Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Fish Physiol Biochem ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963582

RESUMEN

The present study, as one part of a larger project that aimed to investigate the effects of dietary berberine (BBR) on fish growth and glucose regulation, mainly focused on whether miRNAs involve in BBR's modulation of glucose metabolism in fish. Blunt snout bream Megalobrama amblycephala (average weight of 20.36 ± 1.44 g) were exposed to the control diet (NCD, 30% carbohydrate), the high-carbohydrate diet (HCD, 43% carbohydrate) and the berberine diet (HCB, HCD supplemented with 50 mg/kg BBR). After 10 weeks' feeding trial, intraperitoneal injection of glucose was conducted, and then, the plasma and liver were sampled at 0 h, 1 h, 2 h, 6 h, and 12 h. The results showed the plasma glucose levels in all groups rose sharply and peaked at 1 h after glucose injection. Unlike the NCD and HCB groups, the plasma glucose in the HCD group did not decrease after 1 h, while remained high level until at 2 h. The NCD group significantly increased liver glycogen content at times 0-2 h compared to the other two groups and then liver glycogen decreased sharply until at times 6-12 h. To investigate the role of BBR that may cause the changes in plasma glucose and liver glycogen, miRNA high-throughput sequencing was performed on three groups of liver tissues at 2 h time point. Eventually, 20 and 12 differentially expressed miRNAs (DEMs) were obtained in HCD vs NCD and HCB vs HCD, respectively. Through function analyzing, we found that HCD may affect liver metabolism under glucose loading through the NF-κB pathway; and miRNAs regulated by BBR mainly play roles in adipocyte lipolysis, niacin and nicotinamide metabolism, and amino acid transmembrane transport. In the functional exploration of newly discovered novel:Chr12_18892, we found its target gene, adenylate cyclase 3 (adcy3), was widely involved in lipid decomposition, amino acid metabolism, and other pathways. Furthermore, a targeting relationship of novel:Chr12_18892 and adcy3 was confirmed by double luciferase assay. Thus, BBR may promote novel:Chr12_18892 to regulate the expression of adcy3 and participate in glucose metabolism.

2.
Nucleic Acids Res ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967005

RESUMEN

High spontaneous mutation rate is crucial for obtaining ideal phenotype and exploring the relationship between genes and phenotype. How to break the genetic stability of organisms and increase the mutation frequency has become a research hotspot. Here, we present a practical and controllable evolutionary tool (oMut-Cgts) based on dual genetic level modification engineering for Corynebacterium glutamicum. Firstly, the modification engineering of transcription and replication levels based on RNA polymerase α subunit and DNA helicase Cgl0854 as the 'dock' of cytidine deaminase (pmCDA1) significantly increased the mutation rate, proving that the localization of pmCDA1 around transient ssDNA is necessary for genome mutation. Then, the combined modification and optimization of engineering at dual genetic level achieved 1.02 × 104-fold increased mutation rate. The genome sequencing revealed that the oMut-Cgts perform uniform and efficient C:G→T:A transitions on a genome-wide scale. Furthermore, oMut-Cgts-mediated rapid evolution of C. glutamicum with stress (acid, oxidative and ethanol) tolerance proved that the tool has powerful functions in multi-dimensional biological engineering (rapid phenotype evolution, gene function mining and protein evolution). The strategies for rapid genome evolution provided in this study are expected to be applicable to a variety of applications in all prokaryotic cells.

3.
Angew Chem Int Ed Engl ; : e202409351, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38872505

RESUMEN

Mitochondria, one of the most important organelles, represent a crucial subcellular target for fundamental research and biomedical applications. Despite significant advances in the design of DNA nanotechnologies for a variety of bio-applications, the dearth of strategies that enable mitochondria targeting for subcellular molecular imaging and therapy remains an outstanding challenge in this field. In this Minireview, we summarize the recent progresses on the emerging design and application of DNA nanotechnology for mitochondria-targeted molecular imaging and tumor treatment. We first highlight the engineering of mitochondria-localized DNA nanosensors for in situ detection and imaging of diverse key molecules that are essential to maintain mitochondrial functions, including mitochondrial DNA and microRNA, enzymes, small molecules, and metal ions. Then, we compile the developments of DNA nanotechnologies for mitochondria-targeted anti-tumor therapy, including modularly designed DNA nanodevices for subcellular delivery of therapeutic agents, and programmed DNA assembly for mitochondrial interference. We will place an emphasis on clarification of the chemical principles of how DNA nanobiotechnology can be designed to target mitochondria for various biomedical applications. Finally, the remaining challenges and future directions in this emerging field will be discussed, hoping to inspire further development of advanced DNA toolkits for both academic and clinical research regarding mitochondria.

4.
Bioresour Bioprocess ; 11(1): 61, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916814

RESUMEN

Phospholipase A1 (PLA1) is a kind of specific phospholipid hydrolase widely used in food, medical, textile. However, limitations in its expression and enzymatic activity have prompted the investigation of the phospholipase-assisting protein PlaS. In this study, we elucidate the role of PlaS in enhancing the expression and activity of PlaA1 through N-terminal truncation. Our research demonstrates that truncating the N-terminal region of PlaS effectively overcomes its inhibitory effect on host cells, resulting in improved cell growth and increased protein solubility of the protein. The yeast two-hybrid assay confirms the interaction between PlaA1 and N-terminal truncated PlaS (∆N27 PlaS), highlighting their binding capabilities. Furthermore, in vitro studies using Biacore analysis reveal a concentration-dependent and specific binding between PlaA1 and ∆N27 PlaS, exhibiting high affinity. Molecular docking analysis provides insights into the hydrogen bond interactions between ∆N27 PlaS and PlaA1, identifying key amino acid residues crucial for their binding. Finally, the enzyme activity of PLA1 was boost to 8.4 U/mL by orthogonal test. Study significantly contributes to the understanding of the interaction mechanism between PlaS and PlaA1, offering potential strategies for enhancing PlaA1 activity through protein engineering approaches.

5.
Antioxidants (Basel) ; 13(6)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38929083

RESUMEN

This study was conducted to investigate the effects of dietary phosphatidylserine (PS) supplementation on the growth performance, stress response, non-specific immunity and antioxidant capacity of juvenile blunt snout bream (Megalobrama ambylcephala) cultured under a high stocking density. A 2 × 2 two-factorial design was adopted, including two stocking densities (10 and 20 fish/m3) and two dietary PS levels (0 and 50 mg/kg). After the 12-week feeding trial, the high stocking density significantly decreased the final weight; weight gain rate; specific growth rate; feed intake; nitrogen retention efficiency; plasma complement 3 (C3) level; albumin/globulin (ALB/GLB, A/G) ratio; activity of myeloperoxidase, lysozyme (LZM) and glutathione peroxidase (GPX); gpx transcription; and abundance of sirtuin3 (Sirt3) and nuclear factor erythroid-2-related factor 2 (Nrf2). However, it significantly increased the plasma levels of cortisol, glucose (GLU), lactic acid (LD), total protein and GLB; hepatic malondialdehyde (MDA) content; and sirt1 transcription. PS supplementation significantly increased the plasma ALB and C4 levels; the A/G ratio; the activity of LZM, CAT and GPX; the transcription of sirt1, nrf2, manganese-containing superoxide dismutase and catalase; and the Nrf2 abundance. However, it significantly decreased the plasma levels of cortisol, GLU and GLB, as well as the hepatic MDA content. In addition, there was a significant interaction between the stocking density and PS supplementation regarding the effects on the plasma LD, ALB, GLB and C3 levels; A/G ratio; hepatic CAT activity; and protein abundance of Sod2. In conclusion, PS supplementation can counteract the high stocking density-induced stress response, redox imbalance and immunosuppression in blunt snout bream.

6.
Sci Rep ; 14(1): 11631, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773132

RESUMEN

To alleviate the contradiction in healthcare resources, the Chinese government formally established the framework of a hierarchical medical system in 2015, which contains the following brief generalities: " separate treatment of emergencies and slows, first-contact care at the primary, two-way referral, and upper and lower linkage, ". This study systematically summarizes and models the connotations of China's hierarchical medical system and a sample of 11,200 chronic disease patients in Tianjin, the largest port city in northern China, was selected for the empirical study to investigate the relationship between chronic disease patients' policy perceptions of the hierarchical medical system and their preference for healthcare. We found that under the strategy of separate treatment, improving the healthcare accessibility, drug supply, and lowering the cost of medical care would have a positive impact on increasing the preference of patients with chronic diseases to go to the primary hospitals. Under the two-way triage strategy, improving the level of physician services, referral convenience and treatment Standards have a positive impact on chronic disease patients' preference for primary care; The impact of the hierarchical medical system on the preference for healthcare differed between groups, focusing on differences in health literacy level, age and household type; The role of " upper and lower linkage " is crucial in the hierarchical medical system and it plays a part in mediating the influence of the " separate treatment of emergencies and slows" design and the "two-way referral " order on the treatment preferences of chronic disease patients. The results of the study provide a reference for the further development of a scientific and rational hierarchical medical system in the future.


Asunto(s)
Prioridad del Paciente , Humanos , China , Enfermedad Crónica/terapia , Masculino , Femenino , Persona de Mediana Edad , Adulto , Reforma de la Atención de Salud , Anciano , Atención Primaria de Salud , Atención a la Salud , Accesibilidad a los Servicios de Salud
7.
Synth Syst Biotechnol ; 9(3): 436-444, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38616975

RESUMEN

The production of androst-4-ene-3,17-dione (AD) by the steroidal microbial cell factory requires transcription factors (TFs) to participate in metabolic regulation. However, microbial cell factory lacks effective TFs that can respond to AD in its metabolic pathway. Additionally, finding and obtaining natural TFs that specifically respond to AD is a complex and onerous task. In this study, we devised an artificial TF that responds to AD, termed AdT, based on structure-guided molecular dynamics (MD) simulation. According to MD analysis of the conformational changes of AdT after binding to AD, an LBD in which the N- and C-termini exhibited convergence tendencies was used as a microswitch to guide the assembly of a DNA-binding domain lexA, a linker (GGGGS)2, and a transcription activation domain B42 into an artificial TF. As a proof of design, a AD biosensor was designed and constructed in yeast on the basis of the ligand-binding domain (LBD) of hormone receptor. In addition, the transcription factor activity of AdT was increased by 1.44-fold for its variant F320Y. Overall, we created non-natural TF elements for AD microbial cell factory, and expected that the design TF strategy will be applied to running in parallel to the signaling machinery of the host cell.

8.
Antioxidants (Basel) ; 13(4)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38671834

RESUMEN

The administration of NAD+ precursors is a potential approach to protect against liver damage and metabolic dysfunction. However, the effectiveness of different NAD+ precursors in alleviating metabolic disorders is still poorly elucidated. The current study was performed to compare the effectiveness of four different NAD+ precursors, including nicotinic acid (NA), niacinamide (NAM), nicotinamide riboside (NR), and nicotinamide mononucleotide (NMN) in alleviating high-glucose-induced injury to hepatocytes in a fish model, Megalobrama amblycephala. An in vitro high-glucose model was successfully established to mimic hyperglycemia-induced damage to the liver, which was evidenced by the reduced cell viability, the increased transaminase activity, and the depletion of cellular NAD+ concentration. The NAD+ precursors all improved cell viability, with the maximal effect observed in NR, which also had the most potent NAD+ boosting capacity and a significant Sirt1/3 activation effect. Meanwhile, NR presented distinct and superior effects in terms of anti-oxidative stress, inflammation inhibition, and anti-apoptosis compared with NA, NAM, and NMN. Furthermore, NR could effectively benefit glucose metabolism by activating glucose transportation, glycolysis, glycogen synthesis and the pentose phosphate pathway, as well as inhibiting gluconeogenesis. Moreover, an oral gavage test confirmed that NR presented the most potent effect in increasing hepatic NAD+ content and the NAD+/NADH ratio among four NAD+ precursors. Together, the present study results demonstrated that NR is most effective in attenuating the high-glucose-induced injury to hepatocytes in fish compared to other NAD+ precursors.

9.
Foods ; 13(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38472751

RESUMEN

Bacillus cereus (B. cereus), a prevalent foodborne pathogen, constitutes a substantial risk to food safety due to its pronounced resilience under adverse environmental conditions such as elevated temperatures and ultraviolet radiation. This resilience can be attributed to its capacity for biofilm synthesis and sustained high viability. Our research aimed to elucidate the mechanisms governing biofilm biosynthesis in B. cereus. To this end, we constructed a 5088-mutant library of the B. cereus strain BC1 utilizing the transposon TnYLB-1. Systematic screening of this library yielded mutants exhibiting diminished biofilm formation capabilities. Twenty-four genes associated with the biofilm synthesis were identified by reverse PCR in these mutants, notably revealing a significant reduction in biofilm synthesis upon disruption of the orbF gene in B. cereus BC1. Comparative analysis between the wild type and orbF-deficient BC1 strains (BC1ΔorbF) indicated a marked downregulation (decreased by 11.7% to 96.7%) in the expression of genes implicated in biofilm formation, flagellar assembly, and bacterial chemotaxis in the BC1ΔorbF. Electrophoretic mobility shift assay (EMSA) further corroborated the role of OrbF, demonstrating its binding to the promoter region of the biofilm gene cluster, subsequently leading to the suppression of transcriptional activity of biofilm-associated genes in B. cereus BC1. Our findings underscore the pivotal role of orbF in biofilm biosynthesis in B. cereus, highlighting its potential as a target for strategies aimed at mitigating biofilm formation in this pathogen.

10.
Int J Biol Macromol ; 265(Pt 2): 130985, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38518944

RESUMEN

Uncoordinated (Unc) 51-like kinase (ulk1) and ulk2 are closely involved in autophagy activation, but little is known about their roles in regulating glucose homeostasis. In this study, the genes of ulk1a, ulk1b and ulk2 were cloned and characterized in fish Megalobrama amblycephala. All the three genes shared the approximate N-terminal kinase domain and the C-terminal Atg1-like_tMIT domain structure, while the amino acid sequence identity of them are different between M. amblycephala and other vertebrates. Their transcripts were widely observed in various tissues (brain, muscle, gill, heart, spleen, eye, liver, intestine, abdominal adipose and kidney), but differed in tissue expression patterns. During the glucose tolerance test and the insulin tolerance test, the up-regulated transcriptions of ulk1a, ulk1b and ulk2 were all found despite some differences in the temporal patterns. At the same time, the activities of glycolytic enzymes like hexokinase and phosphofructokinase both showed parallel increases. Furthermore, the feeding of a high-carbohydrate diet decreased the transcriptions of ulk1a, ulk1b and ulk2. Collectively, this study demonstrated that ulk1a, ulk1b and ulk2 in M. amblycephala had similar molecular characterizations, but with different conservation and tissue expression patterns. In addition, ulk1/2 might play important roles in maintaining the glucose homeostasis in fish through regulating the glycolytic pathway.


Asunto(s)
Cyprinidae , Cipriniformes , Animales , Cipriniformes/genética , Secuencia de Aminoácidos , Clonación Molecular , Glucosa/metabolismo , Cyprinidae/genética , Cyprinidae/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Filogenia
11.
J Food Sci ; 89(4): 2305-2315, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38369953

RESUMEN

Listeria monocytogenes biofilms represent a continuous source of contamination, leading to serious food safety concerns and economic losses. This study aims to develop novel nisin-loaded chitosan nanoparticles (CSNPs) functionalized with DNase I and evaluate its antibiofilm activity against L. monocytogenes on food contact surfaces. Nisin-loaded CSNPs (CS-N) were first prepared by ionic cross-linking, and DNase I was covalently grafted on the surface (DNase-CS-N). The NPs were subsequently characterized by Zetasizer Nano, transmission electron microscopy, Fourier transform infrared (FT-IR), and X-ray diffraction (XRD). The antibiofilm activity of NPs was evaluated against L. monocytogenes on polyurethane (PU). The DNase-CS-N was fabricated and characterized with quality attributes (particle size-427.0 ± 15.1 nm, polydispersity [PDI]-0.114 ± 0.034, zeta potential-+52.5 ± 0.2 mV, encapsulation efficiency-46.5% ± 3.6%, DNase conjugate rate-70.4% ± 0.2). FT-IR and XRD verified the loading of nisin and binding of DNase I with chitosan. The DNase-CS-N caused a 3 log colony-forming unit (CFU)/cm2 reduction of L. monocytogenes biofilm cells, significantly higher than those in CSNPs (1.4 log), CS-N (1.8 log), and CS-N in combination with DNase I (2.2 log) treatment groups. In conclusion, nisin-loaded CSNPs functionalized with DNase I were successfully prepared and characterized with smooth surface and nearly spherical shape, high surface positive charge, and good stability, which is effective to eradicate L. monocytogenes biofilm cells on food contact surfaces, exhibiting great potential as antibiofilm agents in food industry. PRACTICAL APPLICATION: Listeria monocytogenes biofilms are a common safety hazard in food processing. In this study, novel nanoparticles were successfully constructed and are expected to be a promising antibiofilm agent in the food industry.


Asunto(s)
Quitosano , Listeria monocytogenes , Nanopartículas , Nisina , Nisina/farmacología , Quitosano/farmacología , Quitosano/química , Desoxirribonucleasa I , Espectroscopía Infrarroja por Transformada de Fourier , Biopelículas , Nanopartículas/química
12.
Food Chem ; 446: 138762, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38402761

RESUMEN

Molds and mycotoxins pose severe threats to health. Bacillomycin D (BD) can effectively inhibit mold growth. Attapulgite (ATP) can provide a good carrier for antimicrobial agents. Natural ATP was acid-modified to obtain H-ATP. It was used to load BD to obtain a novel composite material (H-ATP-BD). The results showed H-ATP had better adsorption performance than ATP. BD was adsorbed up to 93.13 % by adding 30 mg H-ATP and stirring at 40 ℃ for 120 min. Fourier transform infrared spectra (FTIR), size and zeta potential, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) results confirmed successful loading of BD onto H-ATP. The composite showed good inhibition of Aspergillus and adding 0.6 % H-ATP-BD composite was effective in removing 89.06 % of aflatoxin B1 (AFB1) at 50 °C. Model fitting indicated that AFB1 removal was a spontaneous exothermic reaction. This research will lay the foundation for the development of efficient and green antimicrobial and toxin-reducing materials.


Asunto(s)
Péptidos Catiónicos Antimicrobianos , Compuestos de Magnesio , Micotoxinas , Contaminantes Químicos del Agua , Compuestos de Silicona/química , Adenosina Trifosfato , Adsorción , Espectroscopía Infrarroja por Transformada de Fourier
13.
Redox Biol ; 71: 103096, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38387137

RESUMEN

Oxidative stress in muscles is closely related to the occurrence of insulin resistance, muscle weakness and atrophy, age-related sarcopenia, and cancer. Aldehydes, a primary oxidation intermediate of polyunsaturated fatty acids, have been proven to be an important trigger for oxidative stress. However, the potential role of linoleic acid (LA) as a donor for volatile aldehydes to trigger oxidative stress has not been reported. Here, we reported that excessive dietary LA caused muscle redox imbalance and volatile aldehydes containing hexanal, 2-hexenal, and nonanal were the main metabolites leading to oxidative stress. Importantly, we identified 5-lipoxygenase (5-LOX) as a key enzyme mediating LA peroxidation in crustaceans for the first time. The inhibition of 5-LOX significantly suppressed the content of aldehydes produced by excessive LA. Mechanistically, the activation of the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway facilitated the translocation of 5-LOX from the nucleus to the cytoplasm, where 5-LOX oxidized LA, leading to oxidative stress through the generation of aldehydes. This study suggests that 5-LOX is a potential target to prevent the production of harmful aldehydes.


Asunto(s)
Araquidonato 5-Lipooxigenasa , Ácido Linoleico , Ácido Linoleico/farmacología , Araquidonato 5-Lipooxigenasa/metabolismo , Estrés Oxidativo , Oxidación-Reducción , Músculos/metabolismo , Aldehídos/metabolismo
14.
Aquac Nutr ; 2024: 3147505, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38374819

RESUMEN

This study developed a recombinant Bacillus subtilis to carry the LGSPDVIVIR peptide (cmP4) isolated from the hydrolyzed products of cottonseed meal with excellent antioxidant and immune-enhancing properties in vitro. It was carried as a tandem of five cmP4 peptides (cmP4') to be stably expressed on a large scale. Then, its effectiveness was evaluated in Chinese mitten crab (Eriocheir sinensis) based on growth performance, redox defense, and innate immunity. A total of 280 crabs (mean body weight: 41.40 ± 0.14) were randomly assigned to seven diets including a control one (without B. subtilis) and six experimental ones with different doses (107,108, and 109 CFU/kg) of unmodified and recombinant B. subtilis, respectively, for 12 weeks. Each diet was tested in four tanks of crabs (10/tank). In terms of bacterial dosages, the final weight (FW), weight gain (WG), hemolymph and hepatopancreatic activities of superoxide dismutase (SOD), catalase (CAT), lysosome (LZM), acid phosphatase (ACP) and alkaline phosphatase (AKP), and hepatopancreatic transcriptions of cat, mitochondrial manganese superoxide dismutase (mtmnsod), thioredoxin-1 (trx1), and prophenoloxidase (propo) all increased significantly with increasing B. subtilis dosages, while hemolymph and hepatopancreatic malondialdehyde (MDA) content and the transcriptions of toll like receptors (tlrs), NF-κB-like transcription factor (relish), and lipopolysaccharide-induced TNF-α factor (litaf) all decreased remarkably. In terms of bacterial species, the recombinant B. subtilis group obtained significantly high values of FW, WG, hemolymph, and hepatopancreatic activities of SOD, CAT, LZM, ACP, and AKP, and the transcriptions of mtmnsod, peroxiredoxin 6 (prx6), and propo compared with the unmodified B. subtilis, while opposite results were noted in hemolymph and hepatopancreatic MDA content and the transcriptions of tlrs, relish, and litaf. These results indicated that dietary supplementation with 109 CFU/kg of recombinant B. subtilis can improve the growth performance, redox defense, and nonspecific immunity of E. sinensis.

15.
Small ; 20(25): e2308724, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38229571

RESUMEN

In future information storage and processing, magnonics is one of the most promising candidates to replace traditional microelectronics. Yttrium iron garnet (YIG) films with perpendicular magnetic anisotropy (PMA) have aroused widespread interest in magnonics. Obtaining strong PMA in a thick YIG film with a small lattice mismatch (η) has been fascinating but challenging. Here, a novel strategy is proposed to reduce the required minimum strain value for producing PMA and increase the maximum thickness for maintaining PMA in YIG films by slight oxygen deficiency. Strong PMA is achieved in the YIG film with an η of only 0.4% and a film thickness up to 60 nm, representing the strongest PMA for such a small η reported so far. Combining transmission electron microscopy analyses, magnetic measurements, and a theoretical model, it is demonstrated that the enhancement of PMA physically originates from the reduction of saturation magnetization and the increase of magnetostriction coefficient induced by oxygen deficiency. The Gilbert damping values of the 60-nm-thick YIG films with PMA are on the order of 10-4. This strategy improves the flexibility for the practical applications of YIG-based magnonic devices and provides promising insights for the theoretical understanding and the experimental enhancement of PMA in garnet films.

16.
Foods ; 13(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38254574

RESUMEN

Globally, type 2 diabetes (T2DM) is on the rise. Maintaining a healthy diet is crucial for both treating and preventing T2DM.As a common vegetable in daily diet, broccoli has antioxidant, anti-inflammatory and anticarcoma physiological activities. We developed a mouse model of type 2 diabetes and carried out a systematic investigation to clarify the function of broccoli in reducing T2DM symptoms and controlling intestinal flora. The findings demonstrated that broccoli could successfully lower fasting blood glucose (FBG), lessen insulin resistance, regulate lipid metabolism, lower the levels of TC, TG, LDL-C, and MDA, stop the expression of IL-1ß and IL-6, and decrease the harm that diabetes causes to the pancreas, liver, fat, and other organs and tissues. Furthermore, broccoli altered the intestinal flora's makeup in mice with T2DM. At the genus level, the relative abundance of Allobaculum decreased, and that of Odoribacter and Oscillospira increased; At the family level, the relative abundances of Odoribacteraceae, Rikenellaceae and S24-7 decreased, while the relative abundances of Erysipelotrichaceae and Rikenellaceae increased.

17.
J Anim Physiol Anim Nutr (Berl) ; 108(2): 480-492, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38014877

RESUMEN

Adenosine monophosphate-activated protein kinase (AMPK) is a sensor of cellular energy changes and controls food intake. This study investigates the effect of a high-calorie diet (high fat diet [HFD], high carbohydrate diet [HCD] and high energy diet [HED]) on appetite and central AMPK in blunt snout bream. In the present study, fish (average initial weight 45.84 ± 0.07 g) were fed the control, HFD, HCD and HED in four replicates for 12 weeks. At the end of the feeding trial, the result showed that body mass index, specific growth rate, feed efficiency ratio and feed intake were not affected (p > 0.05) by dietary treatment. However, fish fed the HFD obtained a significantly higher (p < 0.05) lipid productive value, lipid gain and lipid intake than those fed the control diet, but no significant difference was attributed to others. Also, a significantly higher (p < 0.05) energy intake content was found in fish-fed HFD, HCD and HED than those given the control diet. Long-term HFD and HCD feeding significantly increased (p < 0.05) plasma glucose, glycated serum protein, advanced glycation end product, insulin and leptin content levels than the control group. Moreover, a significantly lower (p < 0.05) complex 1, 2 and 3 content was found in fish-fed HFD and HCD than in the control, but no differences (p > 0.05) were attributed to those in HED. Fish-fed HED significantly upregulated (p < 0.05) hypothalamic ampα 1 and ampα 2 expression, whereas the opposite trend was observed in the hypothalamic mammalian target of rapamycin than those in HFD and HCD compared to the control. However, hypothalamic neuropeptide y, peroxisome proliferator-activated receptor α (pparα), acetyl-coa oxidase and carnitine palmitoyltransferase 1 were significantly upregulated (p < 0.05) in the HCD group, while the opposite was seen in cholecystokinin expression compared to those in the control group. Our findings indicated that the central AMPK signal pathway and appetite were modulated according to the diet's energy level to regulate nutritional status and maintain energy homoeostasis in fish.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Cyprinidae , Animales , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Regulación del Apetito , Carbohidratos , Cyprinidae/metabolismo , Dieta/veterinaria , Dieta Alta en Grasa , Hipotálamo/metabolismo , Lípidos , Mamíferos/metabolismo
18.
J Agric Food Chem ; 72(1): 483-492, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38146267

RESUMEN

Indigoidine, as a kind of natural blue pigment, is widely used in textiles, food, and pharmaceuticals and is mainly synthesized from l-glutamine via a condensation reaction by indigoidine synthetases, most of which originates from Streptomyces species. However, due to the complex metabolic switches of Streptomyces, most of the researchers choose to overexpress indigoidine synthetases in the heterologous host to achieve high-level production of indigoidine. Considering the advantages of low-cost culture medium and simple culture conditions during the large-scale culture of Streptomyces, here, an updated regulation system derived from the Streptomyces self-sustaining system, constructed in our previous study, was established for the highly efficient production of indigoidine in Streptomyces lividans TK24. The updated system was constructed via promoter mining and σhrdB expression optimization, and this system was applied to precisely and continuously regulate the expression of indigoidine synthetase IndC derived from Streptomyces albus J1704. Finally, the engineered strain was cultured with cheap industrial glycerol as a supplementary carbon source, and 14.3 and 46.27 g/L indigoidine could be achieved in a flask and a 4 L fermentor, respectively, reaching the highest level of microbial synthesis of indigoidine. This study will lay a foundation for the industrial application of Streptomyces cell factories to produce indigoidine.


Asunto(s)
Piperidonas , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Piperidonas/metabolismo , Regiones Promotoras Genéticas , Péptido Sintasas/genética
19.
Animals (Basel) ; 13(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38066982

RESUMEN

Plant protein hydrolysates could enhance the growth performance and diet utilization of aquaculture species. The mechanisms underlying their beneficial effects, however, remain unclear. The purpose of this study was to appraise the effects of cottonseed meal protein hydrolysate (CPH) supplementation on the growth performance, amino acid profiles, and protein turnover and metabolism of Eriocheir sinensis. A total of 240 crabs (initial weight: 37.32 ± 0.38 g) were randomly assigned to six groups, and fed six iso-protein feeds supplemented with varying levels of 0% (the control group), 0.2%, 0.4%, 0.8%, 1.6% and 3.2% of CPH. These diets were continuously fed to the crabs for 12 weeks. The findings demonstrated that, compared with the control group, adding 0.4-0.8% CPH to the diet significantly increased the specific growth rate, nitrogen retention efficiency, hepatopancreas index, body crude protein content, hepatopancreas alanine aminotransferase and glutamine synthetase activities, hemolymph total protein content, the hepatopancreas transcription of S6 kinase-poly-peptide 1, and the hepatopancreas protein levels of insulin-like growth factor-1 (IGF-1), protein kinase B (Akt), and target of rapamycin (TOR) of crabs. In contrast, when the dose of dietary CPH reached 3.2%, the forkhead box O1 (FoxO1) protein expression showed a significant decrease compared with the control group. In addition, CPH supplementation also increased the amount of amino acids and free amino acids in hepatopancreas and hemolymph, respectively. Together, these findings demonstrated that dietary supplementation of 0.4-0.8% CPH could activate the IGF-1/Akt/TOR pathway of E. sinensis, thereby improving growth performance, protein synthesis, and utilization. For cost considerations, the recommended dietary dose of CPH for E. sinensis is 0.8%. Due to the above benefits, CPH has the potential to be used as a growth promoter for other aquatic animals, especially crustaceans.

20.
World J Microbiol Biotechnol ; 40(1): 8, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37938463

RESUMEN

Vitamin K2 (menaquinone, VK2, MK) is an essential lipid-soluble vitamin that plays critical roles in inhibiting cell ferroptosis, improving blood clotting, and preventing osteoporosis. The increased global demand for VK2 has inspired interest in novel production strategies. In this review, various novel metabolic regulation strategies, including static and dynamic metabolic regulation, are summarized and discussed. Furthermore, the advantages and disadvantages of both strategies are analyzed in-depth to highlight the bottlenecks facing microbial VK2 production on an industrial scale. Finally, advanced metabolic engineering biotechnology for future microbial VK2 production will also be discussed. In summary, this review provides in-depth information and offers an outlook on metabolic engineering strategies for VK2 production.


Asunto(s)
Biotecnología , Ingeniería Metabólica , Vitamina K 2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...