Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 502
1.
Cell Prolif ; : e13656, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773710

Melatonin (MLT) is a circadian hormone that reportedly influences the development and cyclic growth of secondary hair follicles; however, the mechanism of regulation remains unknown. Here, we systematically investigated the role of MLT in hair regeneration using a hair depilation mouse model. We found that MLT supplementation significantly promoted hair regeneration in the hair depilation mouse model, whereas supplementation of MLT receptor antagonist luzindole significantly suppressed hair regeneration. By analysing gene expression dynamics between the MLT group and luzindole-treated groups, we revealed that MLT supplementation significantly up-regulated Wnt/ß-catenin signalling pathway-related genes. In-depth analysis of the expression of key molecules in the Wnt/ß-catenin signalling pathway revealed that MLT up-regulated the Wnt/ß-catenin signalling pathway in dermal papillae (DP), whereas these effects were facilitated through mediating Wnt ligand expression levels in the hair follicle stem cells (HFSCs). Using a DP-HFSCs co-culture system, we verified that MLT activated Wnt/ß-catenin signalling in DPs when co-cultured with HFSCs, whereas supplementation of DP cells with MLT alone failed to activate Wnt/ß-catenin signalling. In summary, our work identified a critical role for MLT in promoting hair regeneration and will have potential implications for future hair loss treatment in humans.

2.
Heliyon ; 10(9): e30622, 2024 May 15.
Article En | MEDLINE | ID: mdl-38726103

Hepatocellular carcinoma (HCC) is the most common pathologic type of primary liver cancer. Liver transplantation (LT) is a radical strategy for treating patients with early-stage HCC, which may lead to a better prognosis compared to hepatectomy and ablation. However, survival of patients who develop HCC recurrence after LT is short, and early recurrence is the most common cause of death. Thus, efficient biomarkers are also needed in LT to guide precision therapy to improve patient prognosis and 5-year survival. Protein induced by vitamin K absence or antagonist II (PIVKA-II) is an abnormal prothrombin that cannot activate coagulation, and it is significantly increased in patients with HCC, obstructive jaundice, and those taking vitamin K antagonists. Over the past decades, substantial progress has been made in the study of PIVKA-II in diagnosing, surveilling, and treating HCC, but its role in LT still needs to be elaborated. In this review, we focused on the role of PIVKA-II as a biomarker in LT for HCC, especially its relationship with clinicopathologic features, early recurrence, long-term survival, and donor-recipient selection.

3.
Microbiol Resour Announc ; : e0022824, 2024 May 24.
Article En | MEDLINE | ID: mdl-38785425

This study presents the complete genomes of 53 strains of Lactococcus and Leuconostoc isolated from two undefined DL-starter cultures originating from Denmark, Tistrup, and P. The genomes were reconstructed using long-read, nanopore-based DNA sequencing, delivering comprehensive data set for comparative genomics and taxonomic classification, with potential utility in dairy fermentation processes.

4.
Chem Biol Interact ; : 111062, 2024 May 17.
Article En | MEDLINE | ID: mdl-38763349

Acute lung injury is the leading cause of paraquat (PQ) poisoning-related mortality. The mechanism by which macrophages are involved in PQ-induced acute lung injury remains unclear. In recent years, the role of metabolic reprogramming in macrophage functional transformation has received significant attention. The current study aimed to identify the role of altered macrophage glucose metabolism and molecular mechanisms in PQ poisoning-induced acute lung injury. We established a model of acute lung injury in PQ-intoxicated mice via the intraperitoneal injection of PQ. PQ exposure induces macrophage M1 polarization and promotes the release of inflammatory factors, which causes the development of acute lung injury in mice. In vitro analysis revealed that PQ altered glucose metabolism, which could be reversed by siRNA transfection to silence the expression of HK1, a key enzyme in glucose metabolism. RNA sequencing revealed that the ERK/MAPK pathway was the crucial molecular mechanism of PQ pathogenesis. Further, U0126, an ERK inhibitor, could inhibit PQ-induced HK1 activation and macrophage M1 polarization. These findings provide novel insights into the previously unrecognized mechanism of ERK/MAPK-HK1 activation in PQ poisoning.

5.
Transl Res ; 271: 26-39, 2024 May 09.
Article En | MEDLINE | ID: mdl-38734063

Peptide drug discovery for the treatment of chronic kidney disease (CKD) has attracted much attention in recent years due to the urge to find novel drugs and mechanisms to delay the progression of the disease. In this study, we identified a novel short peptide (named YR-7, primary sequence 'YEVEDYR') from the natural Fibroin protein, and demonstrated that it significantly alleviated pathological renal changes in ADR-induced nephropathy. PANX1 was identified as the most notably upregulated component by RNA-sequencing. Further analysis showed that YR-7 alleviated the accumulation of lipid droplets via regulation of the lipid metabolism-related proteins PPAR α and PANK1. Using chemical proteomics, fluorescence polarization, microscale thermophoresis, surface plasmon resonance, and molecular docking, YR-7 was proven to directly bind to ß-barrel domains of TGM2 protein to inhibit lipid accumulation. TGM2 knockdown in vivo increased the protein levels of PPAR α and PANK1 while decreased the levels of fibrotic-related proteins to alleviate nephropathy. In vitro, overexpression TGM2 reversed the protective effects of YR-7. Co-immunoprecipitation indicated that TGM2 interacted with PANX1 to promote lipid deposition, and pharmacological inhibition or knockdown of PANX1 decreased the levels of PPAR α and PANK1 induced by ADR. Taken together, our findings revealed that TGM2-PANX1 interaction in promoting lipid deposition may be a new signaling in promoting ADR-induced nephropathy. And a novel natural peptide could ameliorate renal fibrosis through TGM2-PANX1-PPAR α/PANK1 pathway, which highlight the potential of it in the treatment of CKD.

6.
J Mol Cell Biol ; 2024 May 17.
Article En | MEDLINE | ID: mdl-38760881

Idiopathic pulmonary fibrosis (IPF) is a lethal progressive fibrotic lung disease. The development of IPF involves different molecular and cellular processes, and recent studies indicate that lactate plays a significant role in promoting the progression of the disease. Nevertheless, the mechanism by which lactate metabolism is regulated and the downstream effects remain unclear. The molecular chaperone CCT6A performs multiple functions in a variety of biological processes. Our research has identified a potential association between CCT6A and serum lactate levels in IPF patients. Herein, we found that CCT6A was highly expressed in type 2 alveolar epithelial cells (AEC2s) of fibrotic lung tissues and correlated with disease severity. Lactate increases the accumulation of lipid droplets in epithelial cells. CCT6A inhibits lipid synthesis by blocking the production of lactate in AEC2s and alleviates bleomycin-induced pulmonary fibrosis in mice. In addition, our results revealed that CCT6A blocks HIF-1α-mediated lactate production by driving the VHL-dependent ubiquitination and degradation of HIF-1α and further inhibits lipid accumulation in fibrotic lungs. In conclusion, we propose that there is a pivotal regulatory role of CCT6A in lactate metabolism in pulmonary fibrosis, and strategies aimed at targeting these key molecules could represent potential therapeutic approaches for pulmonary fibrosis.

7.
Food Funct ; 2024 May 16.
Article En | MEDLINE | ID: mdl-38753306

6-Gingerol (6-G), an active ingredient of ginger with anti-inflammation and anti-oxidation properties, can treat ulcerative colitis (UC). However, its underlying mechanism is still unclear. In this study, the pharmacodynamic evaluation of 6-G for treating UC was performed, and the mechanism of 6-G in ameliorating UC was excavated by plasma metabolomics and network pharmacology analysis, which was further validated by experimental and molecular docking. The results showed that 6-G could notably reduce diarrhea, weight loss, colonic pathological damage, and inflammation in UC mice. Plasma metabolomic results indicated that 6-G could regulate 19 differential metabolites, and its metabolic pathways mainly involved linoleic acid metabolism and arachidonic acid metabolism, which were closely associated with ferroptosis. Moreover, 60 potential targets for 6-G intervention on ferroptosis in UC were identified by network pharmacology, and enrichment analysis revealed that 6-G suppressed ferroptosis by modulating lipid peroxidation. Besides, the integration of metabolomics and network pharmacology showed that the regulation of 6-G on ferroptosis focused on 3 key targets, including ALOX5, ALOX15, and PTGS2. Further investigation indicated that 6-G significantly inhibited ferroptosis by decreasing iron load and malondialdehyde (MDA), and enhanced antioxidant capacity by reducing the content of glutathione disulfide (GSSG) and increasing the levels of superoxide dismutase (SOD) and glutathione (GSH) in UC mice and RSL3-induced Caco-2 cells. Furthermore, molecular docking showed the high affinity of 6-G with the identified 3 key targets. Collectively, this study elucidated the potential of 6-G in ameliorating UC by inhibiting ferroptosis. The integrated strategy also provided a theoretical basis for 6-G in treating UC.

8.
Alzheimers Res Ther ; 16(1): 103, 2024 May 10.
Article En | MEDLINE | ID: mdl-38725083

BACKGROUND: The role of α-synuclein in dementia has been recognized, yet its exact influence on cognitive decline in non-demented older adults is still not fully understood. METHODS: A total of 331 non-demented individuals were included in the study from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Participants were divided into two distinct groups based on their α-synuclein levels: one with lower levels (α-synuclein-L) and another with higher levels (α-synuclein-H). Measurements included neuropsychiatric scales, cerebrospinal fluid (CSF) biomarkers, and blood transcriptomics. The linear mixed-effects model investigated the longitudinal changes in cognition. Kaplan-Meier survival analysis and the Cox proportional hazards model were utilized to evaluate the effects of different levels of α-synuclein on dementia. Gene set enrichment analysis (GSEA) was utilized to investigate the biological pathways related to cognitive impairment. Pearson correlation, multiple linear regression models, and mediation analysis were employed to investigate the relationship between α-synuclein and neurodegenerative biomarkers, and their potential mechanisms affecting cognition. RESULTS: Higher CSF α-synuclein levels were associated with increased risk of cognitive decline and progression to dementia. Enrichment analysis highlighted the activation of tau-associated and immune response pathways in the α-synuclein-H group. Further correlation and regression analysis indicated that the CSF α-synuclein levels were positively correlated with CSF total tau (t-tau), phosphorylated tau (p-tau) 181, tumor necrosis factor receptor 1 (TNFR1) and intercellular cell adhesion molecule-1 (ICAM-1). Mediation analysis further elucidated that the detrimental effects of CSF α-synuclein on cognition were primarily mediated through CSF t-tau and p-tau. Additionally, it was observed that CSF α-synuclein influenced CSF t-tau and p-tau181 levels via inflammatory pathways involving CSF TNFR1 and ICAM-1. CONCLUSIONS: These findings elucidate a significant connection between elevated levels of CSF α-synuclein and the progression of cognitive decline, highlighting the critical roles of activated inflammatory pathways and tau pathology in this association. They underscore the importance of monitoring CSF α-synuclein levels as a promising biomarker for identifying individuals at increased risk of cognitive deterioration and developing dementia.


Biomarkers , Cognitive Dysfunction , alpha-Synuclein , tau Proteins , Humans , Female , Male , Cognitive Dysfunction/cerebrospinal fluid , alpha-Synuclein/cerebrospinal fluid , Aged , tau Proteins/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Biomarkers/blood , Aged, 80 and over , Neuropsychological Tests
9.
Respir Res ; 25(1): 154, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38566093

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fatal, and aging-associated interstitial lung disease with a poor prognosis and limited treatment options, while the pathogenesis remains elusive. In this study, we found that the expression of nuclear receptor subfamily 2 group F member 2 (NR2F2), a member of the steroid thyroid hormone superfamily of nuclear receptors, was reduced in both IPF and bleomycin-induced fibrotic lungs, markedly in bleomycin-induced senescent epithelial cells. Inhibition of NR2F2 expression increased the expression of senescence markers such as p21 and p16 in lung epithelial cells, and activated fibroblasts through epithelial-mesenchymal crosstalk, inversely overexpression of NR2F2 alleviated bleomycin-induced epithelial cell senescence and inhibited fibroblast activation. Subsequent mechanistic studies revealed that overexpression of NR2F2 alleviated DNA damage in lung epithelial cells and inhibited cell senescence. Adenovirus-mediated Nr2f2 overexpression attenuated bleomycin-induced lung fibrosis and cell senescence in mice. In summary, these data demonstrate that NR2F2 is involved in lung epithelial cell senescence, and targeting NR2F2 may be a promising therapeutic approach against lung cell senescence and fibrosis.


Cellular Senescence , Idiopathic Pulmonary Fibrosis , Animals , Mice , Bleomycin/adverse effects , Epithelial Cells/metabolism , Idiopathic Pulmonary Fibrosis/drug therapy , Lung/metabolism
10.
BMC Pediatr ; 24(1): 230, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38561707

BACKGROUND: Newborn screening (NBS), such as tandem mass spectrometry (MS/MS), may yield false positive/negative results. Next-generation sequencing (NGS) has the potential to provide increased data output, efficiencies, and applications. This study aimed to analyze the types and distribution of pathogenic gene mutations in newborns in Huzhou, Zhejiang province, China and explore the applicability of NGS and MS/MS in NBS. METHODS: Blood spot samples from 1263 newborns were collected. NGS was employed to screen for pathogenic variants in 542 disease-causing genes, and detected variants were validated using Sanger sequencing. Simultaneously, 26 inherited metabolic diseases (IMD) were screened using MS/MS. Positive or suspicious samples identified through MS/MS were cross-referenced with the results of NGS. RESULTS: Among all newborns, 328 had no gene mutations detected. NGS revealed at least one gene mutation in 935 newborns, with a mutation rate of 74.0%. The top 5 genes were FLG, GJB2, UGT1A1, USH2A, and DUOX2. According to American College of Medical Genetics guidelines, gene mutations in 260 cases were classified as pathogenic or likely pathogenic mutation, with a positive rate of 20.6%. The top 5 genes were UGT1A1, FLG, GJB2, MEFV, and G6PD. MS/MS identified 18 positive or suspicious samples for IMD and 1245 negative samples. Verification of these cases by NGS results showed no pathogenic mutations, resulting in a false positive rate of 1.4% (18/1263). CONCLUSION: NBS using NGS technology broadened the range of diseases screened, and enhanced the accuracy of diagnoses in comparison to MS/MS for screening IMD. Combining NGS and biochemical screening would improve the efficiency of current NBS.


Metabolic Diseases , Neonatal Screening , Infant, Newborn , Humans , Neonatal Screening/methods , Tandem Mass Spectrometry , Metabolic Diseases/diagnosis , Mutation , High-Throughput Nucleotide Sequencing/methods , Pyrin/genetics
11.
J Extracell Vesicles ; 13(4): e12428, 2024 Apr.
Article En | MEDLINE | ID: mdl-38581089

It is well known that DNA damage can cause apoptosis. However, whether apoptosis and its metabolites contribute to DNA repair is largely unknown. In this study, we found that apoptosis-deficient Fasmut and Bim- /- mice show significantly elevated DNA damage and premature cellular senescence, along with a significantly reduced number of 16,000 g apoptotic vesicles (apoVs). Intravenous infusion of mesenchymal stromal cell (MSC)-derived 16,000 g apoVs rescued the DNA damage and premature senescence in Fasmut and Bim-/- mice. Moreover, a sublethal dose of radiation exposure caused more severe DNA damage, reduced survival rate, and loss of body weight in Fasmut mice than in wild-type mice, which can be recovered by the infusion of MSC-apoVs. Mechanistically, we showed that apoptosis can assemble multiple nuclear DNA repair enzymes, such as the full-length PARP1, into 16,000 g apoVs. These DNA repair components are directly transferred by 16,000 g apoVs to recipient cells, leading to the rescue of DNA damage and elimination of senescent cells. Finally, we showed that embryonic stem cell-derived 16,000 g apoVs have superior DNA repair capacity due to containing a high level of nuclear DNA repair enzymes to rescue lethal dose-irradiated mice. This study uncovers a previously unknown role of 16,000 g apoVs in safeguarding tissues from DNA damage and demonstrates a strategy for using stem cell-derived apoVs to ameliorate irradiation-induced DNA damage.


Extracellular Vesicles , Animals , Mice , Cellular Senescence , DNA Damage , DNA Repair , DNA Repair Enzymes
12.
Angew Chem Int Ed Engl ; : e202405592, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38647330

In aqueous aluminum-ion batteries(AAIBs), the insertion/extraction chemistry of Al3+ often leads to poor kinetics, whereas the rapid diffusion kinetics of hydrated hydrogen ions (H3O+) may offer the solution. However, the presence of considerable Al3+ in the electrolyte hinders the insertion reaction of H3O+. Herein, we report how oxygen-deficient α-MoO3 nanosheets unlock selective H3O+ insertion in a mild aluminum-ion electrolyte. The abundant oxygen defects impede the insertion of Al3+ due to excessively strong adsorption, while allowing H3O+ to be inserted/diffused through the Grotthuss proton conduction mechanism. This research advances our understanding of the mechanism behind selective H3O+ insertion in mild electrolytes.

13.
Molecules ; 29(7)2024 Mar 28.
Article En | MEDLINE | ID: mdl-38611793

Reported herein is a Paternò-Büchi reaction of aromatic double bonds with quinones under visible light irradiation. The reactions of aromatics with quinones exposed to blue LED irradiation yielded oxetanes at -78 °C, which was attributed to both the activation of double bonds in aromatics and the stabilization of oxetanes by thiadiazole, oxadiazole, or selenadiazole groups. The addition of Cu(OTf)2 to the reaction system at room temperature resulted in the formation of diaryl ethers via the copper-catalyzed ring opening of oxetanes in situ. Notably, the substrate scope was extended to general aromatics.

14.
Regen Ther ; 27: 279-289, 2024 Dec.
Article En | MEDLINE | ID: mdl-38617444

Introduction: Cell transplantation is an emerging and effective therapeutic approach for enhancing uterine adhesions caused by endometrial damage. Currently, human umbilical cord blood mononuclear cells (HUCBMCs) have been extensively for tissue and organ regeneration. However, their application in endometrial repair remains unexplored. Our investigation focuses on the utilization of HUCBMCs for treating endometrial injury. Methods: The HUCBMCs were isolated from health umbilical cord blood, and co-cultured with the injured endometrial stromal cells and injured endometrial organoids. The cell proliferation and apoptosis were measured by cck8 assays and flow cytometry. Western blotting was used to detect the expression of PTEN, AKT and p-AKT. Immunofluorescence assay revealed expression levels of epithelial-mesenchymal transition (EMT) -related markers such as E-cadherin, N-cadherin, and TGF-ß1. The endometrial thickness, fibrosis level, and glandular number were examined after the intravenous injection of HUCBMCs in mouse endometrial models. Immunohistochemistry was employed to assess changes in growth factors vascular endothelial growth factor (VEGF) and insulin-like growth factor 1 (IGF-1) as well as fibrosis markers α-SMA and COL1A1. Additionally, expressions of EMT-related proteins E-cadherin and N-cadherin were evaluated. Results: HUCBMCs significantly improved the proliferation and reduced the apoptosis of damaged endometrial stromal cells (ESCs), accompanied by up-regulation of phospho-AKT expression. HUCBMCs increased endometrial thickness and glandular count while decreasing fibrosis and EMT-related markers in mouse endometrial models. Furthermore, EMT-related markers of ESCs and endometrial organoids were significantly decreased. Conclusions: Our findings suggest that HUCBMCs plays a pivotal role in mitigating endometrial injury through the attenuation of fibrosis. HUCBMCs may exert a reverse effect on the EMT process during the endometrium reconstruction.

15.
J Hazard Mater ; 470: 134228, 2024 May 15.
Article En | MEDLINE | ID: mdl-38626683

Cadmium (Cd) and arsenic (As) are two highly toxic heavy metals and metalloids that coexist in many situations posing severe threats to plants. Our investigation was conducted to explore the different regulatory mechanisms of ryegrass (Lolium perenne L.) responding to individual and combined Cd and As stresses in hydroponics. Results showed that the ryegrass well-growth phenotype was not affected by Cd stress of 10 mg·L-1. However, As of 10 mg·L-1 caused rapid water loss, proline surge, and chlorosis in shoots, suggesting that ryegrass was highly sensitive to As. Transcriptomic analysis revealed that the transcription factor LpIRO2 mediated the upregulation of ZIP1 and YSL6 that played an important role in Cd tolerance. We found that the presence of As caused the overexpression of LpSWT12, a process potentially regulated by bHLH14, to mitigate hyperosmolarity. Indoleacetic acid (IAA) and abscisic acid (ABA) contents and expression of their signaling-related genes were significantly affected by As stress rather than Cd. We predict a regulatory network to illustrate the interaction between transporters, transcription factors, and signaling transduction, and explain the antagonism of Cd and As toxicity. This present work provides a research basis for plant protection from Cd and As pollution.


Arsenic , Cadmium , Gene Expression Regulation, Plant , Lolium , Plant Growth Regulators , Stress, Physiological , Cadmium/toxicity , Lolium/drug effects , Lolium/metabolism , Lolium/genetics , Arsenic/toxicity , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Gene Expression Regulation, Plant/drug effects , Stress, Physiological/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Indoleacetic Acids/metabolism , Abscisic Acid/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics
16.
Medicine (Baltimore) ; 103(15): e37838, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38608046

BACKGROUND: The effects of vitamin C supplementation on patients with septic shock remain controversial. We aimed to evaluate the effects of different vitamin C dosages on norepinephrine (NE) synthesis in adult patients with septic shock. METHODS: A total of 58 patients with septic shock admitted to our intensive care unit (ICU) between July 2021 and December 2022 were included. Patients were randomly divided into 3 groups: high-dose vitamin C (150 mg/kg/d, group A), low-dose vitamin C (50 mg/kg/d, group B), and placebo (group C). NE synthesis-related indicators (dopamine-ß-hydroxylase [DßH], tyrosine hydroxylase [TH], tetrahydrobiopterin [BH4], and dopamine [DA]), plasma NE, and vitamin C levels were measured every 24 hours and analyzed. All-cause mortality within 28 days and other clinical outcomes (including Acute Physiology and Chronic Health Evaluation [APACHE], Sequential Organ Failure Assessment [SOFA], and Multiple-Organ Dysfunction Syndrome [MODS] scores) were compared. RESULTS: Changes in TH, BH4, and DßH levels at 96 hours in groups A and B were greater than those in group C. These differences became more pronounced over the course of the intravenous vitamin C administration. Significant differences between groups A and C were detected at 96-hours TH, 72-hours BH4, 96-hours BH4, 96-hours DA, and DßH levels every 24 hours. The 96-hours TH, 96-hours BH4, and 48-hours DßH in group B were significantly higher than those in group C. The NE levels every 24 hours in groups A and B were higher than those in group C, group A and group C had a statistically significant difference. The 96-hours exogenous NE dosage in groups A and B was significantly lower than that in group C. No significant reductions in APACHE, SOFA, or MODS scores were observed in the vitamin C group, including the duration of ICU stay and mechanical ventilation. The 28-days mortality was lower in groups A and B than in group C (0%, 10%, and 16.67%, P = .187), but the difference was not significant. CONCLUSION: For patients with septic shock, treatment with vitamin C significantly increased TH, BH4, and DßH levels and reduced the exogenous NE dosage, but did not significantly improve clinical outcomes.


Antineoplastic Agents , Shock, Septic , Adult , Humans , Norepinephrine , Shock, Septic/drug therapy , Dopamine , Prospective Studies , Vitamins/therapeutic use , Ascorbic Acid/therapeutic use
17.
J Med Internet Res ; 26: e45545, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38630535

BACKGROUND: Fundus photography is the most important examination in eye disease screening. A facilitated self-service eye screening pattern based on the fully automatic fundus camera was developed in 2022 in Shanghai, China; it may help solve the problem of insufficient human resources in primary health care institutions. However, the service quality and residents' preference for this new pattern are unclear. OBJECTIVE: This study aimed to compare the service quality and residents' preferences between facilitated self-service eye screening and traditional manual screening and to explore the relationships between the screening service's quality and residents' preferences. METHODS: We conducted a cross-sectional study in Shanghai, China. Residents who underwent facilitated self-service fundus disease screening at one of the screening sites were assigned to the exposure group; those who were screened with a traditional fundus camera operated by an optometrist at an adjacent site comprised the control group. The primary outcome was the screening service quality, including effectiveness (image quality and screening efficiency), physiological discomfort, safety, convenience, and trustworthiness. The secondary outcome was the participants' preferences. Differences in service quality and the participants' preferences between the 2 groups were compared using chi-square tests separately. Subgroup analyses for exploring the relationships between the screening service's quality and residents' preference were conducted using generalized logit models. RESULTS: A total of 358 residents enrolled; among them, 176 (49.16%) were included in the exposure group and the remaining 182 (50.84%) in the control group. Residents' basic characteristics were balanced between the 2 groups. There was no significant difference in service quality between the 2 groups (image quality pass rate: P=.79; average screening time: P=.57; no physiological discomfort rate: P=.92; safety rate: P=.78; convenience rate: P=.95; trustworthiness rate: P=.20). However, the proportion of participants who were willing to use the same technology for their next screening was significantly lower in the exposure group than in the control group (P<.001). Subgroup analyses suggest that distrust in the facilitated self-service eye screening might increase the probability of refusal to undergo screening (P=.02). CONCLUSIONS: This study confirms that the facilitated self-service fundus disease screening pattern could achieve good service quality. However, it was difficult to reverse residents' preferences for manual screening in a short period, especially when the original manual service was already excellent. Therefore, the digital transformation of health care must be cautious. We suggest that attention be paid to the residents' individual needs. More efficient man-machine collaboration and personalized health management solutions based on large language models are both needed.


Language , Humans , Cross-Sectional Studies , China , Logistic Models
18.
Trends Neurosci ; 47(5): 319-321, 2024 May.
Article En | MEDLINE | ID: mdl-38614892

In a recent study, Oliveira and colleagues revealed how growth arrest and DNA damage-inducible protein 34 (GADD34), an effector of the integrated stress response, initiates the translation of synaptic plasticity-related mRNAs following brain-derived neurotrophic factor (BDNF) stimulation. This work suggests that GADD34 may link transcriptional products with translation control upon neuronal activation, illuminating how protein synthesis is orchestrated in neuronal plasticity.


Neuronal Plasticity , Neurons , Protein Biosynthesis , Protein Phosphatase 1 , Neurons/metabolism , Neurons/physiology , Animals , Protein Phosphatase 1/metabolism , Humans , Protein Biosynthesis/physiology , Neuronal Plasticity/physiology , Brain-Derived Neurotrophic Factor/metabolism , Stress, Physiological/physiology
19.
J Clin Neurosci ; 124: 20-26, 2024 Jun.
Article En | MEDLINE | ID: mdl-38640804

OBJECTIVE: To investigate the relationship between short-term changes in quantitative myasthenia gravis score (QMGS) after thymectomy and postoperative recurrence in myasthenia gravis (MG) patients without thymoma. METHODS: A retrospective observational cohort study. The QMGS of 44 patients with non-thymomatous MG were evaluated before and 1 month after thymectomy, and the frequency and time of postoperative recurrence were recorded. The reduction rate of QMGS (rr-QMGS) was defined as (QMGS one week before thymectomy - QMGS one month after thymectomy)/ QMGS one week before thymectomy × 100 %, as an indicator of short-term symptom change after thymectomy. The receiver operating characteristic (ROC) curve was established to determine an appropriate cut-off value of rr-QMGS for distinguishing postoperative recurrence. Multivariate Cox regression analysis was applied to predict postoperative recurrence. RESULTS: Postoperative recurrence occurred in 21 patients (30 times in total) during follow-up. The mean annual recurrence rate was 3.98 times/year preoperatively and 0.30 times/year postoperatively. ROC analysis determined the cut-off value of rr-QMGS was 36.7 % (sensitivity 90.5 %, specificity 52.2 %). Multivariate Cox regression analysis showed that rr-QMGS<36.7 % (hazard rate[HR]6.251, P = 0.014) is positive predictor of postoperative recurrence. Kaplan-Meier analysis showed that postoperative recurrence time was earlier in the low rr-QMGS group than in the high rr-QMGS group (12.62 vs. 36.60 months, p = 0.005). CONCLUSIONS: Low rr-QMGS is associated with early postoperative recurrence. Rr-QMGS can be used to predict postoperative recurrence of non-thymomatous MG.


Myasthenia Gravis , Recurrence , Thymectomy , Humans , Myasthenia Gravis/surgery , Myasthenia Gravis/diagnosis , Thymectomy/adverse effects , Thymectomy/methods , Male , Female , Middle Aged , Retrospective Studies , Adult , Aged , Young Adult , ROC Curve , Follow-Up Studies
20.
J Mater Chem B ; 12(19): 4613-4628, 2024 May 15.
Article En | MEDLINE | ID: mdl-38655586

The clinical treatment of chronic diabetic wounds is a long-standing thorny issue. Strategies targeting the diabetic micro-environment have been developed to promote wound healing. However, it remains challenging to reverse the adverse conditions and re-activate tissue regeneration and angiogenesis. In this work, we develop injectable hydrogels that are responsive to acidic conditions, reactive oxygen species (ROS), and high glucose levels in a diabetic wound micro-environment to sustainably deliver tannic acid (TA) to augment antibacterial, anti-inflammatory, and anti-oxidative activities. This triple-responsive mechanism is designed by introducing dynamic acylhydrazone and phenylboronic ester bonds to crosslink modified hyaluronic acid (HA) chains. At a diabetic wound, the acylhydrazone bonds may be hydrolyzed at low pH. Meanwhile, glucose may compete with TA, and ROS may oxidize the C-B bond to release TA. Thus, sustained release of TA is triggered by the diabetic micro-environment. The released TA effectively scavenges ROS and kills bacteria. In vivo experiments on diabetic mice demonstrate that the hydrogel dressing highly promotes angiogenesis and extracellular matrix (ECM) deposition, leading to eventual full healing of diabetic skin wounds. This micro-environment-triggered triple-responsive drug release provides a promising method for chronic diabetic wound healing.


Anti-Bacterial Agents , Diabetes Mellitus, Experimental , Hyaluronic Acid , Hydrogels , Wound Healing , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Wound Healing/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Animals , Hydrogels/chemistry , Hydrogels/pharmacology , Mice , Diabetes Mellitus, Experimental/drug therapy , Neovascularization, Physiologic/drug effects , Collagen/chemistry , Bandages , Tannins/chemistry , Tannins/pharmacology , Microbial Sensitivity Tests , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Male , Reactive Oxygen Species/metabolism , Humans , Angiogenesis
...