public health concern. The mutations that occurred during the early stage of the pandemic can be valuable in assessing the viral fitness and evolutionary trajectory. In this study, we analyzed a panel of 2969 spike sequences deposited in GISAID before April 2020 and characterized nine representative spike single-point mutants in detail. Compared with the WA01/2020, most (8 out of 9) mutants demonstrated an equivalent or diminished protein expression or processing, pseudovirus infectivity, and cell-cell fusion. Interestingly, most of the mutants in native form elicited minimum antibody responses in mice despite unaltered CD4+ and CD8+ T cell responses. The mutants remained sensitive to the antisera and the type I interferon. Taken together, these data suggest that the early emerging mutants are virologically divergent, and some of which showed transmission fitness. Our findings have important implications for the retrospective tracing of the early SARS-CoV-2 transmission and future pandemic preparedness.


COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Mice , Antibody Formation , Biological Evolution , Retrospective Studies , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
7.
ACS Omega ; 8(40): 36978-36985, 2023 Oct 10.
Article En | MEDLINE | ID: mdl-37841138

Cr(VI) and Mn(VII) in industrial wastewater have certain toxicity, and they pose a threat to the environment and human health and safety. Metal-organic frameworks (MOFs) usually have rich adsorption sites and a large specific surface area. They can effectively adsorb Cr(VI) and Mn(VII) from wastewater. In this paper, a two-dimensional copper-based metal-organic framework, {[Cu·(4,4'-bpy)2·(H2O)]·2(NO3)·6(H2O)·(CH3OH)}n (1), is synthesized by hydrothermal synthesis. The structure of 1 is characterized by Fourier transform infrared (IR) spectroscopy, single-crystal X-ray diffraction, element analysis, and X-ray photoelectron spectroscopy (XPS). The results showed that 1 had a two-dimensional network structure, and the specific surface area of the nanostructure was 67.63 m2/g. The nanostructure of 1 could efficiently adsorb Cr(VI) and Mn(VII) from wastewater. The adsorption properties of Cr(VI) and Mn (VII) of 1 showed that the optimal concentration of both adsorbents was 0.2 g/L. It has good adsorption performance in the pH range 4-8. The adsorption performance is the best when pH is 7, which can reach 145 and 83 mg/g, respectively.

8.
Inorg Chem ; 62(35): 14344-14354, 2023 Sep 04.
Article En | MEDLINE | ID: mdl-37606062

Wide-spectrum displays require narrow-band red phosphors activated by Mn4+, but most of them, such as K2SiF6:Mn4+, have long fluorescence decay lifetimes (>7 ms) that hinder their use in fast-response backlights. Interestingly, K2LiAlF6:0.05Mn4+ has a shorter fluorescence lifetime (3.43 ms), but its disadvantage is that its luminescence intensity is relatively weak. So, in this study, the luminescence intensity of K2LiAlF6:0.05Mn4+ is improved by doping with Zn2+. The experimental results show that enhancement of the luminous intensity is as high as 39%, the fluorescence lifetime is only increased by 13% (3.89 ms), and it is still less than 4 ms. Through experiments and differential charge density calculations, it has been revealed that the luminescence intensity improvement is due to an increased crystalline quality during the synthesis process. Specifically, the co-doping of Zn2+ reduces the formation of impurity ions Mn2+ and Mn3+ and the generation of K+ vacancies caused by nonequivalent doping. We demonstrate the advantage of this phosphor over K2SiF6:Mn4+ in terms of response speed by using a camera. It emits only weak red light after the blue chip stops working for 5 ms, indicating its potential application in next-generation fast-response displays.

9.
ACS Omega ; 8(33): 30757-30767, 2023 Aug 22.
Article En | MEDLINE | ID: mdl-37636960

We present a theoretical study of structural evolution, electronic properties, and photoelectron spectra of two sulfur atom-doped boron clusters S2Bn0/- (n = 2-13), which reveal that the global minima of the S2Bn0/- (n = 2-13) clusters show an evolution from a linear-chain structure to a planar or quasi-planar structure. Some S-doped boron clusters have the skeleton of corresponding pure boron clusters; however, the addition of two sulfur atoms modified and improved some of the pure boron cluster structures. Boron is electron-deficient and boron clusters do not form linear chains. Here, two sulfur atom doping can adjust the pure boron clusters to a linear-chain structure (S2B20/-, S2B30/-, and S2B4-), a quasi-linear-chain structure (S2B6-), single- and double-chain structures (S2B6 and S2B9-), and double-chain structures (S2B5, and S2B9). In particular, the smallest linear-chain boron clusters S2B20/- are shown with an S atom attached to each end of B2. The S2B2 cluster possesses the largest highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap of 5.57 eV and the S2B2- cluster possesses the largest average binding energy Eb of 5.63 eV, which shows the superior chemical stability and relative stability, respectively. Interestingly, two S-atom doping can adjust the quasi-planar pure boron clusters (B7-, B10-, and B120/-) to a perfect planar structure. AdNDP bonding analyses reveal that linear S2B3 and planar SeB11- have π aromaticity and σ antiaromaticity; however, S2B2, planar S2B6, and planar S2B7- clusters have π antiaromaticity and σ aromaticity. Furthermore, AdNDP bonding analyses reveal that planar S2B4, S2B10, and S2B12 clusters are doubly (π and σ) aromatic, whereas S2B5-, S2B8, S2B9-, and S2B13- clusters are doubly (π and σ) antiaromatic. The electron localization function (ELF) analysis shows that S2Bn0/- (n = 2-13) clusters have different electron delocalization characteristics, and the spin density analysis shows that the open-shell clusters have different characteristics of electron spin distribution. The calculated photoelectron spectra indicate that S2Bn- (n = 2-13) have different characteristic peaks that can be compared with future experimental values and provide a theoretical basis for the identification and confirmation of these doped boron clusters. Our work enriches the new database of geometrical structures of doped boron clusters, provides new examples of aromaticity for doped boron clusters, and is promising to offer new ideas for nanomaterials and nanodevices.

10.
Opt Lett ; 48(14): 3641-3644, 2023 Jul 15.
Article En | MEDLINE | ID: mdl-37450714

This paper presents a novel fiber liquid-pressure sensor that uses photopolymer glue to generate Fabry-Perot (F-P) interference, resulting in high sensitivity and a wide measurement range. The sensor comprises a single-mode fiber and photopolymer glue; the latter adheres to the fiber's end face and is decomposed by a 405-nm laser to create an air channel with a diameter of 5.9 µm and a length of 50 µm. When the air channel is placed underwater, a 17.5-µm air cavity forms between the fiber core and the air-liquid boundary due to the pressure balance, creating an F-P interferometer. Based on experimental results, the sensor has an average pressure sensitivity of 5.68 nm/kPa over 0.49-2.94 kPa. The sensitivity can be maintained at this level across different pressure measurement ranges (up to about 500 kPa) by using a 980-nm laser's radiation pressure to reset the air-liquid boundary. Besides its high sensitivity and wide measurement range, the sensor's straightforward structure, durability, affordability, compactness, and simple construction make it an appealing choice for liquid pressure measurement applications in various fields.

11.
Biosaf Health ; 2023 May 09.
Article En | MEDLINE | ID: mdl-37362864

Recent studies suggested that cancer was a risk factor for coronavirus disease 2019 (COVID-19). Toll-like receptor 7 (TLR7), a severe acute respiratory syndrome 2 (SARS-CoV-2) virus's nucleic acid sensor, was discovered to be aberrantly expressed in many types of cancers. However, its expression pattern across cancers and association with COVID-19 (or its causing virus SARS-CoV-2) has not been systematically studied. In this study, we proposed a computational framework to comprehensively study the roles of TLR7 in COVID-19 and pan-cancers at genetic, gene expression, protein, epigenetic, and single-cell levels. We applied the computational framework in a few databases, including The Cancer Genome Atlas (TCGA), The Genotype-Tissue Expression (GTEx), Cancer Cell Line Encyclopedia (CCLE), Human Protein Atlas (HPA), lung gene expression data of mice infected with SARS-CoV-2, and the like. As a result, TLR7 expression was found to be higher in the lung of mice infected with SARS-CoV-2 than that in the control group. The analysis in the Opentargets database also confirmed the association between TLR7 and COVID-19. There are also a few exciting findings in cancers. First, the most common type of TLR7 was "Missense" at the genomic level. Second, TLR7 mRNA expression was significantly up-regulated in 6 cancer types and down-regulated in 6 cancer types compared to normal tissues, further validated in the HPA database at the protein level. The genes significantly co-expressed with TLR7 were mainly enriched in the toll-like receptor signaling pathway, endolysosome, and signaling pattern recognition receptor activity. In addition, the abnormal TLR7 expression was associated with mismatch repair (MMR), microsatellite instability (MSI), and tumor mutational burden (TMB) in various cancers. Mined by the ESTIMATE algorithm, the expression of TLR7 was also closely linked to various immune infiltration patterns in pan-cancer, and TLR7 was mainly enriched in macrophages, as revealed by single-cell RNA sequencing. Third, abnormal expression of TLR7 could predict the survival of Brain Lower Grade Glioma (LGG), Lung adenocarcinoma (LUAD), Skin Cutaneous Melanoma (SKCM), Stomach adenocarcinoma (STAD), and Testicular Germ Cell Tumors (TGCT) patients, respectively. Finally, TLR7 expressions were very sensitive to a few targeted drugs, such as Alectinib and Imiquimod. In conclusion, TLR7 might be essential in the pathogenesis of COVID-19 and cancers.

12.
J Med Virol ; 95(4): e28729, 2023 04.
Article En | MEDLINE | ID: mdl-37185868

Oncolytic viruses (OVs) can selectively kill tumor cells without affecting normal cells, as well as activate the innate and adaptive immune systems in patients. Thus, they have been considered as a promising measure for safe and effective cancer treatment. Recently, a few genetically engineered OVs have been developed to further improve the effect of tumor elimination by expressing specific immune regulatory factors and thus enhance the body's antitumor immunity. In addition, the combined therapies of OVs and other immunotherapies have been applied in clinical. Although there are many studies on this hot topic, a comprehensive review is missing on illustrating the mechanisms of tumor clearance by OVs and how to modify engineered OVs to further enhance their antitumor effects. In this study, we provided a review on the mechanisms of immune regulatory factors in OVs. In addition, we reviewed the combined therapies of OVs with other therapies including radiotherapy and CAR-T or TCR-T cell therapy. The review is useful in further generalize the usage of OV in cancer treatment.


Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Oncolytic Viruses/genetics , Neoplasms/therapy , Immunotherapy , Immunologic Factors
13.
J Pharm Pharmacol ; 75(6): 784-805, 2023 Jun 05.
Article En | MEDLINE | ID: mdl-36971498

OBJECTIVES: Jie Geng Tang (JGT) is an ancient traditional Chinese herbal decoction that exhibits various pharmacological activities, however, is poorly understood in the sensitivity of lung cancer to chemotherapy. Here, we explored the effect of JGT on sensitizing cisplatin (DDP)-resistant A549 cells (A549/DDP). METHODS: Cell viability was assessed using cell counting kit-8 assay. Flow cytometry was applied to detected cell apoptosis, mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) levels. Western blotting and qRT-PCR were performed to determine protein and mRNA levels. KEY FINDINGS: The results demonstrated that DDP co-treatment with JGT significantly increased the cytotoxicity of A549/DDP cells and exhibited efficacy in suppressing the migration and proliferation. The rate of apoptosis was increased by co-treatment with DDP and JGT, along with a higher rate of Bax/Bcl-2, and increased loss of MMP. Furthermore, the combination promoted ROS accumulation and increased γ-H2AX levels. Moreover, Nrf2 levels were suppressed in a dose- and time-dependent manner, Nrf2 stability was reduced following treatment with JGT. Notably, the combination induced inhibition of the Nrf2/ARE pathway at the mRNA and protein levels. CONCLUSIONS: Collectively, these results indicate that co-treatment with JGT and DDP can be considered a combinational approach to treating DDP resistance.


Antineoplastic Agents , Lung Neoplasms , Humans , Cisplatin/pharmacology , NF-E2-Related Factor 2/metabolism , Reactive Oxygen Species/metabolism , Drug Resistance, Neoplasm , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Apoptosis , Cell Proliferation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor
14.
RSC Adv ; 13(8): 5273-5282, 2023 Feb 06.
Article En | MEDLINE | ID: mdl-36777930

Photocatalytic performance can be effectively improved by modifying the functional groups on the organic ligands of metal organic frameworks (MOFs). Herein, the hydroxyl-modified UiO-66 type MOF: UIO-66-2OH(2,3), was successfully synthesized by the method of ligand exchange by the 2,3-dihydroxyterephthalic acid and UIO-66 as raw materials. The mechanism of photocatalytic degradation of methylene blue (MB) by UIO-66-2OH(2,3) shows that the hydroxyl functional group on the organic ligand regulates its electronegativity and expands its light absorption range. The decomposition of MB is carried out in multiple steps under the oxidation of the hydroxyl radical (˙OH). This research result shows the direction for guiding the synthesis of efficient photocatalysts and clarifying the light absorption of MOFs regulated by hydroxyl functional groups.

15.
Molecules ; 28(1)2023 Jan 01.
Article En | MEDLINE | ID: mdl-36615549

A theoretical research of structural evolution, electronic properties, and photoelectron spectra of selenium-doped boron clusters SeBn0/- (n = 3-16) is performed using particle swarm optimization (CALYPSO) software in combination with density functional theory calculations. The lowest energy structures of SeBn0/- (n = 3-16) clusters tend to form quasi-planar or planar structures. Some selenium-doped boron clusters keep a skeleton of the corresponding pure boron clusters; however, the addition of a Se atom modified and improved some of the pure boron cluster structures. In particular, the Se atoms of SeB7-, SeB8-, SeB10-, and SeB12- are connected to the pure quasi-planar B7-, B8-, B10-, and B12- clusters, which leads to planar SeB7-, SeB8-, SeB10-, and SeB12-, respectively. Interestingly, the lowest energy structure of SeB9- is a three-dimensional mushroom-shaped structure, and the SeB9- cluster displays the largest HOMO-LUMO gap of 5.08 eV, which shows the superior chemical stability. Adaptive natural density partitioning (AdNDP) bonding analysis reveals that SeB8 is doubly aromatic, with 6 delocalized π electrons and 6 delocalized σ electrons, whereas SeB9- is doubly antiaromatic, with 4 delocalized π electrons and 12 delocalized σ electrons. Similarly, quasi-planar SeB12 is doubly aromatic, with 6 delocalized π electrons and 14 delocalized σ electrons. The electron localization function (ELF) analysis shows that SeBn0/- (n = 3-16) clusters have different local electron delocalization and whole electron delocalization effects. The simulated photoelectron spectra of SeBn- (n = 3-16) have different characteristic bands that can identify and confirm SeBn- (n = 3-16) combined with future experimental photoelectron spectra. Our research enriches the geometrical structures of small doped boron clusters and can offer insight for boron-based nanomaterials.

16.
Andrology ; 11(3): 591-610, 2023 03.
Article En | MEDLINE | ID: mdl-36374586

BACKGROUND: The mechanism of high-fat diet (HFD)-induced decrease in erectile function has not been elucidated, and in previous studies, spectrin alpha, erythrocytic 1 (SPTA1) is a cytoskeletal protein that regulates cellular function, which belongs to a family of proteins that can affect cell and tissue growth and development by regulating YAP, an effector on the Hippo signaling pathway, but its particular role has not been elucidated. OBJECTIVE: To explore the role of SPTA1 in the abnormality of erectile function induced by HFD. METHODS: We analyzed the penile tissues of mice on normal diet and HFD by transcriptomics and screened for differentially expressed genes, further identified closely related target genes in rat penile tissues, and verified target gene expression in in vitro construction of high-glucose (HG)-treated corpus cavernosum endothelial cells (CCECs) and corpus cavernosum smooth muscle cells (CCSMCs) models. The distribution of target genes in various cell populations in penile tissues was retrieved by single-cell sequencing Male Health Atlas database. Moreover, interfering with target genes was further applied to explore the mechanisms involved in erectile function decline. RESULTS: Transcriptomic analysis screened out down-regulated differential gene SPTA1; Western blot and immunohistochemistry results showed that SPTA1 expression significantly decreased in the penile tissues of Sprague-Dawley (SD) rats in the HFD group. Immunofluorescence staining showed a positive expression of CD31 and VWF in CCECs and a positive expression of α-SMA in CCSMCs. The expression level of SPTA1 protein significantly decreased in the HG group of CCECs and CCSMCs. The expression of SPTA1 mRNA significantly decreased in CCSMCs while significantly increased in CCECs. SPTA1 may have various expression patterns and biological functions in different cell populations. Real-time quantitative PCR results showed that the siSPTA1 transfected in CCSMCs had a significant interference effect compared with the control siNC. Transfection of siSPTA1 into CCSMCs resulted in the significant down-regulation of mRNA and protein expression of eNOS, and significant up-regulation of YAP, Caspase-1, GSDMD, GSDMD-N IL-18, and IL-1ß protein expression levels. The expression level of CCSMCs contractile-type protein α-SMA was significantly down-regulated. CONCLUSIONS: The down-regulation of SPTA1 in SD rats fed with HFD may induce cell pyroptosis and lead to the decrease of erectile function by activating the Hippo pathway; these findings may provide new therapeutic targets for improving erectile function.


Erectile Dysfunction , Humans , Male , Rats , Mice , Animals , Erectile Dysfunction/genetics , Erectile Dysfunction/metabolism , Rats, Sprague-Dawley , Hippo Signaling Pathway , Diet, High-Fat/adverse effects , Endothelial Cells , Penis/metabolism , RNA, Messenger/metabolism
17.
ACS Omega ; 7(45): 41266-41274, 2022 Nov 15.
Article En | MEDLINE | ID: mdl-36406576

Here, the ground-state structures, electronic structures, polarizability, and spectral properties of metal-free phthalocyanine (H2Pc) under different external electric fields (EEFs) are investigated. The results show that EEF has an ultrastrong regulation effect on various aspects of H2Pc; the geometric structures, electronic properties, polarizability, and spectral properties are strongly sensitive to the EEF. In particular, an EEF of 0.025 a.u. is an important control point: an EEF of 0.025 a.u. will bend the benzene ring subunits to the positive and negative x directions of the planar molecule. Flipping the EEF from positive (0.025 a.u.) to negative (-0.025 a.u.) flips also the bending direction of benzene ring subunits. The H2Pc shows different dipole moments projecting an opposite direction along the x direction (-84 and 84 Debye for EEFs of -0.025 and 0.025 a.u., respectively) under negative and positive EEF, revealing a significant dipole moment transformation. Furthermore, when the EEF is removed, the molecule can be restored to the planar structure. The transformation of the H2Pc structure can be induced by the EEF, which has potential applications in the molecular devices such as molecular switches or molecular forceps. EEF lowers total energy and reduces highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap; especially, an EEF of 0.025 a.u. can reduce the HOMO-LUMO gap from 2.1 eV (in the absence of EEF) to 0.37 eV, and thus, it can enhance the molecular conductivity. The first hyperpolarizability of H2Pc is 0 in the absence of EEF; remarkably, an EEF of 0.025 a.u. can enhance the first hyperpolarizability up to 15,578 a.u. Therefore, H2Pc under the EEF could be introduced as a promising innovative nonlinear optical (NLO) nanomaterial such as NLO switches. The strong EEF (0.025 a.u.) causes a large number of new absorption peaks in IR and Raman spectra and causes the redshift of electronic absorption spectra. The changes of EEF can be used to regulate the structure transformation and properties of H2Pc, which can promote the application of H2Pc in nanometer fields such as molecular devices.

18.
Org Lett ; 24(36): 6494-6498, 2022 Sep 16.
Article En | MEDLINE | ID: mdl-36069471

Herein, a new strategy for the enantioselective synthesis of axially chiral N-aryl succinimides was devised by [3 + 2] annulation of MBH carbonates and N-aryl maleimides under chiral phosphine. This desymmetrization process allows for quick construction of both two stereogenic carbon centers and a remote CAr-N atropisomeric chirality. A series of structurally diverse N-aryl succinimides were obtained with good to excellent yields, diastereoselectivities, and enantioselectivities. The process is mild, efficient, and scalable and features a broad substrate scope.

19.
Front Chem ; 10: 911238, 2022.
Article En | MEDLINE | ID: mdl-35795221

In situ synthesis of cyano-bridged Cu (I)/Cu (II) complexes usually requires organometallic catalysts or is carried out under high-temperature and high-pressure conditions. Herein, the cyano-bridged two-dimensional Cu (I)/Cu (II) photocatalyst, [Cu2 (Py)3(CN)3]n (1), is synthesized in situ at room temperature. The in situ synthesis mechanism of 1 shows that the partial Cu (II) complex catalyzed the C-C bond cleavage of 1,3-isophthalonitrile (L) to introduce -CN and generate Cu (I)/Cu (II). Its ultrathin nanosheets can be obtained by adding sodium dodecyl benzene sulfonate and performing ultrasonic synthesis in the process of synthesis 1. The ultrathin nanosheets of 1 have a lattice distance of about 0.31 nm, and it can rapidly decompose methylene blue (MB) (K = 0.25 mg L-1 min-1 at pH = 3). This research work is beneficial for in situ synthesis of cyano-bridged Cu (I)/Cu (II) complexes at room temperature and explores their synthesis and photocatalytic mechanism.

20.
RSC Adv ; 12(26): 16706-16716, 2022 Jun 01.
Article En | MEDLINE | ID: mdl-35754907

A theoretical study of geometrical structures, electronic properties, and spectral properties of single-atom transition metal-doped boron clusters MB24 - (M = Sc, Ti, V, Cr, Mn, Fe, Co, and Ni) is performed using the CALYPSO approach for the global minimum search, followed by density functional theory calculations. The global minima obtained for the MB24 - (M = Sc, Ti, V, and Cr) clusters correspond to cage structures, and the MB24 - (M = Mn, Fe, and Co) clusters have similar distorted four-ring tubes with six boron atoms each. Interestingly, the global minima obtained for the NiB24 - cluster tend to a quasi-planar structure. Charge population analyses and valence electron density analyses reveal that almost one electron on the transition-metal atoms transfers to the boron atoms. The electron localization function (ELF) of MB24 - (M = Sc, Ti, V, Cr, Mn, Fe, Co, and Ni) indicates that the local delocalization of MB24 - (M = Sc, Ti, V, Cr, and Ni) is weaker than that of MB24 - (M = Mn, Fe, and Co), and there is no obvious covalent bond between doped metal and B atoms. The spin density and spin population analyses reveal that open-shell MB24 - (M = Ti, Cr, Fe, and Ni) has different spin characteristics which are expected to lead to interesting magnetic properties and potential applications in molecular devices. The polarizability of MB24 - (M = Sc, Ti, V, Cr, Mn, Fe, Co, and Ni) shows that MB24 - (M = Mn, Fe, and Co) has larger first hyperpolarizability, indicating that MB24 - (M = Mn, Fe, and Co) has a strong nonlinear optical response. Hence, MB24 - (M = Mn, Fe, and Co) might be considered as a promising nonlinear optical boron-based nanomaterial. The calculated spectra indicate that MB24 - (M = Sc, Ti, V, Cr, Mn, Fe, Co, and Ni) has different and meaningful characteristic peaks that can be compared with future experimental values and provide a theoretical basis for the identification and confirmation of these single-atom transition metal-doped boron clusters. Our work enriches the database of geometrical structures of doped boron clusters and can provide an insight into new doped boron clusters.

...