Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 30
1.
Stem Cell Reports ; 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38729156

Liver disease is a major global health challenge. There is a shortage of liver donors worldwide, and hepatocyte transplantation (HT) may be an effective treatment to overcome this problem. However, the present approaches for generation of hepatocytes are associated with challenges, and interspecies chimera-derived hepatocytes produced by interspecies blastocyst complementation (IBC) may be promising donor hepatocytes because of their more comprehensive hepatic functions. In this study, we isolated mouse hepatocytes from mouse-rat chimeric livers using IBC and found that interspecies chimera-derived hepatocytes exhibited mature hepatic functions in terms of lipid accumulation, glycogen storage, and urea synthesis. Meanwhile, they were more similar to endogenous hepatocytes than hepatocytes derived in vitro. Interspecies chimera-derived hepatocytes could relieve chronic liver fibrosis and reside in the injured liver after transplantation. Our results suggest that interspecies chimera-derived hepatocytes are a potentially reliable source of hepatocytes and can be applied as a therapeutic approach for HT.

2.
J Cell Physiol ; 238(9): 2039-2049, 2023 09.
Article En | MEDLINE | ID: mdl-37334430

Metabolic programming is deeply intertwined with early embryonic development including zygotic genome activation (ZGA), the polarization of zygotic cells, and cell fate commitment. It is crucial to establish a noninvasive imaging technology that spatiotemporally illuminates the cellular metabolism pathways in embryos to track developmental metabolism in situ. In this study, we used two high-quality genetically encoded fluorescent biosensors, SoNar for NADH/NAD+ and iNap1 for NADPH, to characterize the dynamic regulation of energy metabolism and redox homeostasis during early zygotic cleavage. Our imaging results showed that NADH/NAD+ levels decreased from the early to the late two-cell stage, whereas the levels of the reducing equivalent NADPH increased. Mechanistically, transcriptome profiling suggested that during the two-cell stage, zygotic cells downregulated the expression of genes involved in glucose uptake and glycolysis, and upregulated the expression of genes for pyruvate metabolism in mitochondria and oxidative phosphorylation, with a decline in the expression of two peroxiredoxin genes, Prdx1 and Prdx2. Collectively, with the establishment of in situ metabolic monitoring technology, our study revealed the programming of redox metabolism during ZGA.


NAD , Zygote , Embryonic Development/genetics , Gene Expression Regulation, Developmental/genetics , NAD/metabolism , NADP/metabolism , Oxidation-Reduction , Zygote/metabolism , Animals , Mice
3.
Front Cell Dev Biol ; 9: 632183, 2021.
Article En | MEDLINE | ID: mdl-33796527

Low birth efficiency and developmental abnormalities in embryos derived using round spermatid injection (ROSI) limit the clinical application of this method. Further, the underlying molecular mechanisms remain elusive and warrant further in-depth study. In this study, the embryonic day (E) 11.5 mouse fetuses and corresponding placentas derived upon using ROSI, intracytoplasmic sperm injection (ICSI), and natural in vivo fertilized (control) embryos were collected. Transcriptome and DNA methylation profiles were analyzed and compared using RNA-sequencing (RNA-seq) and whole-genome bisulfite sequencing, respectively. RNA-seq results revealed similar gene expression profiles in the ROSI, ICSI, and control fetuses and placentas. Compared with the other two groups, seven differentially expressed genes (DEGs) were identified in ROSI fetuses, and ten DEGs were identified in the corresponding placentas. However, no differences in CpG methylation were observed in fetuses and placentas from the three groups. Imprinting control region methylation and imprinted gene expression were the same between the three fetus and placenta groups. Although 49 repetitive DNA sequences (RS) were abnormally activated in ROSI fetuses, RS DNA methylation did not differ between the three groups. Interestingly, abnormal hypermethylation in promoter regions and low expression of Fggy and Rec8 were correlated with a crown-rump length less than 6 mm in one ROSI fetus. Our study demonstrates that the transcriptome and DNA methylation in ROSI-derived E11.5 mouse fetuses and placentas were comparable with those in the other two groups. However, some abnormally expressed genes in the ROSI fetus and placenta warrant further investigation to elucidate their effect on the development of ROSI-derived embryos.

4.
Stem Cell Res Ther ; 11(1): 466, 2020 11 04.
Article En | MEDLINE | ID: mdl-33148334

BACKGROUND: Premature ovarian insufficiency (POI) is an ovarian dysfunction that seriously affects a woman's physiological health and reproduction. Mesenchymal stem cell (MSC) transplantation offers a promising treatment option for ovarian restoration in rodent POI models. However, the efficacy and mechanism of it remain unclear. METHODS: POI mice model was generated by cyclophosphamide and busulfan, followed with the treatment of tail-vein injection of the human umbilical cord mesenchymal stem cells (hUCMSCs). Maternal physiological changes and offspring behavior were detected. To reveal the pathogenesis and therapeutic mechanisms of POI, we first compared the metabolite profiles of healthy and POI ovarian tissues using untargeted metabolomics analyses. After stem cell therapy, we then collected the ovaries from control, POI, and hUCMSC-treated POI groups for lipid metabolomics and pseudotargeted metabolomics analysis. RESULTS: Our results revealed remarkable changes of multiple metabolites, especially lipids, in ovarian tissues after POI generation. Following the transplantation of clinical-grade hUCMSCs, POI mice exhibited significant improvements in body weight, sex hormone levels, estrous cycles, and reproductive capacity. Lipid metabolomics and pseudotargeted metabolomics analyses for the ovaries showed that the metabolite levels in the POI group, mainly lipids, glycerophospholipids, steroids, and amino acids changed significantly compared with the controls', and most of them returned to near-healthy levels after receiving hUCMSC treatment. Meanwhile, we also observed an increase of monosaccharide levels in the ovaries from POI mice and a decrease after stem cell treatment. CONCLUSIONS: hUCMSCs restore ovarian function through activating the PI3K pathway by promoting the level of free amino acids, consequently improving lipid metabolism and reducing the concentration of monosaccharides. These findings provide potential targets for the clinical diagnosis and treatment of POI.


Mesenchymal Stem Cells , Primary Ovarian Insufficiency , Animals , Female , Humans , Metabolome , Mice , Ovary/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Primary Ovarian Insufficiency/metabolism , Primary Ovarian Insufficiency/therapy , Umbilical Cord
6.
Cell Prolif ; 53(12): e12938, 2020 Dec.
Article En | MEDLINE | ID: mdl-33124125

OBJECTIVE: Premature ovarian insufficiency (POI) is a refractory disease that seriously affects female fertility. Growing body of evidence has indicated mesenchymal stem cells (MSCs) as promising resources in regenerative medicine. In this study, we treated POI patients with umbilical cord-derived MSCs (UCMSCs) and then investigated the restoration of ovarian function and clinical outcomes through follow-ups. MATERIALS AND METHODS: Sixty-one patients diagnosed with POI participated in this study. UCMSCs were isolated and cultured according to GMP standards, and then transplanted to the patients' ovary by orthotopic injection under the guidance of vaginal ultrasound. We monitored side effects, vital signs and changes in clinical and collected haematological and imaging parameters during the follow-ups. RESULTS: All patients showed normal clinical behaviour without serious side effects or complications relevant to the treatment. Transplantation of UCMSCs rescued the ovarian function of POI patients, as indicated by increased follicular development and improved egg collection. POI patients who experienced shorter amenorrhoea durations (<1 year) seemed to obtain mature follicles more easily after stem cell therapy, and patients with better ovarian conditions (pre-operative antral follicles) were more likely to derive the better outcomes by UCMSC injection. Four successful clinical deliveries were obtained from POI patients after UCMSC transplantation, and all of these babies are developed normally. CONCLUSIONS: The clinical trial result sugggests a possible therapy for POI by UCMSC transplantation.


Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Primary Ovarian Insufficiency/therapy , Umbilical Cord/cytology , Apoptosis/physiology , Female , Humans , Mesenchymal Stem Cell Transplantation/methods , Ovary/cytology , Patients
7.
Protein Cell ; 11(2): 97-107, 2020 02.
Article En | MEDLINE | ID: mdl-31781970

Blastocyst complementation by pluripotent stem cell (PSC) injection is believed to be the most promising method to generate xenogeneic organs. However, ethical issues prevent the study of human chimeras in the late embryonic stage of development. Primate embryonic stem cells (ESCs), which have similar pluripotency to human ESCs, are a good model for studying interspecies chimerism and organ generation. However, whether primate ESCs can be used in xenogenous grafts remains unclear. In this study, we evaluated the chimeric ability of cynomolgus monkey (Macaca fascicularis) ESCs (cmESCs) in pigs, which are excellent hosts because of their many similarities to humans. We report an optimized culture medium that enhanced the anti-apoptotic ability of cmESCs and improved the development of chimeric embryos, in which domesticated cmESCs (D-ESCs) injected into pig blastocysts differentiated into cells of all three germ layers. In addition, we obtained two neonatal interspecies chimeras, in which we observed tissue-specific D-ESC differentiation. Taken together, the results demonstrate the capability of D-ESCs to integrate and differentiate into functional cells in a porcine model, with a chimeric ratio of 0.001-0.0001 in different neonate tissues. We believe this work will facilitate future developments in xenogeneic organogenesis, bringing us one step closer to producing tissue-specific functional cells and organs in a large animal model through interspecies blastocyst complementation.


Chimera , Embryonic Stem Cells/cytology , Macaca fascicularis/embryology , Swine/embryology , Animals , Blastocyst/cytology , Cell Differentiation , Cells, Cultured , Chimera/embryology
8.
Cell Rep ; 29(7): 1986-2000.e8, 2019 11 12.
Article En | MEDLINE | ID: mdl-31722212

Ectopic expression of Oct4, Sox2, Klf4, and c-Myc can reprogram differentiated somatic cells into induced pluripotent stem cells (iPSCs). For years, Oct4 has been considered the key reprogramming factor core of the four factors. Here, we challenge this view by reporting a core function of Sox2 and Klf4 in reprogramming. We found that polycistronic expression of Sox2 and Klf4 was sufficient to induce pluripotency in the absence of exogenous Oct4, and the stoichiometry of Sox2 and Klf4 was essential. Sox2 and Klf4 cooperatively bound across the genome, leading to epigenetic remodeling of their targets, including pluripotency genes and gradual activation of the pluripotency network. Interestingly, cells of different germ layer origins, fibroblasts (mesoderm) and neural progenitor cells (ectoderm), showed convergent reprogramming trajectories and similar efficiency. This work demonstrates a core function of Sox2 and Klf4 in pluripotency induction and shows that this mechanism is independent of germ layer origin.


Cellular Reprogramming Techniques , Cellular Reprogramming , Mouse Embryonic Stem Cells/metabolism , Octamer Transcription Factor-3/metabolism , SOXB1 Transcription Factors/metabolism , Animals , HEK293 Cells , Humans , Kruppel-Like Factor 4 , Mice , Mouse Embryonic Stem Cells/cytology , Octamer Transcription Factor-3/genetics , SOXB1 Transcription Factors/genetics
9.
Cell Rep ; 26(2): 407-414.e5, 2019 01 08.
Article En | MEDLINE | ID: mdl-30625323

Trophoblast stem (TS) cells are increasingly used as a model system for studying placentation and placental disorders. However, practical limitations of genetic manipulation have posed challenges for genetic analysis using TS cells. Here, we report the generation of mouse parthenogenetic haploid TS cells (haTSCs) and show that supplementation with FGF4 and inhibition of Rho-associated protein kinase (ROCK) enable the maintenance of their haploidy and developmental potential. The resulting haTSCs have 20 chromosomes, exhibit typical expression features of TS cells, possess the multipotency to differentiate into specialized trophoblast cell types, and can chimerize E13.5 and term placentas. We also demonstrate the capability of the haTSCs to undergo genetic manipulation and facilitate genome-wide screening in the trophoblast lineage. We expect that haTSCs will offer a powerful tool for studying functional genomics and placental biology.


Embryonic Stem Cells/cytology , Haploidy , Trophoblasts/cytology , Animals , Cell Differentiation , Cell Line , Cells, Cultured , Embryonic Stem Cells/drug effects , Embryonic Stem Cells/metabolism , Female , Fibroblast Growth Factor 4/pharmacology , Karyotype , Mice , Primary Cell Culture/methods , rho-Associated Kinases/antagonists & inhibitors , rho-Associated Kinases/metabolism
11.
Cell Discov ; 4: 63, 2018.
Article En | MEDLINE | ID: mdl-30510770

The prokaryotic CRISPR-Cas adaptive immune systems provide valuable resources to develop genome editing tools, such as CRISPR-Cas9 and CRISPR-Cas12a/Cpf1. Recently, CRISPR-Cas12b/C2c1, a distinct type V-B system, has been characterized as a dual-RNA-guided DNA endonuclease system. Though being active in vitro, its cleavage activity at endogenous genome remains to be explored. Furthermore, the optimal cleavage temperature of the reported Cas12b orthologs is higher than 40 °C, which is unsuitable for mammalian applications. Here, we report the identification of a Cas12b system from the Alicyclobacillus acidiphilus (AaCas12b), which maintains optimal nuclease activity over a wide temperature range (31 °C-59 °C). AaCas12b can be repurposed to engineer mammalian genomes for versatile applications, including single and multiplex genome editing, gene activation, and generation of gene mutant mouse models. Moreover, whole-genome sequencing reveals high specificity and minimal off-target effects of AaCas12b-meditated genome editing. Our findings establish CRISPR-Cas12b as a versatile tool for mammalian genome engineering.

13.
FASEB J ; 32(4): 1891-1902, 2018 04.
Article En | MEDLINE | ID: mdl-29222327

ATP is mainly generated by glycolysis in pluripotent stem cells (PSCs) and is consumed to maintain cell viability. Differences in mitochondrial activity among induced (i)PSCs with different degrees of pluripotency are poorly understood. In this study, by comparing gene expression and mitochondrial activity among iPSCs with different degrees of pluripotency, we found that mitochondrial complex I gene expression, complex I activity, and cellular ATP levels were much higher in fully pluripotent stem cell lines than in partially pluripotent stem cell lines. Actin-like protein 6a (Actl6a), a component of ATP-dependent chromatin remodeling and histone acetylation complexes, was more highly expressed in fully pluripotent stem cell lines. ATP promoted Actl6a expression and histone acetylation. Actl6a knockdown reduced the pluripotency of embryonic stem cells (ESCs), and this reduction could not be rescued by the addition of ATP. Furthermore, inhibiting ATP formation by treatment with rotenone reduced the pluripotency of ESCs. These data suggest that the abundance of mitochondrially produced ATP affects stem cell pluripotency via Actl6a-mediated histone acetylation.-Zhang, Y., Cui, P., Li, Y., Feng, G., Tong, M., Guo, L., Li, T., Liu, L., Li, W., Zhou, Q. Mitochondrially produced ATP affects stem cell pluripotency via Actl6a-mediated histone acetylation.


Adenosine Triphosphate/metabolism , Cell Differentiation , Induced Pluripotent Stem Cells/metabolism , Acetylation , Actins/genetics , Actins/metabolism , Animals , Cells, Cultured , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Histones/metabolism , Induced Pluripotent Stem Cells/cytology , Mice , Mitochondria/metabolism , Protein Processing, Post-Translational
15.
Proc Natl Acad Sci U S A ; 114(45): 11974-11979, 2017 11 07.
Article En | MEDLINE | ID: mdl-29078333

Pluripotency of embryonic stem cells (ESCs) can be functionally assessed according to the developmental potency. Tetraploid complementation, through which an entire organism is produced from the pluripotent donor cells, is taken as the most stringent test for pluripotency. It remains unclear whether ESCs of other species besides mice can pass this test. Here we show that the rat ESCs derived under 2i (two small molecule inhibitors) conditions at very early passages are able to produce fertile offspring by tetraploid complementation. However, they lose this capacity rapidly during culture due to a nearly complete loss of genomic imprinting. Our findings support that the naïve ground state pluripotency can be captured in rat ESCs but also point to the species-specific differences in its regulation and maintenance, which have implications for the derivation and application of naïve pluripotent stem cells in other species including human.


Embryo, Mammalian/cytology , Embryonic Development/physiology , Embryonic Stem Cells/cytology , Pluripotent Stem Cells/cytology , Animals , Cell Differentiation , Cells, Cultured , Female , Genetic Complementation Test , Mice , Rats , Rats, Inbred F344 , Tetraploidy
16.
Cell Rep ; 20(9): 2227-2237, 2017 Aug 29.
Article En | MEDLINE | ID: mdl-28854370

The recent success of derivation of mammalian haploid embryonic stem cells (haESCs) has provided a powerful tool for large-scale functional analysis of the mammalian genome. However, haESCs rapidly become diploidized after differentiation, posing challenges for genetic analysis. Here, we show that the spontaneous diploidization of haESCs happens in metaphase due to mitotic slippage. Diploidization can be suppressed by small-molecule-mediated inhibition of CDK1 and ROCK. Through ROCK inhibition, we can generate haploid somatic cells of all three germ layers from haESCs, including terminally differentiated neurons. Using piggyBac transposon-based insertional mutagenesis, we generated a haploid neural cell library harboring genome-wide mutations for genetic screening. As a proof of concept, we screened for Mn2+-mediated toxicity and identified the Park2 gene. Our findings expand the applications of mouse haploid cell technology to somatic cell types and may also shed light on the mechanisms of ploidy maintenance.


Genetic Testing , Genome , Haploidy , Amides/pharmacology , Animals , Astrocytes/cytology , Astrocytes/drug effects , Astrocytes/metabolism , CDC2 Protein Kinase/antagonists & inhibitors , CDC2 Protein Kinase/metabolism , Cell Differentiation/drug effects , Diploidy , Mice , Mitosis/drug effects , Mouse Embryonic Stem Cells/drug effects , Mouse Embryonic Stem Cells/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , Pancreas/cytology , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Small Molecule Libraries/pharmacology , rho-Associated Kinases/antagonists & inhibitors , rho-Associated Kinases/metabolism
18.
Sci Rep ; 6: 33225, 2016 09 14.
Article En | MEDLINE | ID: mdl-27624004

Rats with fluorescent markers are of great value for studies that trace lineage-specific development, particularly those assessing the differentiation potential of embryonic stem cells (ESCs). The piggyBac (PB) transposon is widely used for the efficient introduction of genetic modifications into genomes, and has already been successfully used to produce transgenic mice and rats. Here, we generated transgenic rats carrying either the desRed fluorescent protein (RFP) gene or the enhanced green fluorescent protein (eGFP) gene by injecting pronuclei with PB plasmids. We showed that the transgenic rats expressed the RFP or eGFP gene in many organs and had the capability to transmit the marker gene to the next generation through germline integration. In addition, rat embryonic stem cells (ESCs) carrying an RFP reporter gene can be derived from the blastocysts of the transgenic rats. Moreover, the RFP gene can be detected in chimeras derived from RFP ESCs via blastocyst injection. This work suggests that PB-mediated transgenesis is a powerful tool to generate transgenic rats expressing fluorescent proteins with high efficiency, and this technique can be used to derive rat ESCs expressing a reporter protein.


Blastocyst/metabolism , DNA Transposable Elements , Embryonic Stem Cells/metabolism , Green Fluorescent Proteins , Luminescent Proteins , Transgenes , Animals , Blastocyst/cytology , Embryonic Stem Cells/cytology , Female , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/genetics , Luminescent Proteins/biosynthesis , Luminescent Proteins/genetics , Male , Rats , Rats, Inbred F344 , Rats, Sprague-Dawley , Rats, Transgenic , Red Fluorescent Protein
19.
Cell ; 164(1-2): 279-292, 2016 Jan 14.
Article En | MEDLINE | ID: mdl-26771496

Mammalian interspecific hybrids provide unique advantages for mechanistic studies of speciation, gene expression regulation, and X chromosome inactivation (XCI) but are constrained by their limited natural resources. Previous artificially generated mammalian interspecific hybrid cells are usually tetraploids with unstable genomes and limited developmental abilities. Here, we report the generation of mouse-rat allodiploid embryonic stem cells (AdESCs) by fusing haploid ESCs of the two species. The AdESCs have a stable allodiploid genome and are capable of differentiating into all three germ layers and early-stage germ cells. Both the mouse and rat alleles have comparable contributions to the expression of most genes. We have proven AdESCs as a powerful tool to study the mechanisms regulating X chromosome inactivation and to identify X inactivation-escaping genes, as well as to efficiently identify genes regulating phenotypic differences between species. A similar method could be used to create hybrid AdESCs of other distantly related species.


Cell Fusion/methods , Chimera/genetics , Embryonic Stem Cells/cytology , Hybrid Cells , Mice , Rats , Animals , Cell Differentiation , Embryoid Bodies , Embryonic Stem Cells/metabolism , Female , Haploidy , Male , Mice, Inbred Strains , Rats, Inbred F344 , Species Specificity , X Chromosome Inactivation
...