Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 59
1.
J Hazard Mater ; 473: 134584, 2024 May 11.
Article En | MEDLINE | ID: mdl-38761762

Effective capture and immobilization of volatile radioiodine from the off-gas of post-treatment plants is crucial for nuclear safety and public health, considering its long half-life, high toxicity, and environmental mobility. Herein, sulfur vacancy-rich Vs-Bi2S3@C nanocomposites were systematically synthesized via a one-step solvothermal vulcanization of CAU-17 precursor. Batch adsorption experiments demonstrated that the as-synthesized materials exhibited superior iodine adsorption capacity (1505.8 mg g-1 at 200 °C), fast equilibrium time (60 min), and high chemisorption ratio (91.7%), which might benefit from the nanowire structure and abundant sulfur vacancies of Bi2S3. Furthermore, Vs-Bi2S3@C composites exhibited excellent iodine capture performance in complex environments (high temperatures, high humidity and radiation exposure). Mechanistic investigations revealed that the I2 capture by fabricated materials primarily involved the chemical adsorption between Bi2S3 and I2 to form BiI3, and the interaction of I2 with electrons provided by sulfur vacancies to form polyiodide anions (I3-). The post-adsorbed iodine samples were successfully immobilized into commercial glass fractions in a stable form (BixOyI), exhibiting a normalized iodine leaching rate of 3.81 × 10-5 g m-2 d-1. Overall, our work offers a novel strategy for the design of adsorbent materials tailed for efficient capture and immobilization of volatile radioiodine.

2.
J Affect Disord ; 352: 490-497, 2024 May 01.
Article En | MEDLINE | ID: mdl-38403134

OBJECTIVE: Childhood trauma is considered as a critical risk factor for depression. Although many studies have investigated the pathway of Childhood trauma to depression, especially the mediating or moderating effects of cognitive emotion regulation strategies or neuroticism or stress perception, the results were inconsistent and the underlying psychological mechanisms of depression remain unclear. This study aims to explore the influence and mechanism of childhood trauma on depression in college students, and establish a full model among these interactive factors. METHODS: 1272 college students were surveyed using the childhood trauma questionnaire (CTQ), short version of center for epidemiologic studies depression scale (CES-D), Chinese perceived stress scale (CPSS), neuroticism extraversion openness five-factor inventory (NEO-FFI), and the Cognitive Emotion Regulation Questionnaire (CERQ). RESULTS: (1) Childhood trauma, neuroticism, stress perception, and maladaptive cognitive emotion regulation strategies were all significantly and positively correlated with depression among college students; (2) Stress perception and neuroticism act as a chain mediator between childhood trauma and depression in college students. (3) Maladaptive cognitive emotion regulation strategies play a moderating role in "childhood trauma-neuroticism-depression". CONCLUSION: Childhood trauma increases the risk of depression in college students by affecting neuroticism and stress perception, and high levels of maladaptive cognitive emotion regulation strategies link neuroticism and enhance the effect of childhood trauma on depression in college students.


Adverse Childhood Experiences , Depression , Psychological Tests , Self Report , Humans , Depression/psychology , Students
3.
ACS Appl Mater Interfaces ; 16(10): 12996-13005, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38422506

Flexible pressure sensors are intensively demanded in various fields such as electronic skin, medical and health detection, wearable electronics, etc. MXene is considered an excellent sensing material due to its benign metal conductivity and adjustable interlayer distance. Exhibiting both high sensitivity and long-term stability is currently an urgent pursuit in MXene-based flexible pressure sensors. In this work, high-strength methylcellulose was introduced into the MXene film to increase the interlayer distance of 2D nanosheets and fundamentally overcome the self-stacking problem. Thus, concurrent improvement of the sensing capability and mechanical strength was obtained. By appropriately modulating the ratio of methylcellulose and MXene, the obtained pressure sensor presents a high sensitivity of 19.41 kPa-1 (0.88-24.09 kPa), good stability (10000 cycles), and complete biodegradation in H2O2 solution within 2 days. Besides, the sensor is capable of detecting a wide range of human activities (pulse, gesture, joint movement, etc.) and can precisely recognize spatial pressure distribution, which serves as a good candidate for next-generation wearable electronic devices.


Hydrogen Peroxide , Methylcellulose , Nitrites , Transition Elements , Humans , Motion , Biodegradation, Environmental
4.
Phytother Res ; 38(1): 174-186, 2024 Jan.
Article En | MEDLINE | ID: mdl-37849425

Psoriasis is a common immune-mediated inflammatory skin disease, caused by disturbed interactions between keratinocytes and immune cells. Chinese medicine shows potential clinical application for its treatment. Liquiritin is a flavone compound extracted from licorice and shows potential antitussive, antioxidant and antiinflammatory effects, and therefore may have potential as a psoriasis therapeutic. The aim of this work was to examine the possible roles that liquiritin may have in treating psoriasis. HaCaT cells were stimulated by TNF-α with or without liquiritin, harvested for analysis by western blots and RT-qPCR, and the cellular supernatants were collected and analyzed by ELISA for cytokines. In addition, 4 groups of mice were examined: Normal, Vehicle, LQ-L and LQ-H. The mice were sacrificed after 6 days and analyzed using IHC, ELISA, RT-qPCR and flow cytometry. The results showed that liquiritin could significantly inhibit the progression of psoriasis both in vitro and in vivo. Liquiritin strongly suppressed the proliferation of HaCaT keratinocytes but did not affect cell viability. Moreover, liquiritin alleviated imiquimod-induced psoriasis-like skin inflammation and accumulation of Th17 cells and DCs in vivo. In TNF-α-induced HaCaT keratinocytes, both protein and mRNA expression levels of inflammatory cytokines were sharply decreased. In imiquimod-induced mice, the activation of NF-κB and AP-1 was reduced after treatment with liquiritin. Collectively, our results show that liquiritin might act as a pivotal regulator of psoriasis via modulating NF-κB and AP-1 signal pathways.


Flavanones , Glucosides , NF-kappa B , Psoriasis , Mice , Animals , NF-kappa B/metabolism , Transcription Factor AP-1/metabolism , Imiquimod/therapeutic use , Tumor Necrosis Factor-alpha/metabolism , Th17 Cells , Cell Line , Psoriasis/chemically induced , Psoriasis/drug therapy , Keratinocytes , Cytokines/metabolism , Cell Proliferation , Mice, Inbred BALB C , Disease Models, Animal
5.
Eur J Pharmacol ; 964: 176300, 2024 Feb 05.
Article En | MEDLINE | ID: mdl-38141939

BACKGROUND: Hepatic steatosis is the leading cause of discarded liver grafts. Defatting steatotic liver grafts using drug combinations during ex vivo normothermic machine perfusion (NMP) has been reported. However, the effectiveness of NMP in reducing fat content using epigallocatechin gallate (EGCG) as a single defatting agent and its effect on lipid metabolism are poorly investigated. METHODS: In this study, an NMP system was set up to perfuse a steatotic liver from a rat model with 10 mM EGCG. Livers without EGCG served as NMP controls, whereas static cold-preserved livers in the University of Wisconsin medium were used as static cold storage controls. Liver enzyme, reactive oxygen species (ROS), histology, and lipid content assessments were conducted post-perfusion, complemented by lipidomics, RNA sequencing, and western blotting to determine the lipid metabolism changes. RESULTS: EGCG during NMP reduced hepatocellular injury markers and defatted steatotic liver grafts. Additionally, we observed a significant increase in triglyceride (TG) content in the perfusate post-NMP in the NMP + EGCG group, suggesting TG output from the liver. Furthermore, lipidomics analysis revealed that EGCG primarily affected metabolites involved in glycerophospholipid (GP) and glycerolipid (GL) metabolism. Further, the RNA sequencing indicated the modulation of these metabolic pathways via ECGC, which was associated with the downregulated Lpin1 and Gpat3 expression. CONCLUSIONS: EGCG defats steatotic livers as a single defatting agent during NMP by promoting GL and GP metabolism via decreasing Lpin1 and Agpat9 levels.


Catechin/analogs & derivatives , Fatty Liver , Lipid Metabolism , Humans , Rats , Animals , Lipidomics , Fatty Liver/metabolism , Liver/metabolism , Perfusion , Triglycerides/metabolism , Sequence Analysis, RNA
6.
Microbiol Spectr ; 11(6): e0246323, 2023 Dec 12.
Article En | MEDLINE | ID: mdl-37971259

IMPORTANCE: Cytomegalovirus (CMV) has been used as a novel viral vector for vaccine development and gene therapy. Coronavirus disease 2019 is an infectious disease caused by the SARS-CoV-2 virus, which is highly mutable and is still circulating globally. The study showed that the CMV viral vector caused transient systemic infection and induced robust transgene expression in vivo. CMV vectors expressing different SARS-CoV-2 proteins were immunogenic and could elicit neutralizing antibodies against a highly mutated Omicron variant (BA.2). The expression level of receptor-binding domain (RBD) protein was higher than that of full-length S protein using CMV as a vaccine vector, and CMV vector expression RBD protein elicited higher RBD-binding and neutralizing antibodies. Moreover, the study showed that CMV-vectored vaccines would not cause unexpected viral transmission, and pre-existing immunity might impair the immunogenicity of subsequent CMV-vectored vaccines. These works provide meaningful insights for the development of a CMV-based vector vaccine platform and the prevention and control strategies for SARS-CoV-2 infection.


COVID-19 , Cytomegalovirus Infections , Animals , Mice , Humans , COVID-19 Vaccines , SARS-CoV-2/genetics , COVID-19/prevention & control , Cytomegalovirus/genetics , Antibodies, Neutralizing , Antibodies, Viral
7.
BMC Psychiatry ; 23(1): 754, 2023 10 16.
Article En | MEDLINE | ID: mdl-37845703

BACKGROUND: Internet gaming disorder (IGD) is a formal mental disorder leading to personal and social impairment. Although it shares similar physical and psychosocial effects to substance use disorder, the psychological mechanisms underlying IGD remain unclear, although several researches have made significant contributions to its understanding. This study aims to elucidate the correlation between IGD, impulsive personality and risk preference of medical college students in China, from a questionnaire-based investigation. METHODS: Based on the cluster random sampling method, a questionnaire survey was conducted among medical college students in Northern Anhui, China from September 3 to October 27, 2020. The questionnaires included the Internet Gaming Disorder Scale (IGD-20), Chinese revised of Barratt Impulsiveness Scale Version 11 (BIS-11), and risk appetite index (RPI). Perform independent sample t-tests, analysis of variance (ANOVA), correlation analysis, and moderating effect analysis using SPSS 23.0. P < 0. 05 is considered statistically significant. RESULTS: 624 participants completed the survey, including 257 males (41.19%) and 367 females (58.81%). All participants were between 18 and 24 years. We found that in IGD and its six different dimensions and RPI, males scored significantly higher than females. Additionally, our finding revealed there is statistical significance in IGD and impulsiveness between gaming group with game time greater than or equal to 4 h and non-gaming group. The IGD and its six different dimensions, among which all except for mood modification are positively correlated with impulsiveness and RPI. Mediating effects indicate that RPI plays a partial mediating role between motor impulsiveness and IGD. CONCLUSION: The findings shows that there is a certain relationship between impulsivity and RPI, as well as IGD and its dimensions. RPI may be a mediator between impulsivity and IGD, and men have higher IGD. The findings supported the compensatory hypothesis. These findings may contribute to further research and development of intervention and prevention measures for IGD.


Behavior, Addictive , Students, Medical , Video Games , Male , Female , Humans , Behavior, Addictive/psychology , Internet Addiction Disorder , Video Games/psychology , Impulsive Behavior , Internet
8.
J Nanobiotechnology ; 21(1): 370, 2023 Oct 10.
Article En | MEDLINE | ID: mdl-37817254

Microalgae as the photosynthetic organisms offer enormous promise in a variety of industries, such as the generation of high-value byproducts, biofuels, pharmaceuticals, environmental remediation, and others. With the rapid advancement of gene editing technology, CRISPR/Cas system has evolved into an effective tool that revolutionised the genetic engineering of microalgae due to its robustness, high target specificity, and programmability. However, due to the lack of robust delivery system, the efficacy of gene editing is significantly impaired, limiting its application in microalgae. Nanomaterials have become a potential delivery platform for CRISPR/Cas systems due to their advantages of precise targeting, high stability, safety, and improved immune system. Notably, algal-mediated nanoparticles (AMNPs), especially the microalgae-derived nanoparticles, are appealing as a sustainable delivery platform because of their biocompatibility and low toxicity in a homologous relationship. In addition, living microalgae demonstrated effective and regulated distribution into specified areas as the biohybrid microrobots. This review extensively summarised the uses of CRISPR/Cas systems in microalgae and the recent developments of nanoparticle-based CRISPR/Cas delivery systems. A systematic description of the properties and uses of AMNPs, microalgae-derived nanoparticles, and microalgae microrobots has also been discussed. Finally, this review highlights the challenges and future research directions for the development of gene-edited microalgae.


Microalgae , Nanoparticles , Gene Editing , CRISPR-Cas Systems/genetics , Microalgae/genetics , Genetic Engineering
9.
J Exp Clin Cancer Res ; 42(1): 198, 2023 Aug 08.
Article En | MEDLINE | ID: mdl-37550764

BACKGROUND: Aberrant somatic genomic alteration including copy number amplification is a hallmark of cancer genomes. We previously profiled genomic landscapes of prostate cancer (PCa), yet the underlying causal genes with prognostic potential has not been defined. It remains unclear how a somatic genomic event cooperates with inherited germline variants contribute to cancer predisposition and progression. METHODS: We applied integrated genomic and clinical data, experimental models and bioinformatic analysis to identify GATA2 as a highly prevalent metastasis-associated genomic amplification in PCa. Biological roles of GATA2 in PCa metastasis was determined in vitro and in vivo. Global chromatin co-occupancy and co-regulation of GATA2 and SMAD4 was investigated by coimmunoprecipitation, ChIP-seq and RNA-seq assays. Tumor cellular assays, qRT-PCR, western blot, ChIP, luciferase assays and CRISPR-Cas9 editing methods were performed to mechanistically understand the cooperation of GATA2 with SMAD4 in promoting TGFß1 and AR signaling and mediating inherited PCa risk and progression. RESULTS: In this study, by integrated genomics and experimental analysis, we identified GATA2 as a prevalent metastasis-associated genomic amplification to transcriptionally augment its own expression in PCa. Functional experiments demonstrated that GATA2 physically interacted and cooperated with SMAD4 for genome-wide chromatin co-occupancy and co-regulation of PCa genes and metastasis pathways like TGFß signaling. Mechanistically, GATA2 was cooperative with SMAD4 to enhance TGFß and AR signaling pathways, and activated the expression of TGFß1 via directly binding to a distal enhancer of TGFß1. Strinkingly, GATA2 and SMAD4 globally mediated inherited PCa risk and formed a transcriptional complex with HOXB13 at the PCa risk-associated rs339331/6q22 enhancer, leading to increased expression of the PCa susceptibility gene RFX6. CONCLUSIONS: Our study prioritizes causal genomic amplification genes with prognostic values in PCa and reveals the pivotal roles of GATA2 in transcriptionally activating the expression of its own and TGFß1, thereby co-opting to TGFß1/SMAD4 signaling and RFX6 at 6q22 to modulate PCa predisposition and progression.


Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/pathology , Prostate/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism , Chromatin , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Smad4 Protein/genetics , Smad4 Protein/metabolism , GATA2 Transcription Factor/genetics , GATA2 Transcription Factor/metabolism
10.
Int J Biol Macromol ; 248: 125739, 2023 Sep 01.
Article En | MEDLINE | ID: mdl-37423445

Wound regeneration with complete functions and skin appendages is still challenging in wound dressing application. Inspired by the efficient wound healing in the fetal environment, we developed a fetal milieu-mimicking hydrogel for accelerating wound healing simultaneously with hair follicle regeneration. To mimic the fetal extracellular matrix (ECM), which contains high content of glycosaminoglycans, hyaluronic acid (HA) and chondroitin sulfate (CS) were selected to fabricate hydrogels. Meanwhile, dopamine (DA) modification endowed hydrogels with satisfactory mechanical properties and multi-functions. The hydrogel encapsulated atorvastatin (ATV) and zinc citrate (ZnCit), namely HA-DA-CS/Zn-ATV, exhibited tissue adhesion, self-healing capacity, good biocompatibility, excellent anti-oxidant ability, high exudate absorption, and hemostasis property. In vitro results revealed that hydrogels exerted significant angiogenesis and hair follicle regeneration efficacy. In vivo results confirmed that hydrogels significantly promoted wound healing, and the closure ratio reached over 94 % after 14 days of hydrogels-treatment. The regenerated skin exhibited a complete epidermis, dense and ordered collagen. Furthermore, the number of neovessels and hair follicles in the HA-DA-CS/Zn-ATV group were 1.57- and 3.05-fold higher than those of the HA-DA-CS group. Thus, HA-DA-CS/Zn-ATV serves as multifunctional hydrogels for simulating the fetal milieu and achieving efficient skin reconstruction with hair follicle regrowth, exhibiting potential in clinical wound healing.


Hyaluronic Acid , Hydrogels , Hydrogels/pharmacology , Hyaluronic Acid/pharmacology , Chondroitin Sulfates/pharmacology , Dopamine/pharmacology , Wound Healing , Hair Follicle , Anti-Bacterial Agents
11.
Molecules ; 28(11)2023 May 31.
Article En | MEDLINE | ID: mdl-37298949

Psoriasis is a chronic and multifactorial skin disease which is caused by inflammatory infiltrates, keratinocyte hyperproliferation, and accumulation of immune cells. As part of the Aconitum species, Benzoylaconitine (BAC) shows potential antiviral, anti-tumor, and anti-inflammatory effects. In this study, we investigated the effects and mechanisms of BAC on tumor necrosis factor-alpha (TNF-α)/LPS-induced HaCaT keratinocytes in a imiquimod(IMQ)-induced mice model. The results showed that BAC could relieve the symptoms of psoriasis by inhibiting cell proliferation, the release of inflammatory factors, and the accumulation of Th17 cells, while no obvious effect on cell viability and safety was observed both in vitro and in vivo. Additionally, BAC can markedly inhibit the protein and mRNA levels of inflammatory cytokines in TNF-α/LPS-induced HaCaT keratinocytes by inhibiting the phosphorylation of STAT3. In brief, our data indicated that BAC could alleviate the progression of psoriasis and may be a potential therapeutic agent for treating psoriasis in clinical practice.


Psoriasis , Tumor Necrosis Factor-alpha , Animals , Mice , Tumor Necrosis Factor-alpha/metabolism , Phosphorylation , Lipopolysaccharides/pharmacology , Keratinocytes , Psoriasis/pathology , Imiquimod/adverse effects , Cytokines/metabolism , Mice, Inbred BALB C , Cell Proliferation , Disease Models, Animal , Skin
12.
J Nanobiotechnology ; 21(1): 184, 2023 Jun 08.
Article En | MEDLINE | ID: mdl-37291577

Extracellular vesicles (EVs) have emerged as a promising platform for gene delivery owing to their natural properties and phenomenal functions, being able to circumvent the significant challenges associated with toxicity, problematic biocompatibility, and immunogenicity of the standard approaches. These features are of particularly interest for targeted delivery of the emerging clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) systems. However, the current efficiency of EV-meditated transport of CRISPR/Cas components remains insufficient due to numerous exogenous and endogenous barriers. Here, we comprehensively reviewed the current status of EV-based CRISPR/Cas delivery systems. In particular, we explored various strategies and methodologies available to potentially improve the loading capacity, safety, stability, targeting, and tracking for EV-based CRISPR/Cas system delivery. Additionally, we hypothesise the future avenues for the development of EV-based delivery systems that could pave the way for novel clinically valuable gene delivery approaches, and may potentially bridge the gap between gene editing technologies and the laboratory/clinical application of gene therapies.


CRISPR-Cas Systems , Extracellular Vesicles , Prospective Studies , Gene Editing/methods , Gene Transfer Techniques
13.
Virus Res ; 328: 199080, 2023 04 15.
Article En | MEDLINE | ID: mdl-36882131

Chinese sacbrood virus (CSBV) is the most severe pathogen of Apis cerana, which leads to serious fatal diseases in bee colonies and eventual catastrophe for the Chinese beekeeping industry. Additionally, CSBV can potentially infect Apis mellifera by bridging the species barrier and significantly affect the productivity of the honey industry. Although several approaches, such as feeding royal jelly, traditional Chinese medicine, and double-stranded RNA treatments, have been employed to suppress CSBV infection, their practical applicabilities are constrained due to their poor effectiveness. In recent years, specific egg yolk antibodies (EYA) have been increasingly utilized in passive immunotherapy for infectious diseases without any side effects. According to both laboratory research and practical use, EYA have demonstrated superior protection for bees against CSBV infection. This review provided an in-depth analysis of the issues and drawbacks in this field in addition to provide a thorough summary of current advancements in CSBV studies. Some promising strategies for the synergistic study of EYA against CSBV, including the exploitation of novel antibody drugs, novel TCM monomer/formula determination, and development of nucleotide drugs, are also proposed in this review. Furthermore, the prospects for the future perspectives of EYA research and applications are presented. Collectively, EYA would terminate CSBV infection soon, as well as will provide scientific guidance and references to control and manage other viral infections in apiculture.


RNA Viruses , Virus Diseases , Bees , Animals , Beekeeping , Egg Yolk , RNA Viruses/genetics
14.
Biochem Biophys Res Commun ; 653: 21-30, 2023 04 23.
Article En | MEDLINE | ID: mdl-36848821

Hepatic stellate cells (HSCs) upregulate hypoxia inducible factor 1 alpha (HIF-1α) expression in response to fibrosis-induced hypoxia. The mechanism by which HIF-1α promotes liver fibrosis in HSCs is not fully understood. In this study, we found that increased expression of α-SMA, HIF-1α and IL-6, as well as colocalization of α-SMA and HIF-1α, and HIF-1α and IL-6, were observed in liver fibrotic tissues of patients and a mouse model. HIF-1α expression induced IL-6 secretion in activated HSCs and the increase could be abolished by HIF-1α suppression or HIF1A gene knockdown. HIF-1α directly bound to the hypoxia response element (HRE) region in HSC IL6/Il6 promoters. Additionally, culturing naïve CD4 T cells with supernatant from HSCs in which HIF-1α is highly expressed increased IL-17A expression, and the expression could be abolished by HIF1A knockdown in LX2. In turn, the IL-17A-enriched supernatant induced IL-6 secretion in HSCs. Together, these results show that HIF-1α upregulates IL-6 expression in HSCs and induces IL-17A secretion through directly binding to the HRE of IL6 promoter.


Hepatic Stellate Cells , Interleukin-6 , Mice , Animals , Hepatic Stellate Cells/metabolism , Interleukin-6/metabolism , Interleukin-17/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Hypoxia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
15.
Medicine (Baltimore) ; 102(3): e32573, 2023 Jan 20.
Article En | MEDLINE | ID: mdl-36701720

Increasing evidence suggests that long non-coding riboneucleic acids (lncRNAs), as competing endogenous RNA (ceRNA), play a key role in the initiation, invasion, and metastasis of cancer. As a new hypothesis, the lncRNA-micro RNA (miRNA)-messenger RNA (mRNA), ceRNA regulatory network has been successfully constructed in a variety of cancers. However, lncRNA, which plays a ceRNA function in endometrial cancer (EC), is still poorly understood. In this study, we downloaded EC expression profiling from The Cancer Genome Atlas database and used the R software "edgeR" package to analyze the differentially expressed genes between EC and normal endometrium samples. Then, differentially expressed (DE) lncRNAs, miRNAs and mRNAs were selected to construct a lncRNA-miRNA-mRNA prognosis-related regulatory network based on interaction information. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were performed on the genes in the network to predict the potential underlying mechanisms and functions of lncRNAs in EC. Kaplan-Meier method and the log-rank test were used for survival analysis. Based on the "ceRNA hypothesis," we constructed a co-expression network of mRNA and lncRNA genes mediated by miRNA in the process of tumor genesis. Furthermore, we successfully constructed a dysregulated lncRNA-associated ceRNA network containing 96 DElncRNAs, 27 DEmiRNAs, and 74 DEmRNAs. Through Kaplan-Meier curve analysis, we found that 9 lncRNAs, 3 miRNAs, and 12 mRNAs were significantly correlated with the overall survival rate of patients among all lncRNAs, miRNAs, and mRNAs involved in ceRNA (P < .05). Our research provides a new perspective for the interaction among lncRNAs, miRNAs, and mRNA and lays the foundation for further research on the mechanism of lncRNAs in the occurrence of EC.


Endometrial Neoplasms , MicroRNAs , RNA, Long Noncoding , Female , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Gene Regulatory Networks , Biomarkers, Tumor/genetics , Endometrial Neoplasms/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Computational Biology , Gene Expression Regulation, Neoplastic , Kaplan-Meier Estimate
16.
Mol Biol Rep ; 50(2): 1459-1467, 2023 Feb.
Article En | MEDLINE | ID: mdl-36482029

BACKGROUND: Dunaliella salina (D. salina) expression system shows a very attractive application prospect, but it currently has a technical bottleneck, namely the low or unstable expression of recombinant proteins. Given the characteristics of cell-penetrating peptides or/and nuclear localization signal (NLS) peptides, this study is the first attempt to improve the transformation rate of foreign gene with trans-activating transcriptional (TAT) protein or/and NLS peptides. METHODS AND RESULTS: Using salt gradient method, exogenous plasmids were transferred into D. salina cells with TAT or TAT/NLS complexes simultaneously. The ß-glucuronidase gene expression was identified by means of histochemical stain and RT-qPCR detection. Through observation with light microscope, TAT-mediating cells exhibit an apparent cytotoxicity even at ratios of 0.5, no significant toxicity was noted in the TAT/plasmid/NLS complex group. It is obvious that with the addition of peptides the toxicity decreases significantly. Histochemical staining showed that the transformants presented blue color under light microscope, but the negative control and blank control are not. Furthermore, based on a TAT/plasmids ratio of 4 with 10 µg NLS peptides mediation, RT-qPCR results demonstrated that the transcripts of target gene were increased by 269 times than that of control group. CONCLUSIONS: This study demonstrated that combination of TAT and NLS peptides can significantly improve the transformation rate and expression level of foreign gene in D. salina system. It offers a promising way for promoting the application and development of D. salina bioreactor.


Nuclear Localization Signals , Peptides , Nuclear Localization Signals/genetics , Recombinant Proteins/genetics , Plasmids/genetics , Peptides/genetics , Transformation, Genetic
17.
Artif Organs ; 47(6): 925-933, 2023 Jun.
Article En | MEDLINE | ID: mdl-36514256

BACKGROUND: Ex-vivo normothermic machine perfusion (NMP) preserves the liver metabolism at 37°C and has rapidly developed as a promising approach for assessing the viability and improving the performance of organs from expanded criteria donors, including fatty liver grafts. NMP is an effective method for defatting fatty livers when combined with pharmaceutical therapies. Pharmacological agents have been shown to facilitate liver defatting by NMP. OBSERVATIONS: This systematic review summarizes available pharmacological therapies for liver defatting, with a particular emphasis on defatting agents that can be employed clinically as defatting components during liver NMP as an ex vivo translational paradigm. CONCLUSION: NMP provides an opportunity for organ treatment and can be used as a defatting platform in the future with defatting agents. Nagrath's cocktail is the most commonly used defatting cocktail in NMP; however, its carcinogenic components may limit its clinical application. Thus, the combination of a defatting cocktail with a new clinically applicable component, for example, a polyphenolic natural compound, may be a novel pharmacological option.


Fatty Liver , Liver Transplantation , Humans , Liver Transplantation/methods , Organ Preservation/methods , Liver/metabolism , Fatty Liver/therapy , Perfusion/methods
18.
Genes (Basel) ; 13(12)2022 11 24.
Article En | MEDLINE | ID: mdl-36553468

MicroRNAs (miRNAs) participate in hepatic stellate cell (HSC) activation, which drives liver fibrosis initiation and progression. We aimed to identify novel hepatic fibrosis targets using miRNA sequencing (miRNA-seq) of human primary HSCs. Surgically resected liver tissues were used to extract HSCs. Based on next-generation sequencing, miRNA-seq was performed on four pairs of HSCs before and after in vitro culture. Additionally, we compared our data with open access miRNA-seq data derived from fourteen cirrhotic and nine healthy liver tissues. Selected miRNAs associated with fibrosis were verified by quantitative real-time PCR. Target mRNAs of differentially expressed (DE) miRNAs were predicted to construct co-expression networks. We identified 230 DEmiRNAs (118 upregulated and 112 downregulated) upon HSC activation. Of the 17 miRNAs with the most significant differences in expression, liver disease-related miRNAs included miR-758-3p, miR-493-5p, miR-409-3p, miR-31-5p, miR-1268a, and miR-381-3p, which might play roles in hepatic fibrosis. Moreover, let-7g-5p, miR-107, miR-122-5p, miR-127-3p, miR-139-5p, miR-148a-3p, miR-194-5p, miR-215-5p, miR-26a-5p, miR-340-5p, miR-451a, and miR-99a-5p were common between our data and the publicly available sequencing data. A co-expression network comprising 1891 matched miRNA-mRNA pairs representing 138 DEmiRNAs and 1414 DEmRNAs was constructed. MiR-1268a and miR-665, possessing the richest target DEmRNAs, may be vital in HSC activation. The targeted genes were involved in collagen metabolism, extracellular matrix structural constituent, cytoskeletal protein binding, and cell adhesion. The miRNAs we identified may provide a basis and reference for the selection of diagnostic and therapeutic targets for hepatic fibrosis.


MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Liver Cirrhosis/metabolism , High-Throughput Nucleotide Sequencing
19.
Polymers (Basel) ; 14(24)2022 Dec 08.
Article En | MEDLINE | ID: mdl-36559748

In the study of polymer flooding, researchers usually ignore the genetic stress properties of viscoelastic fluids. In this paper, we investigate the process of viscoelastic fluid flooding the remaining oil in the dead end. This work uses the fractional-order Maxwell in the traditional momentum equation. Furthermore, a semi-analytic solution of the flow control equation for fractional-order viscoelastic fluids is derived, and the oil-repelling process of viscoelastic fluids is simulated by a secondary development of OpenFOAM. The results show that velocity fractional-order derivative α significantly affects polymer solution characteristics, and increasing the elasticity of the fluid can significantly improve the oil repelling efficiency. Compared to the Newtonian fluid flow model, the fractional order derivative a and relaxation time b in the two-parameter instanton equation can accurately characterize the degree of elasticity of the fluid. The smaller the a, the more elastic the fluid is and the higher the oil-repelling efficiency. The larger the b, the less elastic the fluid is and the lower the cancellation efficiency. Moreover, the disturbance of the polymer solution to the dead end is divided into two elastic perturbation areas. The stronger the elasticity of the polymer solution, the higher the peak value of the area in the dead end and the higher the final oil displacement efficiency.

20.
J Virol ; 96(21): e0137322, 2022 11 09.
Article En | MEDLINE | ID: mdl-36226984

Zika virus (ZIKV) is transmitted mostly via mosquito bites and no vaccine is available, so it may reemerge. We and others previously demonstrated that neonatal infection of ZIKV results in heart failure and can be fatal. Animal models implicated ZIKV involvement in viral heart diseases. It is unknown whether and how ZIKV causes heart failure in adults. Herein, we studied the effects of ZIKV infection on the heart function of adult A129 mice. First, we found that ZIKV productively infects the rat-, mouse-, or human-originated heart cell lines and caused ubiquitination-mediated degradation of and distortive effects on connexin 43 (Cx43) protein that is important for communications between cardiomyocytes. Second, ZIKV infection caused 100% death of the A129 mice with decreasing body weight, worsening health score, shrugging fur, and paralysis. The viral replication was detected in multiple organs. In searching for the viral effects on heart of the A129 mice, we found that ZIKV infection resulted in the increase of cardiac muscle enzymes, implicating a viral acute myocardial injury. ZIKV-caused heart injury was also demonstrated by electrocardiogram (ECG) showing widened and fragmented QRS waves, prolonged PR interval, and slower heart rate. The intercalated disc (ICD) between two cardiomyocytes was destroyed, as shown by the electronic microscopy, and the Cx43 distribution in the ICDs was less organized in the ZIKV-infected mice compared to that in the phosphate-buffered saline (PBS)-treated mice. Consistently, ZIKV productively infected the heart of A129 mice and decreased Cx43 protein. Therefore, we demonstrated that ZIKV infection caused heart failure, which might lead to fatal sequelae in ZIKV-infected A129 mice. IMPORTANCE Zika virus (ZIKV) is a teratogen causing devastating sequelae to the newborns who suffer a congenital ZIKV infection while it brings about only mild symptoms to the health-competent older children or adults. Mouse models have played an important role in mechanistic and pathogenic studies of ZIKV. In this study, we employed 3 to 4 week-old A129 mice for ZIKV infection. RT-qPCR assays discovered that ZIKV replicated in multiple organs, including the heart. As a result of ZIKV infection, the A129 mice experienced weight loss, health score worsening, paralysis, and deaths. We revealed that the ZIKV infection caused abnormal electrocardiogram presentations, increased cardiac muscle enzymes, downregulated Cx43, and destroyed the gap junction and the intercalated disc between the cardiomyocytes, implicating that ZIKV may cause an acute myocardial injury in A129 mice. Therefore, our data imply that ZIKV infection may jeopardize the immunocompromised population with a severe clinical consequence, such as heart defect.


Heart Diseases , Heart Failure , Zika Virus Infection , Zika Virus , Infant, Newborn , Child , Animals , Mice , Humans , Rats , Adolescent , Connexin 43 , Myocytes, Cardiac/pathology , Disease Models, Animal , Gap Junctions/pathology , Paralysis
...