Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942067

RESUMEN

Identifying the active phase with the highest activity, which is long-believed to be a steady state of the catalyst, is the basis of rational design of heterogeneous catalysis. In this work, we performed detailed in situ investigations, successfully capturing the instantaneous structure-activity change in oscillating Pd nanocatalysts during methane oxidation, which reveals an unprecedented oscillatory active state. Combining in situ quantitative environmental transmission electron microscopy and highly sensitive online mass spectrometry, we identified two distinct phases for the reaction: one where the Pd nanoparticles refill with oxygen, and the other, a period of abrupt pumping of oxygen and boosted methane oxidation within about 1 s. It is the rapid reduction process that shows the highest activity for total oxidation of methane, not a PdO or Pd steady state under the conditions applied here (methane:oxygen = 5:1). This observation challenges the traditional understanding of the active phase and requires a completely different strategy for catalyst optimization.

2.
Adv Mater ; 34(30): e2202072, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35580350

RESUMEN

Surface oxygen vacancies have been widely discussed to be crucial for tailoring the activity of various chemical reactions from CO, NO, to water oxidation by using oxide-supported catalysts. However, the real role and potential function of surface oxygen vacancies in the reaction remains unclear because of their very short lifetime. Here, it is reported that surface oxygen vacancies can be well confined electrostatically for a polarization screening near the perimeter interface between Pt {111} nanocrystals and the negative polar surface (001) of ferroelectric PbTiO3. Strikingly, such a catalyst demonstrates a tunable catalytic CO oxidation kinetics from 200 °C to near room temperature by increasing the O2 gas pressure, accompanied by the conversion curve from a hysteresis-free loop to one with hysteresis. The combination of reaction kinetics, electronic energy loss spectroscopy (EELS) analysis, and density functional theory (DFT) calculations, indicates that the oxygen vacancies stabilized by the negative polar surface are the active sites for O2 adsorption as a rate-determining step, and then dissociated O moves to the surface of the Pt nanocrystals for oxidizing adsorbed CO. The results open a new pathway for tunable catalytic activity of CO oxidation.

3.
Angew Chem Int Ed Engl ; 60(41): 22339-22344, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34352928

RESUMEN

The strong metal-support interaction (SMSI) is widely used in supported metal catalysts and extensive studies have been performed to understand it. Although considerable progress has been achieved, the surface structure of the support, as an important influencing factor, is usually ignored. We report a facet-dependent SMSI of Pd-TiO2 in oxygen by using in situ atmospheric pressure TEM. Pd NPs supported on TiO2 (101) and (100) surfaces showed encapsulation. In contrast, no such cover layer was observed in Pd-TiO2 (001) catalyst under the same conditions. This facet-dependent SMSI, which originates from the variable surface structure of the support, was demonstrated in a probe reaction of methane combustion catalyzed by Pd-TiO2 . Our discovery of the oxidative facet-dependent SMSI gives direct evidence of the important role of the support surface structure in SMSI and provides a new way to tune the interaction between metal NPs and the support as well as catalytic activity.

4.
Nano Lett ; 21(17): 7309-7316, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34410724

RESUMEN

Understanding surface reconstruction of nanocrystals is of great importance to their applications, however it is still challenging due to lack of atomic-level structural information under reconstruction conditions. Herein, through in situ spherical aberration corrected scanning transmission electron microscopy (STEM), the reconstruction of nanocrystalline SnO2 (110) surface was studied. By identifying the precise arrangements of surface/subsurface Sn and O columns through both in situ bright-field and high-angle annular dark-field STEM images, an unexpected added Sn2O model was determined for SnO2 (110)-(1 × 2) surface. The protruded Snδ+ of this surface could act as the active sites for activating O2 molecules according to our density functional theory (DFT) calculations. On the basis of in situ observation of atomic-level reconstruction behaviors and DFT calculations, an energy-driven reconstruction process was also revealed. We anticipate this work would help to clarify the long-standing debate regarding the reconstruction of SnO2 (110) surface and its intrinsic property.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...