Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(11): 8157-8167, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38456777

RESUMEN

Perovskite light-emitting diodes (PeLEDs) are the next promising display technologies because of their high color purity and wide color gamut, while two classical emitter forms, i.e., polycrystalline domains and quantum dots, are encountering bottlenecks. Weak carrier confinement of large polycrystalline domains leads to inadequate radiative recombination, and surface ligands on quantum dots are the main annihilation sites for injected carriers. Here, pinpointing these issues, we screened out an amphoteric agent, namely, 2-(2-aminobenzoyl)benzoic acid (2-BA), to precisely control the in situ growth of FAPbI3 (FA: formamidine) nanodomains with enhanced space confinement, preferred crystal orientation, and passivated trap states on the transport-layer substrate. The amphoteric 2-BA performs bidentate chelating functions on the formation of ultrasmall perovskite colloids (<1 nm) in the precursor, resulting in a smoother FAPbI3 emitting layer. Based on monodispersed and homogeneous nanodomain films, a near-infrared PeLED device with a champion efficiency of >22% plus enhanced T80 operational stability was achieved. The proposed perovskite nanodomain film tends to be a mainstream emitter toward the performance breakthrough of PeLED devices covering visible wavelengths beyond infrared.

2.
Adv Mater ; 36(21): e2311145, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38334458

RESUMEN

High-quality perovskite films are essential for achieving high performance of optoelectronic devices; However, solution-processed perovskite films are known to suffer from compositional and structural inhomogeneity due to lack of systematic control over the kinetics during the formation. Here, the microscopic homogeneity of perovskite films is successfully enhanced by modulating the conversion reaction kinetics using a catalyst-like system generated by a foaming agent. The chemical and structural evolution during this catalytic conversion is revealed by a multimodal synchrotron toolkit with spatial resolutions spanning many length scales. Combining these insights with computational investigations, a cyclic conversion pathway model is developed that yields exceptional perovskite homogeneity due to enhanced conversion, having a power conversion efficiency of 24.51% for photovoltaic devices. This work establishes a systematic link between processing of precursor and homogeneity of the perovskite films.

3.
Nature ; 625(7995): 516-522, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38233617

RESUMEN

Perovskite solar cells (PSCs) comprise a solid perovskite absorber sandwiched between several layers of different charge-selective materials, ensuring unidirectional current flow and high voltage output of the devices1,2. A 'buffer material' between the electron-selective layer and the metal electrode in p-type/intrinsic/n-type (p-i-n) PSCs (also known as inverted PSCs) enables electrons to flow from the electron-selective layer to the electrode3-5. Furthermore, it acts as a barrier inhibiting the inter-diffusion of harmful species into or degradation products out of the perovskite absorber6-8. Thus far, evaporable organic molecules9,10 and atomic-layer-deposited metal oxides11,12 have been successful, but each has specific imperfections. Here we report a chemically stable and multifunctional buffer material, ytterbium oxide (YbOx), for p-i-n PSCs by scalable thermal evaporation deposition. We used this YbOx buffer in the p-i-n PSCs with a narrow-bandgap perovskite absorber, yielding a certified power conversion efficiency of more than 25%. We also demonstrate the broad applicability of YbOx in enabling highly efficient PSCs from various types of perovskite absorber layer, delivering state-of-the-art efficiencies of 20.1% for the wide-bandgap perovskite absorber and 22.1% for the mid-bandgap perovskite absorber, respectively. Moreover, when subjected to ISOS-L-3 accelerated ageing, encapsulated devices with YbOx exhibit markedly enhanced device stability.

4.
Adv Mater ; 36(2): e2305238, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37665975

RESUMEN

The limited conductivity of existing transparent conducting oxide (TCO) greatly restricts the further performance improvement of perovskite solar cells (PSCs), especially for large-area devices. Herein, buried-metal-grid tin-doped indium oxide (BMG ITO) electrodes are developed to minimize the power loss caused by the undesirable high sheet resistance of TCOs. By burying 140-nm-thick metal grids into ITO using a photolithography technique, the sheet resistance of ITO is reduced from 15.0 to 2.7 Ω sq-1 . The metal step of BMG over ITO has a huge impact on the charge carrier transport in PSCs. The PSCs using BMG ITO with a low metal step deliver power conversion efficiencies (PCEs) significantly better than that of their counterparts with higher metal steps. Moreover, compared with the pristine ITO-based PSCs, the BMG ITO-based PSCs show a smaller PCE decrease when scaling up the active area of devices. The parallel-connected large-area PSCs with an active area of 102.8 mm2 reach a PCE of 22.5%. The BMG ITO electrodes are also compatible with the fabrication of inverted-structure PSCs and organic solar cells. The work demonstrates the great efficacy of improving the conductivity of TCO by BMG and opens up a promising avenue for constructing highly efficient large-area PSCs.

5.
Angew Chem Int Ed Engl ; 63(3): e202316154, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38058217

RESUMEN

Additive engineering has emerged as one of the most promising strategies to improve the performance of perovskite solar cells (PSCs). Among additives, perovskite nanocrystals (NCs) have a similar chemical composition and matched lattice structure with the perovskite matrix, which can effectively enhance the efficiency and stability of PSCs. However, relevant studies remain limited, and most of them focus on bromide-involved perovskite NCs, which may undergo dissolution and ion exchange within the FAPbI3 host, potentially resulting in an enlarged band gap. In this work, we employ butylamine-capped CsPbI3 NCs (BPNCs) as additives in PSCs, which can be well maintained and serve as seeds for regulating the crystallization and growth of perovskite films. The resultant perovskite film exhibits larger domain sizes and fewer grain boundaries without compromising the band gap. Moreover, BPNCs can alleviate lattice strain and reduce defect densities within the active layer. The PSCs incorporating BPNCs show a champion power conversion efficiency (PCE) of up to 25.41 %, well over both Control of 22.09 % and oleic acid/oleylamine capped CsPbI3 NC (PNC)-based devices of 23.11 %. This work illustrates the key role of nanosized seed surfaces in achieving high-performance photovoltaic devices.

6.
Adv Mater ; 35(5): e2206345, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36443913

RESUMEN

Inverted-structure metal halide perovskite solar cells (PSCs) have attractive advantages like low-temperature processability and outstanding device stability. The two-step sequential deposition method shows the benefits of easy fabrication and decent performance repeatability. Nevertheless, it is still challenging to achieve high-performance inverted PSCs with similar or equal power conversion efficiencies (PCEs) compared to the regular-structure counterparts via this deposition method. Here, an improved two-step sequential deposition technique is demonstrated via treating the bottom organic hole-selective layer with the binary modulation system composed of a polyelectrolyte and an ammonium salt. Such improved sequential deposition method leads to the spontaneous refinement of up and buried interfaces for the perovskite films, contributing to high film quality with significantly reduced defect density and better charge transportation. As a result, the optimized PSCs show a large enhancement in the open-circuit voltage by 100 mV and a dramatic lift in the PCE from 18.1% to 23.4%, delivering the current state-of-the-art performances for inverted PSCs. Moreover, good operational and thermal stability is achieved upon the improved inverted PSCs. This innovative strategy helps gain a deeper insight into the perovskite crystal growth and defect modulation in the inverted PSCs based on the two-step sequential deposition method.

7.
Adv Mater ; 35(3): e2208178, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36305594

RESUMEN

Solar cells capable of light-harvesting during daytime and light-emission at night are multifunctional semiconductor devices with many potential applications. Here, it is reported that halide perovskite heterojunction interfaces can be refined to yield stable and efficient solar cells. The cell can also operate effectively as an ultralow-voltage light-emitting diode (LED) with a peak external quantum efficiency of electroluminescence (EQEEL ) of 3.3%. Spectroscopic and microscopic studies reveal that double-heterojunction refinement with wide-bandgap salts is key to densifying the packing of perovskite grains and enlarging the bandgaps of the perovskite surfaces that are in contact with charge-transport semiconductors. The refined perovskite enables a simple device with dual actions of solar cells and LEDs. This type of all-in-one device has the potential to be used in multifunctional harvesting-storage-utilization (HSU) systems.

8.
J Am Chem Soc ; 144(4): 1700-1708, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35041406

RESUMEN

The benefits of excess PbI2 on perovskite crystal nucleation and growth are countered by the photoinstability of interfacial PbI2 in perovskite solar cells (PSCs). Here we report a simple chemical polishing strategy to rip PbI2 crystals off the perovskite surface to decouple these two opposing effects. The chemical polishing results in a favorable perovskite surface exhibiting enhanced luminescence, prolonged carrier lifetimes, suppressed ion migration, and better energy level alignment. These desired benefits translate into increased photovoltages and fill factors, leading to high-performance mesostructured formamidinium lead iodide-based PSCs with a champion efficiency of 24.50%. As the interfacial ion migration paths and photodegradation triggers, dominated by PbI2 crystals, were eliminated, the hysteresis of the PSCs was suppressed and the device stability under illumination or humidity stress was significantly improved. Moreover, this new surface polishing strategy can be universally applicable to other typical perovskite compositions.

9.
Adv Mater ; 34(6): e2107420, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34845763

RESUMEN

A prerequisite for commercializing perovskite photovoltaics is to develop a swift and eco-friendly synthesis route, which guarantees the mass production of halide perovskites in the industry. Herein, a green-solvent-assisted mechanochemical strategy is developed for fast synthesizing a stoichiometric δ-phase formamidinium lead iodide (δ-FAPbI3 ) powder, which serves as a high-purity precursor for perovskite film deposition with low defects. The presynthesized δ-FAPbI3 precursor possesses high concentration of micrometer-sized colloids, which are in favor of preferable crystallization by spontaneous nucleation. The resultant perovskite films own preferred crystal orientations of cubic (100) plane, which is beneficial for superior carrier transport compared to that of the films with isotropic crystal orientations using "mixture of PbI2 and FAI" as precursors. As a result, high-performance perovskite solar cells with a maximum power conversion efficiency of 24.2% are obtained. Moreover, the δ-FAPbI3 powder shows superior storage stability for more than 10 months in ambient environment (40 ± 10% relative humidity), being conducive to a facile and practical storage for further commercialization.

10.
Nano Lett ; 21(1): 250-257, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33356295

RESUMEN

Anodic aluminum oxide (AAO) templates are widely used for the development of various functional nanomaterials due to their highly ordered and tunable porous structures. Here, we report a new hierarchical AAO (hAAO) template with the hexagonally ordered unit cells and the radially distributed nanochannels. It is formed by integrating the self-assembled polystyrene microsphere template into the AAO fabrication process and rationalized in terms of mechanical stress and electric-field-induced oxide dissolution. The back side of the hAAO template resembles a moth-eye-like nanoarray, which shows good hydrophobicity. A variety of radial nanopillar arrays and moth-eye-like nanoarrays are fabricated by a series of materials and synthesis techniques employing the hAAO template. These unique nanoarrays demonstrate many physicochemical properties that are distinct from those obtained from the conventional AAO template.

11.
Angew Chem Int Ed Engl ; 60(2): 856-864, 2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33021033

RESUMEN

Currently, most two-dimensional (2D) metal halide perovskites are of the Ruddlesden-Popper type and contain the thermally unstable methylammonium (MA) molecules, which leads to inferior photovoltaic performance and mild stability. Here we report a new type of MA-free formamidinium (FA) based low-dimensional perovskites, featuring a general formula of (PDA)(FA)n-1 Pbn I3n+1 with propane-1,3-diammonium (PDA) as the organic spacer cation. The perovskite films with well-oriented crystal grains are attained under the assistance of the FACl additive, where the role of Cl is investigated through the grazing-incidence X-ray diffraction technique. The photovoltaic device based on the optimized (PDA)(FA)3 Pb4 I13 film demonstrates a remarkable power conversion efficiency of 13.8 %, the highest record for the FA-based 2D perovskite solar cells. In addition, compared to (PDA)(MA)3 Pb4 I13 , the MA-containing analogue and a renowned stable 2D perovskite, both the (PDA)(FA)3 Pb4 I13 films and their derived devices exhibit exceedingly higher thermal stability.

12.
Nano Lett ; 20(2): 1296-1304, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31986053

RESUMEN

The heterogeneous stacking of a thin two-dimensional (2D) perovskite layer over the three-dimensional (3D) perovskite film creates a sophisticated architecture for perovskite solar cells (PSCs). It combines the remarkable thermal and environmental stabilities of 2D perovskites with the superior optoelectronic properties of 3D materials which resolves the chronic stability issue with no compromise on efficiency. Herein, we propose the vapor-assisted growth strategy to fabricate high-quality 2D/3D heterostructured perovskite films by introducing long-chain organoamine gases in which the 2D layers have a uniform and tunable thickness. The 3D to 2D transformation of the widely adopted MAPbI3 (MA = methylammonium) film is initiated by the butylamine vapor and monitored through the in situ grazing-incidence X-ray diffraction technique. A variety of 2D species are observed and rationalized by the different collapsing and reconstruction models of the Pb-I octahedra. The PSC devices based on the optimized 2D/3D heterostructures show significant improvements in photovoltaic performances, owing to better energy level alignments, longer carrier lifetimes, and less defects as compared to their 3D analogues. In addition, both the butylamine vapor-treated perovskite films and the derived PSC devices demonstrate exceptional long-term stabilities.

13.
Nano Lett ; 19(8): 5237-5245, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31369277

RESUMEN

Two-dimensional (2D) perovskite materials have exhibited great possibilities toward the fabrication of highly efficient and stable solar cell devices. The large degree of structural versatility due to the viable choices of organic interlayer spacers promises new and valuable 2D perovskite species. Herein, phenyltrimethylammonium (PTA+) is successfully employed as the organic interlayer spacer to prepare the 2D Ruddlesden-Popper perovskite films that exhibit exceptional optoelectronic properties. By adding Cl- ions during film growth, the (PTA)2(MA)3Pb4I13 (MA = methylammonium) perovskite films are effectively prepared with a tunable crystal orientation and film morphology. The optimized devices fabricated with the assistance of Cl- ions deliver the power conversion efficiency up to 11.53%, which is ascribed to the simultaneous reductions of charge transfer resistance and defect-induced charge recombination. Moreover, the PTA-based 2D perovskite solar cells demonstrate remarkable environmental and thermal stabilities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...