Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 42
1.
Heliyon ; 10(10): e30317, 2024 May 30.
Article En | MEDLINE | ID: mdl-38803966

As a vital factor in technological innovation, patentee plays a significant role in the process of scientific and technological innovation, researching patentee has attracted the attention of experts and scholars. Previously, scholars have mainly quantified patent indicators or constructed homogeneous information networks to analyze patentees, but these methods cannot objectively measure the impact of patentees. Therefore, this study proposes a novel approach to assessing patentee impact based on a heterogeneous information network. The proposed method distinguishes the weight of different types of nodes using a weighted mechanism and extracts three types of fine-grained characteristics of network nodes. This approach results in the construction of a heterogeneous patent innovation network and the development of a new patentee impact assessment algorithm called CWAPN. Using Chinese green patents in the field of energy conservation and environmental protection as an example, experimental results show that the CWAPN algorithm can effectively assess the impact of patentees. Thereby identifying patentees who have made outstanding contributions to sustainable development in China.

2.
J Pharm Anal ; 14(5): 100902, 2024 May.
Article En | MEDLINE | ID: mdl-38784156

Liver fibrosis is primarily driven by the activation of hepatic stellate cells (HSCs), a process associated with ferroptosis. Ginsenoside Rb1 (GRb1), a major active component extracted from Panax ginseng, inhibits HSC activation. However, the potential role of GRb1 in mediating HSC ferroptosis remains unclear. This study examined the effect of GRb1 on liver fibrosis both in vivo and in vitro, using CCl4-induced liver fibrosis mouse model and primary HSCs, LX-2 cells. The findings revealed that GRb1 effectively inactivated HSCs in vitro, reducing alpha-smooth muscle actin (α-SMA) and Type I collagen (Col1A1) levels. Moreover, GRb1 significantly alleviated CCl4-induced liver fibrosis in vivo. From a mechanistic standpoint, the ferroptosis pathway appeared to be central to the antifibrotic effects of GRb1. Specifically, GRb1 promoted HSC ferroptosis both in vivo and in vitro, characterized by increased glutathione depletion, malondialdehyde production, iron overload, and accumulation of reactive oxygen species (ROS). Intriguingly, GRb1 increased Beclin 1 (BECN1) levels and decreased the System Xc-key subunit SLC7A11. Further experiments showed that BECN1 silencing inhibited GRb1-induced effects on HSC ferroptosis and mitigated the reduction of SLC7A11 caused by GRb1. Moreover, BECN1 could directly interact with SLC7A11, initiating HSC ferroptosis. In conclusion, the suppression of BECN1 counteracted the effects of GRb1 on HSC inactivation both in vivo and in vitro. Overall, this study highlights the novel role of GRb1 in inducing HSC ferroptosis and promoting HSC inactivation, at least partly through its modulation of BECN1 and SLC7A11.

3.
ACS Appl Mater Interfaces ; 16(21): 27866-27874, 2024 May 29.
Article En | MEDLINE | ID: mdl-38747412

Optoelectronic memristors are new multifunctional devices with both electrically tunable and light-tunable synaptic plasticity, attracting great attention as key promising devices for optoelectronic neuromorphic computing systems. At present, the conductance modulation in most optoelectronic memristors is conducted in a hybrid photoelectric mode, suffering some problems such as heat generation and control complexity. Here, an optoelectronic memristor based on the p+-Si/n-ZnO heterojunction is proposed where the conductance can be reversibly modulated in an all-optically controlled mode. The electron detrapping/trapping mechanism at the p+-Si/n-ZnO interface barrier region is presented to explain the light-induced conductance potentiation/depression behavior. Furthermore, some synaptic functions, including excitatory postsynaptic current (EPSC), inhibitory postsynaptic current (IPSC), and paired-pulse facilitation (PPF), are successfully mimicked in the p+-Si/n-ZnO heterojunction memristor, instructing its application potential for optoelectronic neuromorphic computing.

4.
Acta Trop ; 254: 107188, 2024 Jun.
Article En | MEDLINE | ID: mdl-38531428

Cryptosporidium spp. and G. duodenalis often infect humans, cats, and other mammals, causing diarrhea and being responsible for numerous outbreaks of waterborne and foodborne infections worldwide. The rapid increase in the number of pet cats poses a substantial public health risk. However, there were few reports about the infection of Cryptosporidium spp. and G. duodenalis infections in pet cats in Henan Province, central China. Thus, to understand the prevalence and genetic distribution of Cryptosporidium spp. and G. duodenalis in pet cats, and to evaluate the zoonotic potential, possible transmission routes and public health implications of isolates, fecal samples (n = 898) were randomly collected from pet cats in 11 cities in Henan Province, central China. Nested PCR based on the SSU rRNA gene and bg gene was used to the prevalence of Cryptosporidium spp. and G. duodenalis, respectively. The prevalence was 0.8 % (7/898) and 2.0 % (18/898) for Cryptosporidium spp. and G. duodenalis respectively. Additionally, the Cryptosporidium spp. positive isolates were identified as C. parvum subtype IIdA19G1 by gp60 gene. In the present study, the IIdA19G1 subtype was discovered in pet cats for the first time in China, enriching the information on the host type and geographical distribution of Cryptosporidium spp. in China. For G. duodenalis, a total of 18 G. duodenalis positive samples were identified, belonging to four assemblages: a zoonotic assemblage A1 (4/898), three host-specific assemblages C (8/898), D (5/898), and F (1/898). Interestingly, we found that pet cats infected with Cryptosporidium spp. and G. duodenalis are more likely to experience emaciation symptoms compared to the negative group. More importantly, the prevalence of Cryptosporidium spp. and G. duodenalis detected in the present study were low, but the subtype IIdA19G1 of Cryptosporidium spp. and the assemblages A1, C, D, and F of G. duodenalis have the potential for zoonotic transmission. Thus, we should focus on preventing and controlling the risk of cross-species transmission that may occur in pet cats in Henan Province.


Cat Diseases , Cryptosporidiosis , Cryptosporidium , Feces , Giardia lamblia , Giardiasis , Pets , Animals , Cats , China/epidemiology , Cryptosporidiosis/epidemiology , Cryptosporidiosis/parasitology , Cryptosporidiosis/transmission , Cat Diseases/parasitology , Cat Diseases/epidemiology , Cryptosporidium/genetics , Cryptosporidium/isolation & purification , Cryptosporidium/classification , Feces/parasitology , Giardia lamblia/genetics , Giardia lamblia/isolation & purification , Giardia lamblia/classification , Pets/parasitology , Prevalence , Giardiasis/epidemiology , Giardiasis/veterinary , Giardiasis/parasitology , Giardiasis/transmission , DNA, Protozoan/genetics , Phylogeny , Polymerase Chain Reaction , Genotype , Zoonoses/parasitology , Zoonoses/epidemiology , Zoonoses/transmission
5.
Nanotechnology ; 35(22)2024 Mar 14.
Article En | MEDLINE | ID: mdl-38387087

Replacing the slow oxygen evolution reaction with favorable hydrazine oxidation reaction (HzOR) is a green and efficient way to produce hydrogen. In this work, we synthesize amorphous/crystalline RhFeP metallene via phase engineering and heteroatom doping. RhFeP metallene has good catalytic activity and stability for HER and HzOR, and only an ultralow voltage of 18 mV is required to achieve 10 mA cm-2in a two-electrode hydrazine-assisted water splitting system. The superior result is mainly ascribed to the co-doping of Fe and P and the formation of amorphous/crystalline RhFeP metallene with abundant phase boundaries, thereby adjusting electronic structure and increasing active sites.

6.
BMC Vet Res ; 20(1): 53, 2024 Feb 10.
Article En | MEDLINE | ID: mdl-38341563

BACKGROUND: Enterocytozoon bieneusi is a zoonotic pathogen widely distributed in animals and humans. It can cause diarrhea and even death in immunocompromised hosts. Approximately 800 internal transcribed spacer (ITS) genotypes have been identified in E. bieneusi. Farmed foxes and raccoon dogs are closely associated to humans and might be the reservoir of E. bieneusi which is known to have zoonotic potential. However, there are only a few studies about E. bieneusi genotype identification and epidemiological survey in foxes and raccoon dogs in Henan and Hebei province. Thus, the present study investigated the infection rates and genotypes of E. bieneusi in farmed foxes and raccoon dogs in the Henan and Hebei provinces. RESULT: A total of 704 and 884 fecal specimens were collected from foxes and raccoon dogs, respectively. Nested PCR was conducted based on ITS of ribosomal RNA (rRNA), and then multilocus sequence typing (MLST) was conducted to analyze the genotypes. The result showed that infection rates of E. bieneusi in foxes and raccoon dogs were 18.32% and 5.54%, respectively. Ten E. bieneusi genotypes with zoonotic potential (NCF2, NCF3, D, EbpC, CHN-DC1, SCF2, CHN-F1, Type IV, BEB4, and BEB6) were identified in foxes and raccoon dogs. Totally 178 ITS-positive DNA specimens were identified from foxes and raccoon dogs and these specimens were then subjected to MLST analysis. In the MLST analysis, 12, 2, 7 and 8 genotypes were identified in at the mini-/ micro-satellite loci MS1, MS3, MS4 and MS7, respectively. A total of 14 multilocus genotypes were generated using ClustalX 2.1 software. Overall, the present study evaluated the infection of E. bieneusi in foxes and raccoon dogs in the Henan and Hebei province, and investigated the zoonotic potential of the E. bieneusi in foxes and raccoon dogs. CONCLUSIONS: These findings expand the geographic distribution information of E. bieneusi' host in China and was helpful in preventing against the infection of E. bieneusi with zoonotic potential in foxes and raccoon dogs.


Enterocytozoon , Microsporidiosis , Humans , Animals , Multilocus Sequence Typing/veterinary , Enterocytozoon/genetics , Foxes/genetics , Raccoon Dogs , Molecular Epidemiology , Microsporidiosis/epidemiology , Microsporidiosis/veterinary , Feces , Prevalence , Phylogeny , China/epidemiology , Genotype
7.
Inorg Chem ; 63(6): 3099-3106, 2024 Feb 12.
Article En | MEDLINE | ID: mdl-38299496

Electrochemical conversion of nitrogen into ammonia at ambient conditions as a sustainable approach has gained significant attention, but it is still extremely challenging to simultaneously obtain a high faradaic efficiency (FE) and NH3 yield. In this work, the interstitial boron-doped porous Pd nanotubes (B-Pd PNTs) are constructed by combining the self-template reduction method with boron doping. Benefiting from distinctive one-dimensional porous nanotube architectonics and the incorporation of the interstitial B atoms, the resulting B-Pd PNTs exhibit high NH3 yield (18.36 µg h-1 mgcat.-1) and FE (21.95%) in neutral conditions, outperforming the Pd/PdO PNTs (10.4 µg h-1 mgcat.-1 and 8.47%). The present study provides an attractive method to enhance the efficiency of the electroreduction of nitrogen into ammonia by incorporating interstitial boron into porous Pd-based catalysts.

9.
Phytomedicine ; 124: 155289, 2024 Feb.
Article En | MEDLINE | ID: mdl-38176269

BACKGROUND: Ginsenoside Rg3 (G-Rg3), extracted from Panax notoginseng, possesses hepatoprotective properties. Hepatic stellate cells (HSCs) activation is responsible for liver fibrosis. Recent studies have reported the suppressive effects of G-Rg3 on HSC activation and proliferation. Ferroptosis is a novel iron regulated cell death. ACSL4, a key indicator of ferroptosis, is commonly methylated in various diseases. PURPOSE: However, the role of ACSL4 methylation-mediated HSC ferroptosis in G-Rg3 inhibition of hepatic fibrosis needs to be explored. METHODS: Effects of G-Rg3 on inhibiting fibrosis were evaluated in vivo and in vitro. The impact of G-Rg3 on HSC ferroptosis was assessed in vitro. Furthermore, the expression of ACSL4, ACSL4 methylation and microRNA-6945-3p (miR-6945-3p) levels were determined. RESULTS: G-Rg3 significantly alleviated CCl4-induced liver fibrosis, accompanied by collagen downregulation. In vitro, G-Rg3 contributed to HSC inactivation, leading to decreased collagen production. G-Rg3 induced HSC ferroptosis, characterized by increased iron accumulation, depletion of glutathione, malondialdehyde levels, and generation of lipid reactive oxygen species. Moreover, G-Rg3 promoted ACSL4 demethylation and restored its expression. Notably, DNMT3B counteracted the effect of G-Rg3-mediated inhibition of ACSL4 methylation and was targeted by miR-6945-3p. Further investigations revealed that G-Rg3 suppressed ACSL4 methylation through miR-6945-3p-mediated DNMT3B inhibition. Consistent with this, miR-6945-3p inhibition reversed G-Rg3-induced ACSL4 expression and HSC ferroptosis. CONCLUSION: G-Rg3 inhibits ACSL4 methylation by miR-6945-3p-mediated DNMT3B inhibition, thereby promoting HSC ferroptosis and mitigating liver fibrosis.


Ferroptosis , Ginsenosides , MicroRNAs , Humans , Hepatic Stellate Cells , Signal Transduction , Liver Cirrhosis/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Iron/metabolism , Collagen/metabolism
10.
Commun Biol ; 7(1): 113, 2024 01 19.
Article En | MEDLINE | ID: mdl-38243118

Hepatic stellate cell (HSC) activation is considered as a central driver of liver fibrosis and effective suppression of HSC activation contributes to the treatment of liver fibrosis. Circular RNAs (circRNAs) have been reported to be important in tumor progression. However, the contributions of circRNAs in liver fibrosis remain largely unclear. The liver fibrosis-specific circRNA was explored by a circRNA microarray and cVIM (a circRNA derived from exons 4 to 8 of the vimentin gene mmu_circ_32994) was selected as the research object. Further studies revealed that cVIM, mainly expressed in the cytoplasm, may act as a sponge for miR-122-5p and miR-9-5p to enhance expression of type I TGF-ß receptor (TGFBR1) and TGFBR2 and promotes activation of the TGF-ß/Smad pathway, thereby accelerating the progression of liver fibrosis. Our results demonstrate a vital role for cVIM in promoting liver fibrosis progression and provide a fresh perspective on circRNAs in liver fibrosis.


MicroRNAs , RNA, Circular , Vimentin , Humans , Hepatic Stellate Cells/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Transforming Growth Factor beta/metabolism , Vimentin/genetics
11.
Int J Biol Macromol ; 261(Pt 2): 129779, 2024 Mar.
Article En | MEDLINE | ID: mdl-38290628

Skeletal muscle growth and development in livestock and poultry play a pivotal role in determining the quality and yield of meat production. However, the mechanisms of myogenesis are remained unclear due to it finely regulated by a complex network of biological macromolecules. In this study, leveraging previous sequencing data, we investigated a differentially expressed circular RNA (circSGCB) present in fetal and adult muscle tissues among various ruminant species, including cattle, goat, and sheep. Our analysis revealed that circSGCB is a single exon circRNA, potentially regulated by an adjacent bovine enhancer. Functional analysis through loss-of-function tests demonstrated that circSGCB exerts inhibitory effects on bovine myoblast proliferation while promoting myocytes generation. Furthermore, we discovered that circSGCB primarily localizes to the cytoplasm, where it functions as a molecular sponge by binding to bta-miR-27a-3p. This interaction releases the mRNAs of KLF3 gene and further activates downstream functional pathways. In vivo, studies provided evidence that up-regulation of KLF3 contributes to muscle regeneration. These findings collectively suggest that circSGCB operates via a competing endogenous RNA (ceRNA) mechanism to regulate KLF3, thereby influencing myogenesis in ruminants and highlights it may as potential molecular targets for enhancing meat production in livestock and poultry industries.


MicroRNAs , Cattle , Animals , Sheep , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Competitive Endogenous , RNA, Circular/genetics , RNA, Messenger/metabolism , Muscle Development/genetics , Muscle, Skeletal/metabolism
12.
Viruses ; 15(11)2023 Oct 29.
Article En | MEDLINE | ID: mdl-38005850

Porcine reproductive and respiratory syndrome (PRRS) has been prevalent for nearly forty years since it was first reported. It has been one of the major diseases jeopardizing the healthy development of the world swine industry, as well as causing great economic losses to the industry's economic development. Furthermore, no way has been found to combat the disease due to the immunosuppressive properties of its pathogen porcine reproductive and respiratory syndrome virus (PRRSV) infection. We previously examined the mRNA expression of IFN-I in PRRSV-infected Marc-145 cells at different time periods using qRT-PCR, and found that the mRNA expression of IFN-I in the late stage of PRRSV infection showed suppression. Naringenin is a flavonoid found in citrus fruits and has a very wide range of pharmacological activities. Therefore, the aim of the present study was to investigate the modulatory effect of naringenin on the suppressed innate immune response after PRRSV infection. The expression of IFN-I, IL-10, and ISGs in the late stage of PRRSV infection was examined using qRT-PCR, and the results showed that naringenin improved the expression of antiviral cytokines suppressed by PRRSV infection. Further results showed that naringenin treatment significantly up-regulated the expression of proteins related to the RIG-I-MAV immune signaling pathway, and that naringenin could not significantly activate the RIG-I-MAVS signaling pathway after the addition of the RIG-I inhibitor Cyclo. Overall, these data demonstrated that naringenin could improve the innate immune response suppressed by PRRSV infection by modulating the RIG-I-MAVS signaling pathway. Therefore, our study will provide a theoretical basis for the development of naringenin as a drug against immunosuppressive viral infectious disease infections.


Interferon Type I , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Swine , Animals , Porcine respiratory and reproductive syndrome virus/metabolism , Cell Line , Interferon Type I/metabolism , Signal Transduction , Porcine Reproductive and Respiratory Syndrome/drug therapy , Immunity, Innate , RNA, Messenger
13.
J Agric Food Chem ; 2023 Nov 03.
Article En | MEDLINE | ID: mdl-37922022

A key event in liver fibrosis is the activation of the hepatic stellate cell (HSC). Schisandrin B (Sch B), a major component extracted from Schisandra chinensis, has been shown to inhibit HSC activation. Recently, ferroptosis (FPT) has been reported to be involved in HSC activation. However, whether Sch B has an effect on the HSC FPT remains unclear. Herein, we explored the effects of Sch B on liver fibrosis in vivo and in vitro and the roles of Wnt agonist 1 and ferrostatin-1 in the antifibrotic effects of Sch B. Sch B effectively alleviated CCl4-induced liver fibrosis, with decreased collagen deposition and α-SMA level. Additionally, Sch B resulted in an increase in lymphocyte antigen 6 complex locus C low (Ly6Clo) macrophages, contributing to a reduced level of TIMP1 and increased MMP2. Notably, the Wnt pathway was involved in Sch B-mediated Ly6C macrophage phenotypic transformation. Further studies demonstrated that Sch B-treated macrophages had an inhibitory effect on HSC activation, which was associated with HSC FPT. GPX4, a negative regulator of FPT, was induced by Sch B and found to be involved in the crosstalk between macrophage and HSC FPT. Furthermore, HSC inactivation as well as FPT induced by Sch B-treated macrophages was blocked down by Wnt pathway agonist 1. Collectively, we demonstrate that Sch B inhibits liver fibrosis, at least partially, through mediating Ly6Clo macrophages and HSC FPT. Sch B enhances Wnt pathway inactivation, leading to the increase in Ly6Clo macrophages, which contributes to HSC FPT. Sch B may be a promising drug for liver fibrosis treatment.

14.
J Med Virol ; 95(10): e29157, 2023 10.
Article En | MEDLINE | ID: mdl-37814947

It is known that ribonucleotide reductase M2 (RRM2) could be induced by hepatitis B virus (HBV) via DNA damage response. However, whether RRM2 is a potential biomarker for diagnosing and monitoring liver fibrosis in chronic hepatitis B (CHB) patients is still unclear. In this study, CHB patients from GSE84044 (a transcriptome data from GEO data set) were downloaded and RRM2 was selected as a hub gene. Interestingly, a positive correlation was found between serum RRM2 and liver fibrosis stage. The similar results were found in CHB patients with normal alanine aminotransferase (ALT). Notably, RRM2 could effectively differentiate preliminary fibrosis from advanced fibrosis in CHB patients with/without normal ALT. In addition, RRM2 had a better performance in diagnosing liver fibrosis than two commonly used noninvasive methods (aspartate aminotransferase-to-platelet ratio index and fibrosis index based on the four factors), two classic fibrotic biomarkers (hyaluronic acid and type IV collagen) as well as Mac-2 binding protein glycosylation isomer, a known serum fibrosis marker. Moreover, CHB patients with high RRM2, who were associated with advanced fibrosis, had higher expressions of immune checkpoints. Overall, serum RRM2 may be a promising biomarker for diagnosing and monitoring liver fibrosis in CHB patients.


Hepatitis B, Chronic , Humans , Hepatitis B, Chronic/complications , Hepatitis B, Chronic/diagnosis , ROC Curve , Liver Cirrhosis , Liver/pathology , Hepatitis B virus , Fibrosis , Biomarkers , Alanine Transaminase
15.
Int Immunopharmacol ; 125(Pt A): 111075, 2023 Dec.
Article En | MEDLINE | ID: mdl-37864909

AIM: This study sought to identify potential biomarkers and miRNA-mRNA networks within extracellular vesicles (EVs) for detecting severe acute pancreatitis-associated lung injury (SAPALI). METHODS: Blood-derived EVs were isolated, and their miRNA transcriptomic profiles were comprehensively analyzed using miRBase v.21 database along with miRDeep2 tool to predict novel miRNAs. DEGseq R package was deployed for the identification of differentially expressed miRNAs (DEMs). Protein-protein interaction (PPI) networks were assembled using STRING and Cytoscape. A lung injury model was established using Lipopolysaccharide (LPS)-induced BEAS-2B cells, chosen for their respiratory epithelial origin and pertinent association with lung injury. The expression levels of targeted miRNA and associated proteins, TLR4, NF-κB mRNA were quantified via RT-PCR and Western Blot. Levels of IL-6, IL-1ß, TNF-α, and ROS were measured using designated kits. Dual-luciferase reporter assay was conducted to examine the interaction between miRNA and proteins. RESULTS: The comparisons between the SAPALI and the control group revealed 10 DEM, including miR-503-5p and miR-483-5p. The cytoHubba plugin in Cytoscape identified three principal miRNA-mRNA interactions: miR-483-5p with PTK2 and HDAC2; miR-28-5p with MAPK1, TP53BP1, SEMA3A; and miR-503-5p with PPP1CB, SEMA6D, EPHB2, UNC5B. The SAPALI model exhibited elevated miR-503-5p, HDAC2 and inflammatory markers, with a decline UNC5B, miR-483-5p and miR-28-5p. Transfection with miR-503-5p and miR-483-5p inhibitors increased the levels of their supposed binding proteins but not miR-28-5p inhibitor. The Dual-luciferase reporter gene assay identified the interaction of miR-503-5p with UNC5B, and miR-483-5p with HDAC2, but not miR-28-5p with TP53BP1. CONCLUSIONS: Our study maps miRNA-mRNA interactions in SAPALI, identifying miR-503-5p and miR-483-5p as critical regulatory miRNAs.


Acute Lung Injury , Extracellular Vesicles , MicroRNAs , Pancreatitis , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Transcriptome , Acute Disease , Pancreatitis/genetics , Acute Lung Injury/genetics , Acute Lung Injury/metabolism , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , RNA, Messenger , Luciferases/genetics , Netrin Receptors/genetics
16.
Altern Ther Health Med ; 29(8): 918-923, 2023 Nov.
Article En | MEDLINE | ID: mdl-37773650

Background: Isolated pulmonary nodules (SPNs) are small, circular lesions within lung tissue, often challenging to diagnose due to their size and lack of typical imaging features. Timely diagnosis is crucial for treatment decisions. However, the difficulty in qualitative diagnosis necessitates clinical biopsies. Objective: This study aimed to assess the diagnostic accuracy of CT-guided percutaneous lung biopsy for SPNs and identify potential risk factors for malignancy. Methods: We conducted a retrospective analysis of 112 patients with SPNs who underwent CT-guided core needle biopsy (CT-CNB) between June 2020 and June 2022. Histological and cytological results were obtained for all patients, and clinical data and imaging characteristics were compared between benign and malignant SPN groups. Binary logistic regression was used to analyze risk factors for malignancy, and complications were observed. Results: Cytological and histological specimens were successfully obtained for all patients. The cohort consisted of 43 patients with benign SPNs and 69 with malignant SPNs. Among the malignant SPN group, 67 cases were confirmed via CT-CNB and 2 through surgery, resulting in a sensitivity of 97.10% and specificity of 100.00%. The malignant nodules comprised 45 adenocarcinomas, 14 squamous cell carcinomas, 8 metastatic tumors, and 2 small cell carcinomas. Notably, 2 initially diagnosed as malignant cases were found to have chronic inflammation on preoperative biopsy but revealed adenocarcinoma and squamous cell carcinoma post-surgery. The benign nodules encompassed 20 granulomatous inflammation cases, 15 chronic inflammation, 3 fungal granulomas, 2 hamartomas, and 1 fibrous tissue. Cytological smears exhibited a sensitivity of 81.3% and a specificity of 100.0% for malignancy. Significantly, age ≥60, elevated tumor markers, and specific imaging signs (burr, foliation, pleural pull) were identified as risk factors for malignant SPNs using Binary Logistic regression (all P < .05). Conclusions: CT-guided percutaneous lung biopsy demonstrates excellent diagnostic efficacy and safety for distinguishing benign and malignant SPNs.


Adenocarcinoma , Lung Neoplasms , Solitary Pulmonary Nodule , Humans , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/pathology , Retrospective Studies , Lung Neoplasms/diagnostic imaging , Lung/diagnostic imaging , Tomography, X-Ray Computed/methods , Biopsy , Adenocarcinoma/pathology , Inflammation
17.
iScience ; 26(8): 107326, 2023 Aug 18.
Article En | MEDLINE | ID: mdl-37529102

Hepatocyte pyroptosis has been shown to be involved in liver damage progression. Previously, we found that growth arrest-specific 5 (GAS5) is a regulator of hepatic stellate cell (HSC) activation. However, whether GAS5 plays a role in hepatocyte pyroptosis remains unclear. In this study, reduced GAS5 was shown in CCl4-treated mice and restoration of GAS5-inhibited liver fibrosis in vivo. Hepatocyte pyroptosis participated in the effects of GAS5-inhibited liver fibrosis, associated with reduced caspase-1, NLRP3, and IL-1ß (hepatocyte pyroptosis markers). Notably, AHR expression, a suppressor of NLRP3, was enhanced by GAS5. Silencing AHR inhibited GAS5-mediated hepatocyte pyroptosis. GAS5 and AHR were targets of microRNA-684 (miR-684). In addition, the effects of GAS5 on hepatocyte pyroptosis could be inhibited by miR-684. Interestingly, GAS5-mediated hepatocyte pyroptosis contributed to HSC inactivation. In conclusion, we demonstrate that GAS5 inhibits hepatocyte pyroptosis and HSC activation, at least in part, via regulation of miR-684 and AHR.

18.
Chem Commun (Camb) ; 59(69): 10440-10443, 2023 Aug 24.
Article En | MEDLINE | ID: mdl-37555323

In this work, we synthesize P-doped Ir metallene (P-Ir metallene) with rich defects as a highly active bifunctional catalyst towards the hydrogen evolution reaction and oxygen evolution reaction, requiring overpotentials of 28 and 279 mV to drive 10 mA cm-2 in 0.5 M H2SO4, respectively. Moreover, P-Ir metallene exhibits excellent electrocatalytic performance for overall water splitting, producing hydrogen at 10 mA cm-2 with a low operation voltage of 1.508 V. This study proposes the incorporation of phosphorus into noble metals to improve the electrocatalytic performance for water splitting.

19.
Cell Death Discov ; 9(1): 304, 2023 Aug 19.
Article En | MEDLINE | ID: mdl-37598186

Recently, Salidroside (Sal) has been demonstrated to suppress hepatic stellate cell (HSC) activation, a crucial event for liver fibrosis. Moreover, Sal has been reported to decrease hepatocyte injury. A growing number of reports have indicated that the crosstalk between hepatocytes and HSCs is very crucial for liver fibrosis development. Whether Sal-treated hepatocytes could inhibit HSC activation is unclear. Exosomes, as vital vehicles of intercellular communication, have been shown to transfer cargos between hepatocytes and HSCs. Herein, we aimed to investigate the roles of exosomal miRNAs from Sal-treated hepatocytes in HSC activation as well as liver fibrosis. Our results showed that Sal suppressed carbon tetrachloride (CCl4)-induced liver fibrosis in vivo. HSC activation as well as cell proliferation was repressed in HSCs co-cultured with Sal-treated hepatocytes. Interestingly, miR-146a-5p was up-regulated by Sal in CCl4-treated mice. Also, enhanced miR-146a-5p was found in hepatocytes isolated from Sal-treated CCl4 mice and hepatocyte-derived exosomes. Notably, hepatocyte exosomal miR-146a-5p contributed to HSC inactivation. Inhibiting miR-146a-5p in hepatocyte exosomes resulted in reduced E-cadherin (E-cad) and increased desmin in HSCs, indicating that miR-146a-5p caused HSC inactivation via epithelial-mesenchymal transition (EMT). miR-146a-5p inhibition-mediated HSC activation and EMT process were blocked down by loss of EIF5A2. Further studies revealed that EIF5A2 was a target of miR-146a-5p. Furthermore, exosomes with miR-146a-5p overexpression inhibited liver fibrosis in CCl4 mice. Collectively, exosomal miR-146a-5p from Sal-treated hepatocytes inhibits HSC activation and liver fibrosis, at least in part, by suppressing EIF5A2 and EMT process.

20.
J Ginseng Res ; 47(4): 534-542, 2023 Jul.
Article En | MEDLINE | ID: mdl-37397418

Background: Ginsenoside Rg1, a bioactive component of Ginseng, has demonstrated anti-inflammatory, anti-cancer, and hepatoprotective effects. It is known that the epithelial-mesenchymal transition (EMT) plays a key role in the activation of hepatic stellate cells (HSCs). Recently, Rg1 has been shown to reverse liver fibrosis by suppressing EMT, although the mechanism of Rg1-mediated anti-fibrosis effects is still largely unclear. Interestingly, Smad7, a negative regulator of the transforming growth factor ß (TGF-ß) pathway, is often methylated during liver fibrosis. Whether Smad7 methylation plays a vital role in the effects of Rg1 on liver fibrosis remains unclear. Methods: Anti-fibrosis effects were examined after Rg1 processing in vivo and in vitro. Smad7 expression, Smad7 methylation, and microRNA-152 (miR-152) levels were also analyzed. Results: Rg1 significantly reduced the liver fibrosis caused by carbon tetrachloride, and reduced collagen deposition was also observed. Rg1 also contributed to the suppression of collagenation and HSC reproduction in vitro. Rg1 caused EMT inactivation, reducing Desmin and increasing E-cadherin levels. Notably, the effect of Rg1 on HSC activation was mediated by the TGF-ß pathway. Rg1 induced Smad7 expression and demethylation. The over-expression of DNA methyltransferase 1 (DNMT1) blocked the Rg1-mediated inhibition of Smad7 methylation, and miR-152 targeted DNMT1. Further experiments suggested that Rg1 repressed Smad7 methylation via miR-152-mediated DNMT1 inhibition. MiR-152 inhibition reversed the Rg1-induced promotion of Smad7 expression and demethylation. In addition, miR-152 silencing led to the inhibition of the Rg1-induced EMT inactivation. Conclusion: Rg1 inhibits HSC activation by epigenetically modulating Smad7 expression and at least by partly inhibiting EMT.

...