Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Int J Biol Macromol ; 268(Pt 1): 131556, 2024 May.
Article En | MEDLINE | ID: mdl-38631579

This work clarified the positive effects of pullulan on dough structure and application properties varied with its molecular weight. Pullulan with different molecular weights were introduced into dough system to explore their intervention effects on structural and technological properties of dough as well as physical and digestion properties of biscuits. Results showed that HPL (pullulan with molecule weight of 100- 300 kDa) could increase the intermolecular collisions, prompt the protein aggregation and limit the water migration in dough system, resulting in an integrate, continuous and dense network structure of the gel with strengthened elasticity and weakened extensibility, which caused an increase in biscuit thickness, hardness and crispness. On the contrary, LPL (pullulan with molecule weight of 3- 100 kDa) could go against the formation of stable and elastic dough through breaking down cross-linkage between protein and starch so as to provide biscuits with decreased hardness and crispness during baking. Both HPL and LPL delayed starch pasting and retrogradation process while HPL had the stronger retarding effect on starch digestibility of biscuits than LPL. These findings dedicated to a better understanding of pullulan function in dough system and provide suggestions for fractionation applications of pullulan in food field.


Flour , Glucans , Molecular Weight , Starch , Glucans/chemistry , Starch/chemistry , Bread , Proteins/chemistry
2.
Int J Biol Macromol ; 270(Pt 1): 131887, 2024 Jun.
Article En | MEDLINE | ID: mdl-38688795

From the perspective of rubber/glass transition, this study clarified that the impact of dextran on retarding hardening behavior and slowing starch retrogradation of Chinese Steamed Bread (CSB) depended on its molecular weight and concentration level. Guggenheim-Anderson-de Boer (GAB) model was fitted to explore critical behavior changes in rubber/glass transition of CSB. Incorporation of high molecular weight dextran enhanced the elasticity of dough and porosity of CSB, reduced the aging and hardening degree of CSB at appropriate addition levels. CSB hardness showed a growing tendency during storage, while macromolecular dextran reduced the hardness and retrogradation degree by 22.87 % and 67.53 %. Dextran with high molecular weights lowered the glass transition temperature (Tg) and improved the moisture sorption and molecular mobility of CSB under various relative humidity (RHs) conditions by providing hydrophilic sites or intermolecular space to bind water molecules. Meanwhile, it reinforced the binding between denatured gluten and gelatinized starch. Both of them devoted to starch retrogradation inhibition and stable quality maintenance of CSB. CSB is suggested to maintain stable quality at room temperature with RHs ≤33 % to prevent rubber/glass transition. This work provided theoretical guidance for fractionation application of dextran to regulate the quality and extend the shelf-life of flour products.


Bread , Dextrans , Molecular Weight , Rubber , Starch , Bread/analysis , Dextrans/chemistry , Flour/analysis , Glass/chemistry , Rubber/chemistry , Starch/chemistry , Steam , Transition Temperature
3.
Redox Biol ; 71: 103126, 2024 May.
Article En | MEDLINE | ID: mdl-38503217

Hydrogen peroxide (H2O2) functions as a signaling molecule in diverse cellular processes. While cells have evolved the capability to detect and manage changes in H2O2 levels, the mechanisms regulating key H2O2-producing enzymes to maintain optimal levels, especially in pancreatic beta cells with notably weak antioxidative defense, remain unclear. We found that the protein EI24 responds to changes in H2O2 concentration and regulates the production of H2O2 by controlling the translation of NOX4, an enzyme that is constitutively active, achieved by recruiting an RNA-binding protein, RTRAF, to the 3'-UTR of Nox4. Depleting EI24 results in RTRAF relocating into the nucleus, releasing the brake on NOX4 translation. The excessive production of H2O2 by liberated NOX4 further suppresses the translation of the key transcription factor MafA, ultimately preventing its binding to the Ins2 gene promoter and subsequent transcription of insulin. Treatment with a specific NOX4 inhibitor or the antioxidant NAC reversed these effects and alleviated the diabetic symptoms in beta-cell specific Ei24-KO mice. This study revealed a new mechanism through which cells regulate oxidative stress at the translational level, involving an ER-tethered RNA-binding protein that controls the expression of the key H2O2-producing enzyme NOX4.


Hydrogen Peroxide , NADPH Oxidases , Mice , Animals , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Hydrogen Peroxide/metabolism , NADPH Oxidase 4/genetics , NADPH Oxidase 4/metabolism , Oxidative Stress , Signal Transduction , Antioxidants/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
4.
Foods ; 12(11)2023 Jun 02.
Article En | MEDLINE | ID: mdl-37297494

In this work, Lactiplantibacillus plantarum (L. plantarum) isolated from mice feces (LP-M) and pickles (LP-P) were chosen as the endogenous and exogenous L. plantarum, respectively, which were separately combined with chitosan oligosaccharides (COS) to be synbiotics. The anti-inflammatory activity of LP-M, LP-P, COS, and the synbiotics was explored using dextran-sodium-sulfate (DSS)-induced acute colitis mice, as well as by comparing the synergistic effects of COS with LP-M or LP-P. The results revealed that L. plantarum, COS, and the synbiotics alleviated the symptoms of mice colitis and inhibited the changes in short-chain fatty acids (SCFAs), tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß, IL-6, IL-10, and myeloperoxidase (MPO) caused by DSS. In addition, the intervention of L. plantarum, COS, and the synbiotics increased the relative abundance of beneficial bacteria Muribaculaceae and Lactobacillus and suppressed the pathogenic bacteria Turicibacter and Escherichia-Shigella. There was no statistically difference between LP-M and the endogenous synbiotics on intestinal immunity and metabolism. However, the exogenous synbiotics improved SCFAs, inhibited the changes in cytokines and MPO activity, and restored the gut microbiota more effectively than exogenous L. plantarum LP-P. This indicated that the anti-inflammatory activity of exogenous LP-P can be increased by combining it with COS as a synbiotic.

5.
Molecules ; 28(11)2023 May 28.
Article En | MEDLINE | ID: mdl-37298867

Loach, rich in nutrients, such as proteins, amino acids, and mineral elements, is being gradually favored by consumers. Therefore, in this study, the antioxidant activity and structural characteristics of loach peptides were comprehensively analyzed. The loach protein (LAP) with a molecular weight between 150 and 3000 Da was graded by ultrafiltration and nanofiltration processes, which exhibited excellent scavenging activity against DPPH radical (IC50 2.91 ± 0.02 mg/mL), hydroxyl radical (IC50 9.95 ± 0.03 mg/mL), and superoxide anion radical (IC50 13.67 ± 0.33 mg/mL). Additionally, LAP was purified by gel filtration chromatography, and two principal components (named as LAP-I and LAP-II) were isolated. A total of 582 and 672 peptides were identified in LAP-I and LAP-II, respectively, through structural analysis. The XRD results revealed that LAP-I and LAP-II had an irregular amorphous structure. The 2D-NMR spectroscopy results suggested that LAP-I had a compact stretch conformation in the D2O solution, while LAP-II had a folded conformation. Overall, the study results suggested that loach peptide could be a potential antioxidant agent and might provide valuable information for chain conformation and antioxidant mechanism research further.


Antioxidants , Protein Hydrolysates , Antioxidants/chemistry , Protein Hydrolysates/chemistry , Free Radical Scavengers/chemistry , Peptides/chemistry , Proteins , Superoxides/chemistry
6.
Foods ; 12(8)2023 Apr 10.
Article En | MEDLINE | ID: mdl-37107399

This study aimed to investigate the effect of sea cucumber hydrolysate (SCH) on immunosuppressed mice induced by cyclophosphamide (Cy). Our findings demonstrated that SCH could increase the thymus index and spleen index, decrease the serum alanine transaminase (ALT) and aspartate aminotransferase (AST) levels, increase the serum IgG and small intestinal sIgA levels, reduce small intestinal and colon tissue damage, and activate the nuclear factor-κB (NF-κB) pathway by increasing TRAF6 and IRAK1 protein levels, as well as the phosphorylation levels of IκBα and p65, thereby enhancing immunity. In addition, SCH alleviated the imbalance of the gut microbiota by altering the composition of the gut microbiota in immunosuppressed mice. At the genus level, when compared with the model group, the relative abundance of Dubosiella, Lachnospiraceae, and Ligilactobacillus increased, while that of Lactobacillus, Bacteroides, and Turicibacter decreased in the SCH groups. Moreover, 26 potential bioactive peptides were identified by oligopeptide sequencing and bioactivity prediction. This study's findings thus provide an experimental basis for further development of SCH as a nutritional supplement to alleviate immunosuppression induced by Cy as well as provides a new idea for alleviating intestinal damage induced by Cy.

7.
J Sci Food Agric ; 103(11): 5376-5387, 2023 Aug 30.
Article En | MEDLINE | ID: mdl-37060319

BACKGROUND: Black garlic (Allium sativum L.) melanoidins (MLDs) are produced by Maillard reaction under high temperature and high humidity, and has a variety of biological activities. The aim of this study was to analyze the structural characteristics and investigate α-amylase and α-glucosidase in vitro inhibitory activity of black garlic MLDs. RESULTS: Spectroscopic and chemical analysis revealed that black garlic MLDs were heterogeneous macromolecular polymers with a skeletal structure similar to sugar chains. Molecular weight distribution and 3DEEM fluorescence showed that black garlic MLDs were composed of high-molecular-weight colorants with strong fluorescence properties. The polarity of black garlic MLDs was related to the fluorescence groups. The results of physicochemical properties proved that the polarity difference of black garlic MLDs was related to the elemental composition, resulting in differences in fluorescence, thermodynamic and apparent characteristics. MLDs with higher levels of fluorescent intensity (BG20 and BG40) had stronger inhibitory effects on α-amylase and α-glucosidase than BGW, and hydrolysis of fluorescent groups attenuated the inhibitory activity. The median inhibitory concentration (IC50 ) of black garlic MLDs against enzymes was positively correlated with the concentration, and the kinetic results detected non-competitive and mixed types of inhibition. CONCLUSION: High-molecular-weight fluorescent components of black garlic MLDs played a crucial role in the inhibitory activities of α-amylase and α-glucosidase, and the inhibitory ability was positively correlated with concentration. Black garlic MLDs had the potential to block postprandial glucose rise. © 2023 Society of Chemical Industry.


Garlic , Garlic/chemistry , alpha-Amylases/antagonists & inhibitors , alpha-Glucosidases/metabolism , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Chemical Phenomena
8.
Molecules ; 26(13)2021 Jun 24.
Article En | MEDLINE | ID: mdl-34202485

In this work, steam explosion (SE) was exploited as a potential hydrothermal-humification process of vegetable wastes to deconstruct their structure and accelerate their decomposition to prepare humified substances. Results indicated that the SE process led to the removal of hemicellulose, re-condensation of lignin, degradation of the cellulosic amorphous region, and the enhancement of thermal stability of broccoli wastes, which provided transformable substrates and a thermal-acidic reaction environment for humification. After SE treatment, total humic substances (HS), humic acids (HAs), and fulvic acids (FAs) contents of broccoli samples accounted for up to 198.3 g/kg, 42.3 g/kg, and 166.6 g/kg, and their purification were also facilitated. With the increment of SE severity, structural characteristics of HAs presented the loss of aliphatic compounds, carbohydrates, and carboxylic acids and the enrichment of aromatic structures and N-containing groups. Lignin substructures were proved to be the predominant aromatic structures and gluconoxylans were the main carbohydrates associated with lignin in HAs, both of their signals were enhanced by SE. Above results suggested that SE could promote the decomposition of easily biodegradable matters and further polycondensation, aromatization, and nitrogen-fixation reactions during humification, which were conducive to the formation of HAs.


Benzopyrans/chemistry , Humic Substances , Refuse Disposal , Steam , Vegetables/chemistry
...