Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 47
1.
Sci Rep ; 14(1): 3310, 2024 02 09.
Article En | MEDLINE | ID: mdl-38331984

The digital healthcare (DH) system has recently emerged as an advanced rehabilitation approach that promotes rehabilitation training based on virtual reality (VR) and augmented reality (AR). The purpose of this meta-analysis study is to review and assess the impact of DH systems on pain and physical function among patients diagnosed with knee joint pain. Between January 2003 and September 2023, studies that met the listed inclusion criteria were gathered from Scopus, PubMed, Web of Science, and EBSCO databases. The analysis of standardized mean difference (SMD) was carried out with 95% confidence interval (95% CI) (PROSPERO registration number: CRD42023462538). Eight research papers were selected, which collectively involved 194 males and 279 females. The meta-analysis outcomes revealed that DH intervention significantly improved balance (SMD, 0.41 [0.12, 0.69], p < 0.05) and pain level (SMD, - 1.10 [- 2.02, - 0.18], p < 0.05). The subgroup analysis of the pain level showed varied outcomes for the TKA (SMD, - 0.22 [- 0.49, 0.04], p = 0.10) or OA patients (SMD, - 2.80 [- 3.83, - 1.78], p < 0.05) Next, this study found no significant effect of DH intervention on knee joint range of motion (ROM) (SMD, 0.00 [- 0.76, 0.76], p = 1.00) and walking velocity (SMD, 0.04 [- 0.22, 0.29], p = 0.77) in patients with knee joint pain. The meta-analysis review conducted in this study revealed that DH intervention may potentially improve balance among the patients with knee joint pain. It may also alleviate the pain level particularly among OA patients.


Knee Joint , Pain , Male , Female , Humans , Arthralgia , Walking , Exercise Therapy
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166972, 2024 02.
Article En | MEDLINE | ID: mdl-38016505

The imbalance in gut microbiota triggers an inflammatory response that spreads from the gut to the discs and is associated with lumbar disc herniation (LDH). In this study, we investigated the mechanism of palmitic acid (PA) and trans-4-hydroxy-3-methoxycinnamic acid (THMC) on microbiota, metabolic homeostasis, and autophagy after LDH. The LDH rat model was established by puncturing the exposed intervertebral disc. 16S rDNA was used to assess the gut microbiome composition. The microbial metabolites were analyzed by UPLC-MS. The mechanism of PA and THMC in LDH was explored by fecal microbiota transplantation (FMT). We found that Yaobishu, PA, THMC, and the positive control drug Celebrex attenuated intervertebral disc damage in LDH rats and downregulated TRPV1, IL-1ß, and IL-18 expression. In addition, Yaobishu reduced Oscillospirales and Ruminococcaceae abundances after LDH. PA increased Bacilli's abundance while decreasing Negativicutes and Ruminococcaceae abundances. Metabolomics showed that Yaobishu increased 2-hexanone, methyl isobutyl ketone, 2-methylpentan-3-one, and nonadecanoic acid levels but decreased pantetheine and urocanate levels. PA and THMC reduced uridine and urocanate levels. Yaobishu, PA, and THMC activated autophagy and the Wnt/ß-catenin pathway in LDH rats. Moreover, antibiotics abrogated these effects. FMT-PA and FMT-THMC activated autophagy and decreased IL-1ß, IL-18, Wnt1, ß-catenin, and TRPV1 expression. FMT-PA and FMT-THMC partially reversed the effects of 3-MA. Taken together, our data suggest that Yaobishu, PA, and THMC relieve inflammation and pain by remodeling the gut microbiota and restoring metabolic homeostasis after LDH to activate autophagy and the Wnt/ß-catenin pathway, which provide a new therapeutic target for LDH in the clinic.


Gastrointestinal Microbiome , Intervertebral Disc Displacement , Animals , Rats , Interleukin-18 , Palmitic Acid , beta Catenin , Chromatography, Liquid , Tandem Mass Spectrometry , Inflammation , Pain , Autophagy
4.
Front Endocrinol (Lausanne) ; 14: 1289574, 2023.
Article En | MEDLINE | ID: mdl-38116312

Background: N-lactoylphenylalanine (Lac-Phe) is a new form of "exerkines" closely related to lactate (La), which may be able to inhibit appetite. Blood flow restriction (BFR) can lead to local tissue hypoxia and increase lactate accumulation. Therefore, this study investigated the effects of combining Moderate-intensity Continuous Exercise (MICE) with BFR on Lac-Phe and appetite regulation in obese adults. Methods: This study employed the cross-design study and recruited 14 obese adults aged 18-24 years. The participants were randomly divided into three groups and performed several tests with specific experimental conditions: (1) M group (MICE without BFR, 60%VO2max, 200 kJ); (2) B group (MICE with BFR, 60%VO2max, 200 kJ); and (3) C group (control session without exercise). Participants were given a standardized meal 60 min before exercise and a ad libitum 60 min after exercise. In addition, blood and Visual Analogue Scale (VAS) were collected before, immediately after, and 1 hour after performing the exercise. Results: No significant difference in each index was detected before exercise. After exercise, the primary differential metabolites detected in the M and B groups were xanthine, La, succinate, Lac-Phe, citrate, urocanic acid, and myristic acid. Apart from that, the major enrichment pathways include the citrate cycle, alanine, aspartate, and glutamate metabolism. The enhanced Lac-Phe and La level in the B group was higher than M and C groups. Hunger of the B group immediately after exercise substantially differed from M group. The total ghrelin, glucagon-like peptide-1 and hunger in the B group 1 hour after exercise differed substantially from M group. The results of calorie intake showed no significant difference among the indexes in each group. Conclusions: In conclusion, this cross-design study demonstrated that the combined MICE and BFR exercise reduced the appetite of obese adults by promoting the secretion of Lac-Phe and ghrelin. However, the exercise did not considerably affect the subsequent ad libitum intake.


Appetite Regulation , Ghrelin , Obesity , Adult , Humans , Blood Flow Restriction Therapy , Citrates , Lactates , Obesity/metabolism
5.
J Sports Sci Med ; 22(3): 541-548, 2023 09.
Article En | MEDLINE | ID: mdl-37711701

The combined exercise with citrulline (CIT) supplementation is a potential adjuvant treatment approach to address the declining body composition and lower limb function of overweight older adults. However, research on this approach is limited. Thus, this study performed a meta-analysis review to explore the effects of combined exercise with CIT supplementation on body composition and lower limb function among overweight older adults. The search strategy and manuscript development of this study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Eligible studies were first searched through four databases (Web of Science, Scopus, PubMed, and EBSCO) from January 2003 until April 2023, followed by screening. The main inclusion criteria for the article selection are as follows: 1) Randomized Controlled Trial studies; 2) Participants aged over 55; 3) Studies involved exercise with CIT supplementation for the experimental group and exercise with Placebo (PLA) supplementation for the control group; 4) Body composition and lower limb function were measured at pre- and post-intervention. Subsequently, the Cochrane risk of bias assessment tool was utilized to evaluate the selected studies' quality. The Standardized Mean Difference (SMD) was chosen as the suitable effect scale index, and the mean differences of the data from the selected articles were analyzed using Revman 5.4 software with a 95% Confidence Interval (CI). A total of seven studies fulfilled the inclusion criteria and were selected for the meta-analysis. The included studies involved 105 males and 198 females, where 157 belonged to the PLA group and 146 from the CIT group. Significant improvements were observed among overweight older adults with CIT supplementation in 6-Minute Walking Test (6MWT) (P = 0.04, I2 = 4%), SMD (95% CI) = -0.28 (-0.54, -0.01), and Lower Limb Strength (LLS) (P < 0.01, I2 = 30%), SMD (95% CI) = -0.38 (-0.65, -0.12) compared to those with PLA supplementation. Combined exercise with CIT supplementation could be an effective non-pharmaceutical intervention to improve the physical function of overweight older adults by increasing their muscle strength.


Citrulline , Overweight , Female , Male , Humans , Aged , Overweight/therapy , Body Composition , Lower Extremity , Dietary Supplements , Polyesters
6.
J Colloid Interface Sci ; 649: 867-879, 2023 Nov.
Article En | MEDLINE | ID: mdl-37390534

Rapid corrosion and bacterial infection are obstacles to put into use biodegradable magnesium (Mg) alloy as biomedical materials. In this research, an amorphous calcium carbonate (ACC)@curcumin (Cur) loaded poly-methyltrimethoxysilane (PMTMS) coating prepared by self-assembly method on micro-arc oxidation (MAO) coated Mg alloy has been proposed. Scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy are adopted to analyze the morphology and composition of the obtained coatings. The corrosion behaviour of the coatings is estimated by hydrogen evolution and electrochemical tests. The spread plate method without or with 808 nm near-infrared irradiation is applied to evaluate the antimicrobial and photothermal antimicrobial ability of the coatings. Cytotoxicity of the samples is tested by 3-(4,5)-dimethylthiahiazo(-z-y1)-2,5-di- phenytetrazoliumromide (MTT) and live/dead assay culturing with MC3T3-E1 cells. Results show that the MAO/ACC@Cur-PMTMS coating exhibited favourable corrosion resistance, dual antibacterial ability, and good biocompatibility. Cur was employed as an antibacterial agent and photosensitizer for photothermal therapy. The core of ACC significantly improved the loading of Cur and the deposition of hydroxyapatite corrosion products during degradation, which greatly promoted the long-term corrosion resistance and antibacterial activity of Mg alloys as biomedical materials.


Curcumin , Corrosion , Anti-Bacterial Agents , Alloys , Biocompatible Materials , Magnesium , Calcium Carbonate , Coated Materials, Biocompatible
7.
PeerJ ; 11: e14508, 2023.
Article En | MEDLINE | ID: mdl-36647447

Background: This systematic review and meta-analysis aimed to compare the effects of high-intensity interval exercise (HIIE) with different recovery modes versus moderate-intensity continuous exercise (MICE) on cardiac troponin (cTn) elevation. Methodology: A literature search was conducted in four databases: Scopus, PubMed, EBSCO and Web of Science from January 2010 to June 2022. The articles were screened, evaluated for quality before data were extracted. The review protocol was registered at PROSPERO (CRD42021245649). Standardized mean differences (SMD) of peak cTn were analyzed with a 95% confidence interval (95% CI) using Revman 5.4 software. Results: Six studies satisfied the inclusion criteria with a total of 92 and 79 participants for HIIE and MICE, respectively. Overall, there was no significant difference between HIIE and MICE in the elevation of cardiac troponin T (SMD: 0.41 [95% CI [-0.21, 1.03]], p = 0.20, I 2 = 77%, p for heterogeneity <0.01). In subgroup analysis, HIIE with passive recovery elicits greater release of cardiac troponin T than MICE (SMD: 0.85 [95% CI [0.44, 1.27]], p < 0.01, I 2 = 32%, p for heterogeneity = 0.22). Changes of cardiac troponin T (SMD: 0.41 [95% CI [-0.21, 1.03]], p = 0.20, I 2 = 77%, p for heterogeneity < 0.01) after HIIE with active recovery were not significantly different from those of MICE. Conclusions: There was no significant difference between HIIE and MICE in the elevation of cardiac troponin T. However, HIIE with passive recovery elicited more cardiac troponin T elevation than MICE, which should be considered when developing exercise programs.


Exercise , Troponin T , Exercise Test
8.
Phys Ther Sport ; 59: 60-72, 2023 Jan.
Article En | MEDLINE | ID: mdl-36516512

Low back pain (LBP) can result in increased direct medical and non-medical costs to patients, employers, and health care providers. This systematic review aimed to provide a better understanding of the biomechanical factors associated with chronic non-specific LBP in adults. SCOPUS, ScienceDirect, MEDLINE, and Web of Science databases were searched. In total, 26 studies were included and significant differences were noted between healthy controls and LBP patients in various motion. Biomechanical factors among adults with non-specific LBP were altered and differed as compared to healthy controls in various motion might be to compensate the pain during those motions. This review highlighted the biomechanical differences across those with non-specific LBP and healthy adults. Both groups showed a similar level of pain during functional tasks but LBP patients suffered from a moderate level of disability. Future studies should not rely on questionnaire-based pain scale only. The biomechanical factors summarized in this review can be used to diagnose non-specific LBP accurately, and as modifiable targets for exercise-based intervention.


Low Back Pain , Adult , Humans , Pain Measurement , Biomechanical Phenomena , Range of Motion, Articular
9.
J Colloid Interface Sci ; 630(Pt A): 833-845, 2023 Jan 15.
Article En | MEDLINE | ID: mdl-36279842

This work reports the design and preparation of novel organic (polyvinyl alcohol, PVA)-inorganic (neodymium nitrate, Nd(NO3)3) hybrid coatings on micro-arc oxidation (MAO) coating for magnesium (Mg) alloy corrosion protection. X-ray diffractometer, X-ray photoelectron spectroscopy, fourier transform infrared spectroscopy, field emission scanning electron microscope, Energy Dispersive X-ray spectrometer and surface roughness were applied to characterize the chemical composition and surface morphology of the coatings. The corrosion resistance of the coatings was evaluated by electrochemical and salt spray tests. The results suggested that the formation of PVA-Nd3+ and PVA-Mg2+ complexes promoted the enrichment of Nd3+ on the surface, and thereby improved the sealing quality and compactness of the coating. Interestingly, when the coating was damaged, the Nd3+ ions were transformed to their carbonates and covered the active sites, and thus exhibiting self-healing function. Further, the corrosion resistance of PVA-Nd3+ modified MAO composite coating on AZ31 Mg alloy was improved.

10.
Heliyon ; 8(10): e11051, 2022 Oct.
Article En | MEDLINE | ID: mdl-36281415

Objective: To investigate the acute effects of blood flow restriction (BFR) with single-leg low load resistance exercise and high load resistance exercise on serum insulin-like growth factor-1 (IGF-1), growth hormone (GH), and testosterone in patients with unilateral knee osteoarthritis (OA). Methods: This study recruited 18 postmenopausal female patients with mild to moderate unilateral knee OA, which was then followed by randomly conducting three resistance exercise protocols by drawing lots: 1. A 30% 1-repetition maximum (1-RM) resistance exercise with BFR of 70% arterial occlusive pressure (AOP) (BFR group); 2. A 70% 1-RM resistance exercise without BFR (RES group); 3. A 30% 1-RM resistance exercise without BFR (CON group). Blood lactate (BLA) and muscle growth related hormone levels were tested at 4-time points: before exercise, immediately after exercise, 15 min after exercise, and 30 min after exercise. Results: There was no statistical difference between the indexes in each group before exercise, but the different exercise had different effects on each index and also an interactive effect (P < 0.05). The increase of rating of perceived exertion in the BFR and RES groups, which were of similar magnitude, was greater compared to the levels in the CON group (P < 0.05). Post-exercise BLA levels were lower in the CON group in comparison to the BFR and RES groups (P < 0.05). Rather than the RES group, GH levels of the BFR group were also significantly higher than the CON group (P < 0.05) at 15 min post-exercise. At post- and 15 min after exercise, the CON group recorded significantly lower IGF-1 levels compared to the BFR and RES groups (P < 0.05). At post- and 15 min after exercise, the CON group (P < 0.05) reflected the lowest testosterone levels, followed by the RES group (P < 0.05), and the highest in the BFR group (P < 0.05). Conclusions: Myogenesis-related hormones in women with unilateral knee OA could be increased by high load resistance exercise and low load resistance exercise with BFR on unaffected limb.

11.
Article En | MEDLINE | ID: mdl-36231251

BACKGROUND: High-intensity interval training (HIIT) and blood flow restriction (BFR) represent a critical nonpharmacological strategy to reduce the excess deposition of visceral fat, as well as relevant complications, among obese populations. Applying BFR at diverse phases may have different effects. Therefore, the exercise program of this study combined HIIT with BFR, so as to explore the effect of BFR on abdominal visceral fat area and its mechanism in different periods of HIIT. The aim is to provide a more effective exercise prescription for obese people who want to reduce visceral fat quickly. METHODS: This study was a randomized controlled trial involving 72 obese adults. One week before intervention, both regional and whole-body fat masses, abdominal subcutaneous and visceral fat areas, variables of blood metabolism, and VO2max were recorded. Additionally, subjects with a matched fat percentage were randomized as a no-training control (C), HIIT (H), HIIT with BFR during interval (I), and HIIT with BFR during exercise (E) groups for 24 sessions within a 12-week period, using a cycle ergometer. During session one, this study recorded blood lactate, specific serum lipolytic hormones, rating of perceived exertion (RPE), and exercise heart rate (HR) and compared them among three groups. The baseline tests were repeated at 1 week after intervention. RESULTS: There was no significant statistical difference in the indicators of each group at baseline (p > 0.05). The improvement of trunk fat mass and fat percentage of the I and E groups markedly increased relative to the H group (p < 0.05). Meanwhile, the I group had improved android fat mass and whole-body fat mass relative to group H (p < 0.05). Those exercise groups had markedly improved indices compared with the C group (p < 0.05). Additionally, the reduction in the I group had remarkably superior abdominal visceral fat areas (AVFA) to the H and E groups (p < 0.05). Immediately and 30 min following exercise, the E and I groups had remarkably increased growth hormone (GH) compared with the H group (p < 0.05). After exercise, the I group showed markedly increased epinephrine (EPI) compared with the H group (p < 0.05). The LA level in the I group evidently increased relative to the E group (p < 0.05), while that in the E group evidently increased compared with the H group (p < 0.05). CONCLUSION: Compared with HIIT alone, HIIT with BFR can better improve the body-fat level and glucose metabolism. HIIT with BFR in the interval phase better reduces the abdominal visceral-fat level than in the exercise phase, which may be due to the increase in lipolytic hormone level caused by the higher physiological load.


High-Intensity Interval Training , Adult , Epinephrine , Glucose/metabolism , Growth Hormone , Humans , Intra-Abdominal Fat , Lactates , Obesity/therapy
12.
Oxid Med Cell Longev ; 2022: 3861380, 2022.
Article En | MEDLINE | ID: mdl-35615578

Objective: Here, we aimed to explore the main mechanism of Yaobishu (YBS) in lumbar disc herniation (LDH). Methods and Results: Eighteen compounds that might act on LDH were obtained through a combination of network pharmacology prediction and identification by high-performance liquid chromatography-mass spectrometry. The key compounds were palmitic acid and trans-4-hydroxy-3-methoxycinnamate (cinnamate). KEGG analysis demonstrated that palmitic acid target genes mainly regulate the PPAR signaling pathway, Ras signaling pathway, and fatty acid metabolism. Cinnamate target genes were primarily involved in chemical carcinogenesis-receptor activation, lipid and atherosclerosis, the HIF-1 signaling pathway, and nitrogen metabolism. The rat LDH model was constructed using autologous nucleus pulposus tissue implantation. Differential expression gene (DEGs) related to metabolism (CDKN1A and UHRF1), inflammation (S100A9 and SOCS3), autophagy (DCN and LEPR), and apoptosis (CTSW and BCL2A1) in dorsal root ganglion (DRG) tissues of the control and LDH groups was evaluated by RNA-Seq. TNF-α stimulated DRG neuronal cells were used to establish an in vitro LDH model. YBS, palmitic acid, and cinnamate reduced the expression of substance P, CGRP, S100A9, CTSW, and cleaved caspase-3, while enhancing the expression of CDKN1A, UHRF1, PCNA, Ki67, SOCS3, DCN, LEPR, and BCL2A1, as well as telomerase activity. Pearson's correlation analysis confirmed that DCN was positively correlated with BCL2A1, indicating that autophagy might be negatively correlated with apoptosis in LDH. YBS, palmitic acid, and cinnamate reduced the Siegal neurological score and serum IL-1ß and IL-18 levels, while increasing changes in the hind paw mechanical withdrawal threshold. The RNA-Seq results further showed that YBS downregulated S100A9 and CTSW expression, while upregulating SOCS3, CDKN1A, UHRF1, DCN, LEPR, and BCL2A1 expression. Conclusion: YBS and its compounds, palmitic acid, and cinnamate, attenuated LDH by regulating the inflammatory, metabolic, autophagic, and apoptotic pathways. Our results might improve the theoretical and experimental basis for clinical applications of LDH disease treatment.


Intervertebral Disc Displacement , Animals , Apoptosis , Autophagy , Cinnamates , Intervertebral Disc Displacement/metabolism , Palmitic Acid/pharmacology , Rats , Rats, Sprague-Dawley
13.
Bioact Mater ; 18: 284-299, 2022 Dec.
Article En | MEDLINE | ID: mdl-35387161

Surgical failures, caused by postoperative infections of bone implants, are commonly met, which cannot be treated precisely with intravenous antibiotics. Photothermal therapy (PTT) and photodynamic therapy (PDT) have attracted widespread attention due to their non-invasive antibacterial effects on tissues and no bacterial resistance, which may be an excellent approach to solve infections related to bone implants for biodegradable magnesium alloys. Herein, a sodium copper chlorophyllin (SCC) with a porphyrin ring induced Ca-P coating was prepared on AZ31 magnesium alloy via layer-by-layer (LbL) assembly. The morphology and composition of the samples were characterized through field emission scanning electron microscope (FE-SEM) with affiliated energy dispersive spectrometer (EDS), X-ray diffractometer (XRD), and Fourier infrared spectrometer (FTIR) and X-ray photoelectron spectrometer (XPS) as well. Potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and hydrogen evolution experiments were employed to evaluate the corrosion behavior of the samples. Atomic absorption spectrophotometer was used to measure Cu elemental content of different immersion periods. Cytocompatibility and antibacterial performance of the coatings were probed using in vitro cytotoxicity tests (MTT assay), live/dead cell staining and plate counting method. The results showed that the obtained (Ca-P/SCC)10 coating exhibited good corrosion resistance, antimicrobial activity (especially under 808 nm irradiation) and biocompatibility. The antibacterial rates for E. coli and S. aureus were 99.9% and 99.8%, respectively; and the photothermal conversion efficiency was as high as 42.1%. Triple antibacterial mechanisms including photodynamic, photothermal reactions and copper-ions release were proposed. This coating exhibited a promising application for biodegradable magnesium alloys.

14.
Front Physiol ; 13: 814965, 2022.
Article En | MEDLINE | ID: mdl-35250618

BACKGROUND: Blood flow restriction (BFR) exercise may be a potential exercise program to promote angiogenesis. This review aims to compare the effects of exercise with and without BFR on angiogenesis-related factors in skeletal muscle among healthy adults. METHODOLOGY: Searches were made in Web of Science, Scopus, PubMed, and EBSCO databases from January 2001 to June 2021. Studies were screened, quality was evaluated, and data were extracted. The review protocol was registered at PROSPERO (PROSPERO registration number: CRD42021261367). Standardized mean differences (SMD) of vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor 2 (VEGFR-2), hypoxia inducible factor 1α (HIF-1α), peroxisome proliferator-activated receptorγcoactivator-1α (PGC-1α) and endothelial nitric oxide synthase (eNOS) were analyzed using Revman 5.4 software with a 95% confidence interval (95% CI). RESULTS: Ten studies fulfilled the inclusion criteria with a total of 75 participants for BFR group and 77 for CON group. BFR exercise elicits greater expression of VEGF (heterogeneity test, P = 0.09, I2 = 44%; SMD, 0.93 [0.38, 1.48], P < 0.05), VEGFR-2 (heterogeneity test, P = 0.81, I2 = 0%; SMD, 0.64 [0.08, 1.21], P < 0.05), HIF-1α (heterogeneity test, P = 0.67, I2 = 0%; SMD, 0.43 [0.03, 0.82], P < 0.05), PGC-1α (heterogeneity test, P = 0.02, I2 = 54%; SMD, 0.74 [0.21, 1.28], P < 0.05) and eNOS (heterogeneity test, P = 0.88, I2 = 0%; SMD, 0.60 [0.04, 1.17], P < 0.05) mRNA than non-BFR exercise. In the sub-group analysis, resistance exercise with BFR elicits greater expression of VEGF (heterogeneity test, P = 0.36, I2 = 6%; SMD, 1.66 [0.97, 2.35], P < 0.05) and HIF-1α (heterogeneity test, P = 0.56, I2 = 0%; SMD, 0.51 [0.01, 1.02], P < 0.05) mRNA than aerobic exercise with BFR. CONCLUSION: Exercise with BFR elicited more angiogenesis-related factors mRNA expression than exercise without BFR, but not VEGF and PGC-1α protein expression. Therefore, BFR training may be a potential training program to improve vascular function. SYSTEMATIC REVIEW REGISTRATION: [https://www.crd.york.ac.uk/prospero/], identifier [CRD42021261367].

15.
Children (Basel) ; 9(2)2022 Feb 15.
Article En | MEDLINE | ID: mdl-35204986

Whole-body vibration training (WBVT) offers a potential auxiliary treatment method for the rehabilitation of motor disabilities to address a reduction in bone minerals and lean mass caused by motor-disability rehabilitation. The aim of this review was to analyze the efficacy of WBVT in muscle-bone rehabilitation. In order to investigate the potential effect of WBVT on children and adolescents with motor disabilities, a meta-analysis was carried out. From January 2006 to June 2021, studies that met certain criteria were searched for in the Scopus, PubMed, Web of Science, and EBSCO databases. An analysis of standardized mean differences was performed using the STATA 15.1 software with a 95% confidence interval (PROSPERO registration number: CRD42021258538). Eight studies were selected that included 179 male and 139 female children and adolescents suffering from motor disabilities. The results of the meta-analysis showed that WBVT significantly improved femur bone-mineral density ((p < 0.01, z = 2.66), standardized mean difference (SMD) (95% CI) = 0.41 (0.11, 0.72)), total body-bone mineral content ((p < 0.01, z = 3.08), SMD (95% CI) = 0.26 (0.10, 0.43)), and lean mass ((p < 0.01, z = 2.63), SMD (95% CI) = 0.22 (0.06, 0.39)). In addition, there was no significant effect of WBVT on lumbar spine bone mineral density in the disabled children and adolescents ((p = 0.21, z = 1.25), SMD (95% CI) = 0.17 (-0.10, 0.43)). WBVT can improve femur bone density, total body bone mineral content, and lean mass in children and adolescents suffering from motor disabilities, while there is no effect on lumbar-spine bone density. WBVT can be used as a potential program to improve bone minerals in children and adolescents with motor disabilities.

16.
J Funct Biomater ; 14(1)2022 Dec 26.
Article En | MEDLINE | ID: mdl-36662062

Photoactivated sterilization has received more attention in dealing with implant-associated infections due to its advantages of rapid and effective bacteriostasis and broad-spectrum antibacterial activity. Herein, a micro-arc oxidation (MAO)/polymethyltrimethoxysilane (PMTMS)@hemin-induced calcium-bearing phosphate microsphere (Hemin-CaP) coating was prepared on pure magnesium (Mg) via MAO processing and dipping treatments. The morphology and composition of the coating were characterized via scanning electron microscopy, Fourier transform infrared spectrometer, X-ray diffractometer and X-ray photoelectron spectrometer. Corrosion behavior was evaluated through electrochemical and hydrogen evolution tests. The release of Fe3+ ions at different immersion times was measured with an atomic absorption spectrophotometer. Antibacterial performance and cytotoxicity were assessed using the spread plate method, MTT assay and live/dead staining experiment. The results showed that the corrosion current density of the MAO/PMTMS@(Hemin-CaP) coating (4.41 × 10-8 A·cm-2) was decreased by two orders of magnitude compared to that of pure Mg (3.12 × 10-6 A·cm-2). Photoactivated antibacterial efficiencies of the Hemin-CaP microspheres and MAO/PMTMS@(Hemin-CaP) coating reached about 99% and 92%, respectively, which we attributed to the photothermal and photodynamic properties of hemin with a porphyrin ring. Moreover, based on the release of Fe3+ ions, the MC3T3-E1 pre-osteoblasts' viability reached up to 125% after a 72 h culture, indicating a positive effect of the coating in promoting cell growth. Thus, this novel composite coating holds a promising application as bone implants.

17.
Sci Rep ; 11(1): 16104, 2021 08 09.
Article En | MEDLINE | ID: mdl-34373507

The systematic review aimed to analyze the effects of resistance training in knee osteoarthritis (OA) rehabilitation from a biomechanical perspective. A meta-analysis was performed to determine the potential benefits of resistance training on patients with knee OA. Relevant studies based on the inclusion and exclusion criteria were selected from CENTRAL, PubMed, Scopus, and Web of Science databases inception to August 2020. Outcome measures included gait velocity and knee adduction moment (KAM). The mean differences of the data with a 95% confidence interval were analyzed using STATA 15.1 software The search identified eight studies that satisfied all the inclusion criteria, in which 164 patients were involved in gait velocity studies and another 122 patients were part of KAM studies. Analysis of the pooled data showed that resistance training significantly improved the gait velocity in patients with knee OA (p < 0.01, z = 2.73), ES (95% CI) = 0.03 (0.01, 0.06) m/s. However, resistance training had no significant effect on improving KAM in patients with knee OA (p = 0.98, z = 0.03), ES (95% CI) = 0.00 (- 0.16, 0.16) percentage of body weight × height (%BW × Ht). Therefore, resistance training may enhance gait velocity but not KAM in knee OA patients. The protocol was registered at PROSPERO (registration number: CRD42020204897).


Gait/physiology , Knee Joint/physiopathology , Knee/physiopathology , Osteoarthritis, Knee/physiopathology , Biomechanical Phenomena/physiology , Humans , Resistance Training/methods
18.
Am J Phys Med Rehabil ; 100(4): 337-344, 2021 04 01.
Article En | MEDLINE | ID: mdl-33727516

BACKGROUND: Due to the pain caused by knee injuries, low-load resistance training with blood flow restriction (L-BFR) may be a potential adjuvant therapeutic tool in the rehabilitation of knee injuries. This review aimed to analyze the effectiveness of L-BFR training modality in knee rehabilitation. DESIGN: A meta-analysis was conducted to determine the potential impact of blood flow restriction on patients with knee injuries. PubMed, EBSCO, and Web of Science databases were searched for eligible studies from January 2000 until January 2020. The mean differences of the data were analyzed using Revman 5.3 software with a 95% confidence interval. RESULTS: Nine studies fulfilled the inclusion criteria. These studies involved 179 patients who received L-BFR, 96 patients who underwent high-load resistance training, and another 94 patients who underwent low-load resistance training. The analysis of pooled data showed that patients in both the L-BFR (standardized mean difference, 0.83 [0.53, 1.14], P < 0.01) and high-load resistance training (standardized mean difference, -0.09 [-0.43, 0.24], P = 0.58) groups experienced an increase in muscle strength after the training. In addition, pain score was significantly reduced in the L-BFR group compared with the other two groups (standardized mean difference, -0.61 [-1.19, -0.03], P = 0.04). CONCLUSIONS: Muscle strength increased after L-BFR and high-load resistance training compared with low-load resistance training. Furthermore, pain score was significantly reduced after L-BFR. Hence, L-BFR is a potential intervention to be applied in rehabilitation of knee injuries.


Knee Injuries/rehabilitation , Muscle, Skeletal/blood supply , Pain Management/methods , Resistance Training/methods , Constriction , Female , Humans , Male , Pain Measurement , Randomized Controlled Trials as Topic , Regional Blood Flow , Tourniquets
19.
J Sports Sci ; 39(5): 496-502, 2021 Mar.
Article En | MEDLINE | ID: mdl-33012244

We examined the effects of descending (DSE) or ascending (ASE) stair exercise on body composition, insulin sensitivity, and inflammatory markers in young Chinese women with obesity. Thirty-six participants were randomly assigned into three groups DSE, ASE and a control group. The DSE and ASE groups performed three sessions of stair walking per week for 12 weeks with a gradual increase in repetitions. Following the exercise interventions, body composition related variables obtained by Dual-energy X-ray absorptiometry scans significantly decreased. Abdominal fat decreased in the DSE group only. Moreover, Insulin sensitivity improved significantly 3.5-fold in the DSE group compared with ASE group (insulin: -33.2% vs. -9.8%, homoeostasis model assessment for insulin resistance: -35.6% vs. -10.8%). Pro-inflammatory factors showed significant decreases in tumour necrosis factor-α (TNF-α) (-39.9% vs. -23.2%) for both intervention groups. The reduction in TNF-α concentrations in the DSE group was significantly different compared to the other two groups. Interleukin-6 significantly decreased in both exercise protocols. Our results show that 12-weeks induced stair walking improved body composition parameters in Chinese females with obesity. The results also demonstrate the superiority of the DSE protocol for improving insulin sensitivity. These findings may be attributable to the decreases observed in TNF- α levels.


Body Composition/physiology , Insulin Resistance/physiology , Interleukin-6/blood , Obesity/therapy , Stair Climbing/physiology , Tumor Necrosis Factor-alpha/blood , Biomarkers/blood , China , Female , Humans , Young Adult
20.
Bioact Mater ; 5(1): 153-163, 2020 Mar.
Article En | MEDLINE | ID: mdl-32083229

Biodegradable magnesium (Mg)-based alloys have aroused great concern owing to their promising characteristics as temporary implants for orthopedic application. But their undesirably rapid corrosion rate under physiological conditions has limited the actual clinical application. This study reports the use of a novel biomimetic polyelectrolyte multilayer template, based on polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) via layer-by-layer (LbL) assembly, to improve the corrosion resistance of the alloy. Surface characterization techniques (field-emission scanning electron microscopy, Fourier transform infrared (FTIR) spectrophotometer and X-ray diffractometer) confirmed the formation of biomineralized Ca-P coating on AZ31 alloy. Both hydrogen evolution and electrochemical corrosion tests demonstrated that the corrosion protection of the polyelectrolyte-induced Ca-P coating on AZ31 alloy. The formation mechanism of biomineralized Ca-P coating was proposed.

...