Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 187
1.
Orthod Craniofac Res ; 2024 May 07.
Article En | MEDLINE | ID: mdl-38712649

BACKGROUND AND OBJECTIVES: The alveolar bone remodelling promoted by reasonable mechanical force triggers orthodontic tooth movement (OTM). The generation of osteoclasts is essential in this process. However, the mechanism of mechanical force mediating osteoclast differentiation remains elusive. Small nucleolar RNA host gene 5 (SNHG5), which was reported to mediate the osteogenic differentiation of bone marrow mesenchymal stem cells in our previous study, was downregulated in human periodontal ligament cells (hPDLCs) under mechanical force. At the same time, the RANKL/OPG ratio increased. Based on this, we probed into the role of SNHG5 in osteoclast formation during OTM and the relevant mechanism. MATERIALS AND METHODS: SNHG5 and the RANKL/OPG ratio under different compressive forces were detected by western blotting (WB) and qRT-PCR. Impact of overexpression or knockdown of SNHG5 on osteoclast differentiation was detected by qRT-PCR, WB and transwell experiments. The combination of SNHG5 and C/EBPß was verified by RNA immunoprecipitation and RNA pull-down assays. The expression of SNHG5 and osteoclast markers in gingiva were analysed by qRT-PCR and the paraffin sections of periodontal tissues were used for histological analysis. RESULTS: Compressive force downregulated SNHG5 and upregulated the RANKL/OPG ratio in hPDLCs. Overexpression of SNHG5 inhibited RANKL's expression and osteoclast differentiation. SNHG5 combined with C/EBPß, a regulator of osteoclast. The expression of SNHG5 in periodontal tissue decreased during OTM. CONCLUSION: SNHG5 inhibited osteoclast differentiation during OTM, achieved by affecting RANKL secretion, which may provide a new idea to interfere with bone resorption during orthodontic treatment.

3.
BMC Oral Health ; 24(1): 467, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38632555

BACKGROUND: The temporomandibular joint (TMJ) is closely related to the dynamic balance and stability of mandibular function and orthodontic treatment. Skeletal class II female patients are thought to be at high risk for TMJ disease. The relationship between the TMJ and craniofacial structures is still controversial. This study compared the morphology and position of the TMJ in skeletal class II adolescents and adults with various vertical facial types using cone-beam computed tomography (CBCT). MATERIALS AND METHODS: A total of 117 skeletal class II patients were divided into three groups according to the FH-GoGn angle (hypodivergent, normodivergent and hyperdivergent), with 40 class I normodivergent patients serving as controls. Each group contained two age subgroups (adolescents: 11-14 years old, adults: 18-35 years old). The size (condylar length, height, long and short axis diameter, glenoid fossa width and depth) and shape (condylar neck inclination, condylar head angle and long axis angle, articular eminence inclination) of the condyle and fossa, joint space (anterior, superior, posterior, mesial and lateral), and position of the fossa (vertical, transverse, and anteroposterior distance) and condyle were measured and compared using CBCT. RESULTS: Class II hypodivergent patients exhibited the greatest condylar length, height, and long- and short-axis diameter; steepest articular eminence; deepest fossa depth; largest superior, mesial and lateral joint spaces; and highest fossa position in both age groups. The manifestations of class II hyperdivergent patients were mostly the opposite. In adults, except for the condylar long axis angle, the measurements of the condyle increased differently among skeletal patterns, while the measurements of the fossa decreased, as the joint spaces and fossa position remained approximately stable compared with those in adolescents. CONCLUSION: The vertical skeletal pattern, rather than the class II sagittal skeletal pattern, may be the main factor affecting the morphology and position of the TMJ. Attention should be given to the TMJ area in hyperdivergent patients with a relatively poor-fit condyle-fossa relationship. The changes in the TMJ with age were mainly morphological rather than positional and varied with skeletal pattern.


Mandibular Condyle , Temporomandibular Joint , Adult , Adolescent , Humans , Female , Child , Young Adult , Cross-Sectional Studies , Mandible , Face , Cone-Beam Computed Tomography/methods
4.
Diagn Microbiol Infect Dis ; 109(3): 116291, 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38581928

Increasing evidence has indicated dysbiosis of the gut microbiota in patients with pulmonary tuberculosis (PTB). However, the change in the intestinal microbiota varies between different studies. This systematic review was conducted to investigate the characteristics of the gut microbiota in PTB patients. The MBASE, MEDLINE, Web of Science, and Cochrane Library electronic databases were systematically searched, and the quality of the retrieved studies was evaluated using the Newcastle-Ottawa scale. A total of 12 studies were finally included in the systematic review. Compared with healthy controls, the index reflecting α-diversity including the richness and/or diversity index decreased in 6 studies, while ß-diversity presented significant differences in PTB patients in 10 studies. Although the specific gut microbiota alterations were inconsistent, short-chain fatty acid-producing bacteria (including Lachnospiraceae, Ruminococcus, Blautia, Dorea, and Faecalibacterium), bacteria associated with an inflammatory state (e.g., Prevotellaceae and Prevotella), and beneficial bacteria (e.g., Bifidobacteriaceae and Bifidobacterium) were commonly noted. Our systematic review identifies key evidence for gut microbiota alterations in PTB patients, in comparison with healthy controls; however, no consistent conclusion could be drawn, due to the inconsistent results and heterogeneous methodologies of the enrolled studies. Therefore, more well-designed research with standard methodologies and large sample sizes is required.

5.
J Colloid Interface Sci ; 667: 491-502, 2024 Aug.
Article En | MEDLINE | ID: mdl-38653070

An injectable hydrogel dressing, Zr/Fc-MOF@CuO2@FH, was constructed by combing acid-triggered chemodynamic treatment (CDT) with low-temperature photothermal treatment (LT-PTT) to effectively eliminate bacteria without harming the surrounding normal tissues. The Zr/Fc-MOF acts as both photothermal reagent and nanozyme to generate reactive oxygen species (ROS). The CuO2 nanolayer can be decomposed by the acidic microenvironment of the bacterial infection to release Cu2+ and H2O2, which not only induces Fenton-like reaction but also enhances the catalytic capability of the Zr/Fc-MOF. The generated heat augments ROS production, resulting in highly efficient bacterial elimination at low temperature. Precisely, injectable hydrogel dressing can match irregular wound sites, which shortens the distance of heat dissipation and ROS diffusion to bacteria, thus improving sterilization efficacy and decreasing non-specific systemic toxicity. Both in vitro and in vivo experiments validated the predominant sterilization efficiency of drug-resistant methicillin-resistant Staphylococcus aureus (MRSA) and kanamycin-resistant Escherichia coli (KREC), presenting great potential for application in clinical therapy.


Anti-Bacterial Agents , Copper , Photothermal Therapy , Reactive Oxygen Species , Catalysis , Copper/chemistry , Copper/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Reactive Oxygen Species/metabolism , Methicillin-Resistant Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Animals , Mice , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Zirconium/chemistry , Zirconium/pharmacology , Cold Temperature , Microbial Sensitivity Tests , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/chemistry , Particle Size , Surface Properties , Hydrogels/chemistry , Hydrogels/pharmacology
6.
ACS Nano ; 18(9): 6863-6886, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38386537

Tumor-associated macrophages (TAMs) are among the most abundant infiltrating leukocytes in the tumor microenvironment (TME). Reprogramming TAMs from protumor M2 to antitumor M1 phenotype is a promising strategy for remodeling the TME and promoting antitumor immunity; however, the development of an efficient strategy remains challenging. Here, a genetically modified bacterial biomimetic vesicle (BBV) with IFN-γ exposed on the surface in a nanoassembling membrane pore structure was constructed. The engineered IFN-γ BBV featured a nanoscale structure of protein and lipid vesicle, the existence of rich pattern-associated molecular patterns (PAMPs), and the costimulation of introduced IFN-γ molecules. In vitro, IFN-γ BBV reprogrammed M2 macrophages to M1, possibly through NF-κB and JAK-STAT signaling pathways, releasing nitric oxide (NO) and inflammatory cytokines IL-1ß, IL-6, and TNF-α and increasing the expression of IL-12 and iNOS. In tumor-bearing mice, IFN-γ BBV demonstrated a targeted enrichment in tumors and successfully reprogrammed TAMs into the M1 phenotype; notably, the response of antigen-specific cytotoxic T lymphocyte (CTL) in TME was promoted while the immunosuppressive myeloid-derived suppressor cell (MDSC) was suppressed. The tumor growth was found to be significantly inhibited in both a TC-1 tumor and a CT26 tumor. It was indicated that the antitumor effects of IFN-γ BBV were macrophage-dependent. Further, the modulation of TME by IFN-γ BBV produced synergistic effects against tumor growth and metastasis with an immune checkpoint inhibitor in an orthotopic 4T1 breast cancer model which was insensitive to anti-PD-1 mAb alone. In conclusion, IFN-γ-modified BBV demonstrated a strong capability of efficiently targeting tumor and tuning a cold tumor hot through reprogramming TAMs, providing a potent approach for tumor immunotherapy.


Neoplasms , Tumor-Associated Macrophages , Animals , Mice , Tumor Microenvironment , Biomimetics , Neoplasms/therapy , Immunity
7.
Nat Commun ; 15(1): 119, 2024 Jan 02.
Article En | MEDLINE | ID: mdl-38168072

The sophisticated hierarchical structure that precisely combines contradictory mechanical and biological characteristics is ideal for biomaterials, but it is challenging to achieve. Herein, we engineer a spatiotemporally hierarchical guided bone regeneration (GBR) membrane by rational bilayer integration of densely porous N-halamine functionalized bacterial cellulose nanonetwork facing the gingiva and loosely porous chitosan-hydroxyapatite composite micronetwork facing the alveolar bone. Our GBR membrane asymmetrically combine stiffness and flexibility, ingrowth barrier and ingrowth guiding, as well as anti-bacteria and cell-activation. The dense layer has a mechanically matched space maintenance capacity toward gingiva, continuously blocks fibroblasts, and prevents bacterial invasion with multiple mechanisms including release-killing, contact-killing, anti-adhesion, and nanopore-blocking; the loose layer is ultra-soft to conformally cover bone surfaces and defect cavity edges, enables ingrowth of osteogenesis-associated cells, and creates a favorable osteogenic microenvironment. As a result, our all-in-one porous membrane possesses full protective abilities in GBR.


Bone Regeneration , Membranes, Artificial , Porosity , Bone Regeneration/physiology , Osteogenesis , Biocompatible Materials/chemistry
8.
Glob Med Genet ; 11(1): 20-24, 2024 Jan.
Article En | MEDLINE | ID: mdl-38229970

Introduction CEP152 encodes protein Cep152, which associates with centrosome function. The lack of Cep152 can cause centrosome duplication to fail. CEP152 mutates, causing several diseases such as Seckel syndrome-5 and primary microencephaly-9. Methods In this study, we reported a patient diagnosed with epilepsy in Tianjin Children's Hospital. We performed clinical examination and laboratory test, and whole-exome sequencing was performed for the proband's and his parents' peripheral blood. The suspected compound-heterozygous variant in the CEP152 gene was verified by Sanger sequencing and quantitative real-time polymerase chain reaction technology. Results We discovered three variants-two of them from CEP152 and one from HPD . The result showed the variants in CEP152 only. The patient presented with seizures frequently. Sanger sequencing showed two novel variants in CEP152 are in exon26 (NM_014985.3 c.3968C > A p.Ser1323*) and in exon16 (NM_014985.3 c.2034_2036del p.Tyr678*). Conclusions We reported a novel compound-heterozygous variant in the CEP152 gene in this study. Most of the phenotypes are Seckel syndrome and primary microencephaly, and the novel variant may cause an atypical phenotype that is epilepsy.

9.
J Hazard Mater ; 466: 133513, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38262319

Personal protective masks play critical role in preventing the disease epidemic and resisting pathogenic bacterial infestation. However, large quantities of masks were disposed during COVID-19 epidemic, which caused environmental problem and huge economic burden. Herein, we developed reusable masks with inherent antimicrobial and self-cleaning features under solar irradiation. With spun-bonded nonwoven fabrics (SNF) layer as substrate, copper sulfide@polydopamine nanoparticles are deposited on SNF layer (CuS@PDANPs-SNF), which presents excellent photocatalytic activity. Under solar irradiation, CuS@PDANPs produce abundant of singly linear oxygen (1O2), which inactivates pathogenic bacteria with high efficiency over 99%. Interestingly, CuS@PDANPs-SNF cannot cause high temperature to bring any uncomfortable to the person, which is suitable for human to wear in daily life. Such design effectively protect person from the transmission of viral aerosol. Meanwhile, CuS@PDANPs-SNF masks are reusable and still maintain robust bactericidal ability after washing. The sunlight-mediated self-sterilization at low temperature endows CuS@PDANPs-SNF masks as powerful personal protective equipment for daily protection, which also provides an instructive way for reducing the environmental impact.


COVID-19 , Nanoparticles , Humans , Respiratory Aerosols and Droplets , COVID-19/prevention & control , Sterilization , Sunlight
10.
Neural Netw ; 170: 427-440, 2024 Feb.
Article En | MEDLINE | ID: mdl-38035485

Heterogeneous domain adaptation (HDA) methods leverage prior knowledge from the source domain to train models for the target domain and address the differences in their feature spaces. However, incorrect alignment of categories and distribution structure disruption may be caused by unlabeled target samples during the domain alignment process for most existing methods, resulting in negative transfer. Additionally, the previous works rarely focus on the robustness and interpretability of the model. To address these issues, we propose a novel Graph embedding-based Heterogeneous domain-Invariant feature learning and Distributional order preserving framework (GHID). Specifically, a bidirectional robust cross-domain alignment graph embedding structure is proposed to globally align two domains, which learns the domain-invariant and discriminative features simultaneously. In addition, the interpretability of the proposed graph structures is demonstrated through two theoretical analyses, which can elucidate the correlation between important samples from a global perspective in heterogeneous domain alignment scenarios. Then, a heterogeneous discriminative distributional order preserving graph embedding structure is designed to preserve the original distribution relationship of each domain to prevent negative transfer. Moreover, the dynamic centroid strategy is incorporated into the graph structures to improve the robustness of the model. Comprehensive experimental results on four benchmarks demonstrate that the proposed method outperforms other state-of-the-art approaches in effectiveness.


Benchmarking , Learning , Knowledge
11.
J Periodontal Res ; 59(1): 174-186, 2024 Feb.
Article En | MEDLINE | ID: mdl-37957805

BACKGROUND: Periodontal ligament cells (PDLCs) are key mechanosensory cells involved in extracellular matrix (ECM) remodeling during orthodontic tooth movement (OTM). Mechanical force changes the ECM components, such as collagens and matrix metalloproteinases. However, the associations between the changes in ECM molecules and cellular dynamics during OTM remain largely uncharacterized. OBJECTIVES: To investigate the influence of mechanical force on the morphology and migration of PDLCs and explore the interaction between ECM remodeling and cellular dynamics, including the detailed mechanisms involved. METHODS: Human PDLCs (hPDLCs) were subjected to a static mechanical compression to mimic the compression state of OTM in vitro. A mouse OTM model was used to mimic the OTM procedure in vivo. The migration of hPDLCs was compared by wound healing and transwell migration assays. Moreover, expression levels of ADAM metallopeptidase with thrombospondin type 1 motif 9 (ADAMTS9) and fibronectin (FN) in hPDLCs were determined via western blotting, immunofluorescence staining, and enzyme-linked immunosorbent assays. Expression levels of ADAMTS9 and FN in mice were assessed via immunohistochemical staining. Additionally, the relative expression of long non-coding RNA (lncRNA) ADAMTS9-antisense RNA 2 (ADAMTS9-AS2) was assessed via quantitative real-time polymerase chain reaction. ADAMTS9-AS2 knockdown was performed to confirm its function in hPDLCs. RESULTS: Mechanical compression induced changes in the morphology of hPDLCs. It also promoted migration and simultaneous upregulation of FN and downregulation of ADAMTS9, a fibronectinase. The mouse OTM model showed the same expression patterns of the two proteins on the compression side of the periodontium of the moved teeth. RNA sequencing revealed that lncRNA ADAMTS9-AS2 expression was significantly upregulated in hPDLCs under mechanical compression. After knocking down ADAMTS9-AS2, hPDLCs migration was significantly inhibited. ADAMTS9 expression was increased as FN expression decreased compared to that in the control group. Moreover, knockdown of ADAMTS9-AS2 reduced the effect of mechanical compression on hPDLCs migration and reversed the expression change of ADAMTS9 and FN. RNA immunoprecipitation revealed direct binding between ADAMTS9-AS2 and ADAMTS9 protein. CONCLUSION: Our study suggests that mechanical compression induces the expression of ADAMTS9-AS2, which directly binds to ADAMTS9 and inhibits its function, leading to the promotion of downstream FN expression and ECM remodeling to facilitate hPDLCs migration and maintain the stability of the periodontium.


RNA, Long Noncoding , Humans , Mice , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Periodontal Ligament/metabolism , ADAMTS9 Protein/genetics , ADAMTS9 Protein/metabolism , Fibronectins , Cell Movement , Cell Proliferation/genetics
12.
Food Chem ; 438: 137983, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-37989025

Simple and sensitive discrimination of multiple bacteria and antimicrobial susceptibility test (AST) are significant for food safety, clinical diagnosis and treatment. Herein, based on different metabolic ability of bacteria on glucose, we presented a colorimetric sensor array for point-of-care testing (POCT) of multiple bacteria with methyl red (MER), bromothymol blue (BTB) and bromocresol green (BCG) as probes. Different bacteria resulted in different color changes of three probes, which was converted to RGB (Red (R)/Green (G)/Blue (B)) signals by the color recognizer APP loaded on smartphone. The sensor array performed differentiation of eleven species of bacteria, achieving the quantitative analysis of individual bacteria in tap water and differentiation of bacterial mixtures. Interestingly, the sensor array can be used for AST and evaluating minimal inhibitory concentration (MIC) of antibiotics to bacteria. The research provided meaningful guidance for distinguishing multiple bacteria and evaluating MIC, presenting great potential in practical application.


Colorimetry , Point-of-Care Systems , Colorimetry/methods , Anti-Bacterial Agents/pharmacology , Glucose/analysis , Bacteria
13.
Small ; 20(19): e2309230, 2024 May.
Article En | MEDLINE | ID: mdl-38112271

Bone infection poses a major clinical challenge that can hinder patient recovery and exacerbate postoperative complications. This study has developed a bioactive composite scaffold through the co-assembly and intrafibrillar mineralization of collagen fibrils and zinc oxide (ZnO) nanowires (IMC/ZnO). The IMC/ZnO exhibits bone-like hierarchical structures and enhances capabilities for osteogenesis, antibacterial activity, and bacteria-infected bone healing. During co-cultivation with human bone marrow mesenchymal stem cells (BMMSCs), the IMC/ZnO improves BMMSC adhesion, proliferation, and osteogenic differentiation even under inflammatory conditions. Moreover, it suppresses the activity of Gram-negative Porphyromonas gingivalis and Gram-positive Streptococcus mutans by releasing zinc ions within the acidic infectious microenvironment. In vivo, the IMC/ZnO enables near-complete healing of infected bone defects within the intricate oral bacterial milieu, which is attributed to IMC/ZnO orchestrating M2 macrophage polarization, and fostering an osteogenic and anti-inflammatory microenvironment. Overall, these findings demonstrate the promise of the bioactive scaffold IMC/ZnO for treating bacteria-infected bone defects.


Bone Regeneration , Collagen , Mesenchymal Stem Cells , Nanowires , Osteogenesis , Tissue Scaffolds , Zinc Oxide , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Nanowires/chemistry , Bone Regeneration/drug effects , Tissue Scaffolds/chemistry , Humans , Collagen/chemistry , Mesenchymal Stem Cells/cytology , Osteogenesis/drug effects , Animals , Porphyromonas gingivalis/drug effects , Cell Differentiation/drug effects , Streptococcus mutans/physiology , Streptococcus mutans/drug effects , Cell Proliferation/drug effects
14.
Eur J Orthod ; 46(1)2024 Jan 01.
Article En | MEDLINE | ID: mdl-38134411

BACKGROUND/OBJECTIVES: To compare the biomechanical characteristics of maxillary molar distalization with clear aligners in conjunction with three types of miniscrew anchorage. MATERIALS/METHODS: Three-dimensional (3D) finite element models of maxillary molar distalization with clear aligners and three types of miniscrew anchorage were established, including (A) control group, (B) direct buccal miniscrew anchorage group, (C) direct palatal miniscrew anchorage group, and (D) indirect buccal miniscrew anchorage group. The 3D displacement of maxillary teeth and the principal stress (maximum tensile and compressive stress) on the root and periodontal ligament (PDL) during molar distalization were recorded. RESULTS: The tooth displacement pattern during maxillary molar distalization in the four groups showed similarities, including labial tipping of anterior teeth, mesial and buccal tipping of premolars, and distal and buccal tipping of molars, but with varying magnitudes. Group C exhibited the greatest molar distalization, with the first molar achieving 0.1334 mm of crown distalization. Group D demonstrated a notable buccal crown movement (0.0682 mm) and intrusion (0.0316 mm) of the first premolar. Compared to Groups A and B, Groups C and D showed less labial crown tipping of the central incisor. Group B showed the greatest amount of maxillary incisor intrusion (central incisor: 0.0145 mm, lateral incisor: 0.0094 mm). Moreover, Groups C and D displayed significantly lower levels of compressive and tensile stress in the roots and PDL of the maxillary central and lateral incisors. LIMITATION: Molar distalization is a dynamic process involving sequential tooth movement stages; however, our research primarily examined the tooth movement patterns in the initial aligner. CONCLUSIONS/IMPLICATIONS: The use of miniscrew anchorage, especially direct palatal miniscrew anchorage, may enhance the treatment efficacy of maxillary molar distalization with clear aligners, leading to increased molar distalization, reduced mesial movement of premolars, and minimized labial tipping of anterior teeth.


Malocclusion, Angle Class II , Orthodontic Appliances, Removable , Humans , Malocclusion, Angle Class II/therapy , Finite Element Analysis , Cephalometry/methods , Tooth Movement Techniques/methods , Molar , Maxilla
15.
Orthod Craniofac Res ; 2023 Dec 08.
Article En | MEDLINE | ID: mdl-38062985

OBJECTIVE: To evaluate alveolar bone remodelling and stability of mandibular incisors in adult orthodontic extraction patients. MATERIALS AND METHODS: Cone-beam computed tomography images of 25 adult patients undergoing extraction were collected before orthodontic treatment (T1), after orthodontic treatment (T2), and after at least 1 year of retention (T3). The labial and lingual alveolar bone heights (ABH), thickness (ABT), and tooth movement of the mandibular incisors were measured during the retraction (T2-T1) and retention (T3-T2) periods. According to the tooth movement during the retention period, the mandibular incisors were further divided into stable and unstable groups, and the correlation between L1-BMe and stability was evaluated. RESULTS: The labial and lingual ABHs significantly increased after orthodontic treatment and decreased during the retention period. The lingual ABH was 7.36 ± 2.27 mm at T2 and 5.37 ± 1.98 mm at T3, indicating a great bone remodelling capacity. The labial ABT exhibited a significant increase during orthodontic treatment and a slight decrease during the retention period, while the lingual ABT showed an opposite trend. During the retention period, the root apex moved labially into the alveolar bone housing. L1-BMe significantly increased during orthodontic treatment and decreased during the retention period. Compared to the stable group, lingual ABH and L1-BMe at T2 was significantly higher, and lingual ABT was smaller in the unstable group. CONCLUSION: Post-treatment lingual alveolar bone defects of the mandibular incisors could recover to some extent during the retention period. There was a negative correlation between post-treatment L1-BMe and mandibular incisor stability.

16.
Head Face Med ; 19(1): 51, 2023 Dec 04.
Article En | MEDLINE | ID: mdl-38044428

BACKGROUND: The evaluation of the facial profile of skeletal Class II patients with camouflage treatment is of great importance for patients and orthodontists. The aim of this study is to explore the key factors in evaluating the facial profile esthetics and to predict the posttreatment facial profile esthetics of skeletal Class II extraction patients. METHODS: 124 skeletal Class II extraction patients were included. The pretreatment and posttreatment cephalograms were analyzed by a trained expert orthodontist. The facial profile esthetics of pretreatment and posttreatment lateral photographs were evaluated by 10 expert orthodontists using the visual analog scale (VAS). The correlation between subjective facial profile esthetics and objective cephalometric measurements was assessed. Three machine-learning methods were used to predict posttreatment facial profile esthetics. RESULTS: The distances from lower and upper lip to the E plane and U1-APo showed the stronger correlation with profile esthetics. The changes in lower lip to the E plane and U1-APo during extraction exhibited the stronger correlation with changes in VAS score (r = - 0.551 and r = - 0.469). The random forest prediction model had the lowest mean absolute error and root mean square error, demonstrating a better prediction accuracy and fitting effect. In this model, pretreatment upper lip to E plane, pretreatment Pog-NB and the change of U1-GAll were the most important variables in predicting the posttreatment score of facial profile esthetics. CONCLUSIONS: The maxillary incisor protrusion and lower lip protrusion are key objective indicators for evaluating and predicting facial profile esthetics of skeletal Class II extraction patients. An artificial intelligence prediction model could be a new method for predicting the posttreatment esthetics of facial profiles.


Artificial Intelligence , Malocclusion, Angle Class II , Humans , Pilot Projects , Esthetics, Dental , Lip/anatomy & histology , Maxilla , Cephalometry/methods , Malocclusion, Angle Class II/diagnostic imaging , Malocclusion, Angle Class II/therapy
17.
Prog Orthod ; 24(1): 45, 2023 Dec 18.
Article En | MEDLINE | ID: mdl-38105288

BACKGROUND: The aim of the present study was to compare periodontal support changes during retraction of mandibular anterior teeth for skeletal Class II malocclusion with different facial divergence and to analyze relevant factors influencing bone remodeling by applying three-dimensional (3D) cone-beam computed tomography (CBCT) reconstruction technology. METHODS: Forty-eight patients with Class II malocclusion requiring surgical orthodontic treatment enrolled in the study were divided into the hyperdivergent group (n = 16), normodivergent group (n = 16) and hypodivergent group (n = 16) according to their vertical skeletal patterns. Cone-beam computed tomography (CBCT) scans were obtained before treatment (T1) and after presurgical orthodontic treatment (T2). The two-dimensional (2D) alveolar bone morphology, movement of mandibular central incisors and volume of the alveolar bone around incisors were measured on the labial and lingual sides by 3D CBCT reconstruction technology. Statistical analyses were performed with one-way ANOVA, paired t tests and multiple linear regression. RESULTS: During presurgical orthodontic treatment, the alveolar bone height on the labial side of the hyperdivergent group decreased significantly (P ≤ 0.05), but was maintained in the normodivergent and hypodivergent groups (P > 0.05). However, the alveolar bone volume, alveolar bone thickness at each level and alveolar bone height on the lingual side decreased significantly for all the groups. Apart from the initial morphometric measurements at T1, the morphology of lingual alveolar bone at T2 was significantly influenced by the direction and amount of tooth movement. Horizontal retraction and vertical protrusion of the root apex were negatively related to the alveolar bone on the lingual side after presurgical orthodontic treatment. CONCLUSION: For Class II malocclusion patients undergoing presurgical orthodontic treatment, the changes in the periodontal support of the lower central incisors varied in different vertical skeletal patterns. There exists a great periodontal risk of alveolar bone resorption on the lingual side for various vertical types. To avoid alveolar bone deterioration, it is essential to investigate the bone remodeling of patients with different alveolar bone conditions and cautiously plan tooth movement prior to orthodontic treatment. Moreover, 3D measurements based on CBCT construction can provide complementary information to traditional 2D measurements.


Alveolar Bone Loss , Malocclusion, Angle Class II , Humans , Incisor/diagnostic imaging , Malocclusion, Angle Class II/surgery , Tooth Movement Techniques/methods , Bone Remodeling , Cone-Beam Computed Tomography/methods
18.
Prog Orthod ; 24(1): 36, 2023 Nov 06.
Article En | MEDLINE | ID: mdl-37926789

BACKGROUND: Alveolar bone defects, particularly palatal bone dehiscence (PBD) and labial bone fenestration (LBF), occur frequently as a result of retraction of the maxillary anterior teeth. The study aims to explore the long-term bone remodeling of maxillary anterior teeth in adult patients with post-orthodontic treatment PBD and LBF. MATERIALS AND METHODS: The study includes 24 adult patients with maxillary protrusion (8 males, 16 females) who were treated with extraction of four first premolars and had alveolar bone defects (PBD or LBF) in maxillary anterior teeth following orthodontic treatment. Cone-beam computed tomography imaging measurements were obtained before (T1), after (T2) orthodontic treatment, and after at least 1-year removable thermoplastic retainer retention (T3). The maxillary anterior teeth with PBD or LBF at T2 were divided into the PBD or LBF groups, respectively. The labial and palatal alveolar bone height (ABH), alveolar bone thickness (ABT), and movement of maxillary anterior teeth were measured during retraction (T2-T1) and retention (T3-T2) periods. RESULTS: The incidence of PBD and LBF in maxillary anterior teeth significantly increased after orthodontic treatment and decreased during the retention period. In the PBD group, the palatal ABH of all maxillary anterior teeth significantly increased from T1 to T2 but decreased from T2 to T3. The ABT of the maxillary central incisor and canine significantly increased on the palatal side and decreased on the labial side during the retention period. In the LBF group, the labial ABT of the maxillary central incisor at the apical level showed a significant decrease from T1 to T2, followed by an increase from T2 to T3. In both groups, the maxillary central incisor showed significant labial movement, with a relative intrusion during the retention period. CONCLUSION: For adult patients with maxillary protrusion, the alveolar bone defect of maxillary anterior teeth caused by orthodontic retraction significantly improved during the retention period, indicating good long-term bone remodeling. Our findings suggest that a combination of spontaneous reorientation of maxillary anterior teeth and bone remodeling contributed to alveolar bone covering in these patients.


Cone-Beam Computed Tomography , Incisor , Male , Female , Humans , Adult , Follow-Up Studies , Prospective Studies , Incisor/diagnostic imaging , Maxilla/diagnostic imaging , Bone Remodeling
19.
ACS Cent Sci ; 9(10): 1927-1943, 2023 Oct 25.
Article En | MEDLINE | ID: mdl-37901168

Maintaining the stemness of bone marrow mesenchymal stem cells (BMMSCs) is crucial for bone homeostasis and regeneration. However, in vitro expansion and bone diseases impair BMMSC stemness, limiting its functionality in bone tissue engineering. Using a deep learning-based efficacy prediction system and bone tissue sequencing, we identify a natural small-molecule compound, dihydroartemisinin (DHA), that maintains BMMSC stemness and enhances bone regeneration. During long-term in vitro expansion, DHA preserves BMMSC stemness characteristics, including its self-renewal ability and unbiased differentiation. In an osteoporosis mouse model, oral administration of DHA restores the femur trabecular structure, bone density, and BMMSC stemness in situ. Mechanistically, DHA maintains BMMSC stemness by promoting histone 3 lysine 9 acetylation via GCN5 activation both in vivo and in vitro. Furthermore, the bone-targeted delivery of DHA by mesoporous silica nanoparticles improves its therapeutic efficacy in osteoporosis. Collectively, DHA could be a promising therapeutic agent for treating osteoporosis by maintaining BMMSC stemness.

20.
Curr Med Imaging ; 2023 Oct 19.
Article En | MEDLINE | ID: mdl-37881084

Gastric cancer is a malignant cancerous lesion with high morbidity and mortality. Preoperative diagnosis of gastric cancer is challenging owing to the presentation of atypical symptoms and the diversity of occurrence of focal gastric lesions. Therefore, an endoscopic biopsy is used to diagnose gastric cancer in combination with imaging examination for a comprehensive evaluation of the local tumor range (T), lymph node status (N), and distant metastasis (M). The resolution of imaging examinations has significantly improved with the technological advancement in this sector. However, imaging examinations can barely provide valuable information. In clinical practice, an examination method that can provide information on the biological behavior of the tumor is critical to strategizing the treatment plan. Artificial intelligence (AI) allows for such an inspection procedure by reflecting the histological features of lesions using quantitative information extracted from images. Currently, AI is widely employed across various medical fields, especially in the processing of medical images. The basic application process of radiomics has been described in this study, and its role in clinical studies of gastric cancer has been discussed.

...