Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Schizophr Res ; 270: 165-171, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38917553

RESUMEN

BACKGROUND: Schizotypy, a multidimensional construct with positive, negative, and disorganized dimensions, represents a vulnerability marker for the development of schizophrenia. Although there has been increasing evidence linking schizotypy to emotion regulation (ER) deficits, the specific association between different schizotypal dimensions and alterations in ER strategy use in daily life remains poorly understood. METHODS: Using the experience sampling method (ESM), the present study examined the associations between positive, negative, and disorganized schizotypy and ER strategy use in daily life in a nonclinical young adult sample (N = 258). Participants were instructed to report their ER strategy use 5 times a day for 14 days. Four adaptive ER strategies (reflection, reappraisal, social sharing, and distraction) and two maladaptive ER strategies (suppression and rumination) were included. RESULTS: Multilevel modeling analyses showed that positive schizotypal traits predicted greater use of adaptive ER strategies, while negative schizotypal traits predicted less use of adaptive ER strategies and more frequent use of emotional suppression in daily life. No associations between disorganized schizotypal traits and any ER strategy use were found. CONCLUSION: Schizotypy dimensions are differentiated by preferences for different ER strategies in daily life. The findings suggest a strong association between negative schizotypy and notable dysfunctions in ER, emphasizing the significance of negative schizotypy as a vulnerability factor for psychosis.

2.
Ying Yong Sheng Tai Xue Bao ; 35(1): 169-176, 2024 Jan.
Artículo en Chino | MEDLINE | ID: mdl-38511453

RESUMEN

Microbial residues are an important component of soil organic carbon (SOC). It is unclear how long-term thinning affects the accumulation characteristics of microbial residue carbon (C). We analyzed the differences in soil physicochemical properties, microbial communities, extracellular enzyme activities, and microbial residue C in topsoil (0-10 cm) and subsoil (20-30 cm) in Picea asperata plantation of non-thinned (control, 4950 trees·hm-2) and thinned for 14 years (1160 trees·hm-2) stands, aiming to reveal the regulatory mechanism of thinning on microbial residue C accumulation. The results showed that thinning significantly increased SOC content, total nitrogen content, available phosphorus content, the proportion of particulate organic C, soil water content, C-cycle hydrolase, and acid phosphatase activities, but significantly reduced the proportion of mineral-associated organic C. Thinning significantly affected the content of fungal and microbial residue C, and the contribution of microbial residue C to SOC, and these effects were independent of soil layer. The content of fungal and microbial residue C was 25.0% and 24.5% higher under thinning treatments. However, thinning significantly decreased the contribution of microbial residue C to SOC by 12.3%, indicating an increase in the proportion of plant-derived C in SOC. Stepwise regression analysis showed that total nitrogen and soil water content were key factors influencing fungal and micro-bial residue C accumulation. In summary, thinning promoted microbial residue C sequestration by altering soil pro-perties and changed the composition of SOC sources.


Asunto(s)
Picea , Suelo , Suelo/química , Carbono/análisis , Microbiología del Suelo , Región Alpina Europea , Minerales , China , Nitrógeno/análisis , Agua/análisis
3.
J Transl Med ; 21(1): 615, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37697300

RESUMEN

BACKGROUND: IFN-λ has been shown to have a dual function in cancer, with its tumor-suppressive roles being well-established. However, the potential existence of a negative ''tumor-promoting'' effect of endogenous IFN-λ is still not fully understood. METHODS: We conducted a comprehensive review and analysis of the perturbation of IFN-λ genes across various cancer types. Correlation coefficients were utilized to examine the relationship between endogenous IFN-λ expression and clinical factors, immune cell infiltration, tumor microenvironment, and response to immunotherapy. Genes working together with IFN-λ were obtained by constructing the correlation-based network related to IFN-λ and the gene interaction network in the KEGG pathway and IFN-λ-related genes obtained from the networks were integrated as candidate markers for the prognosis model. We then applied univariate and multivariate COX regression models to select cancer-specific independent prognostic markers associated with IFN-λ and to investigate risk factors for these genes by survival analysis. Additionally, computational methods were used to analyze the transcriptome, copy number variations, genetic mutations, and methylation of IFN-λ-related patient groups. RESULT: Endogenous expression of IFN-λ has been linked to poor prognosis in cancer patients, with the genes IFN-λ2 and IFN-λ3 serving as independent prognostic markers. IFN-λ acts in conjunction with related genes such as STAT1, STAT2, and STAT3 to affect the JAK-STAT signaling pathway, which promotes tumor progression. Abnormalities in IFN-λ genes are associated with changes in immune checkpoints and immune cell infiltration, which in turn affects cancer- and immune-related pathways. While there is increased immune cell infiltration in patients with IFN-λ expression, this does not improve survival prognosis, as T-cell dysfunction and an inflammatory environment are also present. The amplification of IFNL2 and IFNL3 copy number variants drives specific endogenous expression of IFN-λ in patients, and those with this specific expression have been found to have more mutations in the TP53 gene and lower levels of DNA methylation. CONCLUSION: Our study integrated multi-omics data to provide a comprehensive insight into the dark side of endogenous IFN-λ, providing a fundamental resource for further discovery and therapeutic exploration in cancer.


Asunto(s)
Interferón lambda , Neoplasias , Humanos , Variaciones en el Número de Copia de ADN/genética , Neoplasias/genética , Citocinas , Metilación de ADN/genética , Microambiente Tumoral
4.
Front Genet ; 14: 1061364, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152984

RESUMEN

Cancer remains a formidable challenge in medicine due to its propensity for recurrence and metastasis, which can result in unfavorable treatment outcomes. This challenge is particularly acute for early-stage patients, who may experience recurrence and metastasis without timely detection. Here, we first analyzed the differences in clinical characteristics among the primary tumor, recurrent tumor, and metastatic tumor in different stages of cancer, which may be caused by the molecular level. Moreover, the importance of predicting early cancer recurrence and metastasis is emphasized by survival analyses. Next, we used a multi-omics approach to identify key molecular changes associated with early cancer recurrence and metastasis and discovered that early metastasis in cancer demonstrated a high degree of genomic and cellular heterogeneity. We performed statistical comparisons for each level of omics data including gene expression, mutation, copy number variation, immune cell infiltration, and cell status. Then, various analytical techniques, such as proportional hazard model and Fisher's exact test, were used to identify specific genes or immune characteristics associated with early cancer recurrence and metastasis. For example, we observed that the overexpression of BPIFB1 and high initial B-cell infiltration levels are linked to early cancer recurrence, while the overexpression or amplification of ANKRD22 and LIPM, mutation of IGHA1 and MUC16, high fibroblast infiltration level, M1 polarization of macrophages, cellular status of DNA repair are all linked to early cancer metastasis. These findings have led us to construct classifiers, and the average area under the curve (AUC) of these classifiers was greater than 0.75 in The Cancer Genome Atlas (TCGA) cancer patients, confirming that the features we identified could be biomarkers for predicting recurrence and metastasis of early cancer. Finally, we identified specific early sensitive targets for targeted therapy and immune checkpoint inhibitor therapy. Once the biomarkers we identified changed, treatment-sensitive targets can be treated accordingly. Our study has comprehensively characterized the multi-omics characteristics and identified a panel of biomarkers of early cancer recurrence and metastasis. Overall, it provides a valuable resource for cancer recurrence and metastasis research and improves our understanding of the underlying mechanisms driving early cancer recurrence and metastasis.

5.
Front Oncol ; 13: 1130092, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37064087

RESUMEN

Tumor heterogeneity in breast cancer hinders proper diagnosis and treatment, and the identification of molecular subtypes may help enhance the understanding of its heterogeneity. Therefore, we proposed a novel integrated multi-omics approach for breast cancer typing, which led to the identification of a hybrid subtype (Mix_Sub subtype) with a poor survival prognosis. This subtype is characterized by lower levels of the inflammatory response, lower tumor malignancy, lower immune cell infiltration, and higher T-cell dysfunction. Moreover, we found that cell-cell communication mediated by NCAM1-FGFR1 ligand-receptor interaction and cellular functional states, such as cell cycle, DNA damage, and DNA repair, were significantly altered and upregulated in patients with this subtype, and that such patients displayed greater sensitivity to targeted therapies. Subsequently, using differential genes among subtypes as biomarkers, we constructed prognostic risk models and subtype classifiers for the Mix_Sub subtype and validated their generalization ability in external datasets obtained from the GEO database, indicating their potential therapeutic and prognostic significance. These biomarkers also showed significant spatially variable expression in malignant tumor cells. Collectively, the identification of the Mix_Sub breast cancer subtype and its biomarkers, based on the driving relationship between omics, has deepened our understanding of breast cancer heterogeneity and facilitated the development of breast cancer precision therapy.

6.
Front Genet ; 13: 916400, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36061170

RESUMEN

Dysregulation of signaling pathways plays an essential role in cancer. However, there is not a comprehensive understanding on how oncogenic signaling pathways affect the occurrence and development with a common molecular mechanism of pan-cancer. Here, we investigated the oncogenic signaling pathway dysregulation by using multi-omics data on patients from TCGA from a pan-cancer perspective to identify commonalities across different cancer types. First, the pathway dysregulation profile was constructed by integrating typical oncogenic signaling pathways and the gene expression of TCGA samples, and four molecular subtypes with significant phenotypic and clinical differences induced by different oncogenic signaling pathways were identified: TGF-ß+ subtype; cell cycle, MYC, and NF2- subtype; cell cycle and TP53+ subtype; and TGF-ß and TP53- subtype. Patients in the TGF-ß+ subtype have the best prognosis; meanwhile, the TGF-ß+ subtype is associated with hypomethylation. Moreover, there is a higher level of immune cell infiltration but a slightly worse survival prognosis in the cell cycle, MYC, and NF2- subtype patients due to the effect of T-cell dysfunction. Then, the prognosis and subtype classifiers constructed by differential genes on a multi-omics level show great performance, indicating that these genes can be considered as biomarkers with potential therapeutic and prognostic significance for cancers. In summary, our study identified four oncogenic signaling pathway-driven patterns presented as molecular subtypes and their related potential prognostic biomarkers by integrating multiple omics data. Our discovery provides a perspective for understanding the role of oncogenic signaling pathways in pan-cancer.

7.
Ying Yong Sheng Tai Xue Bao ; 31(3): 706-716, 2020 Mar.
Artículo en Chino | MEDLINE | ID: mdl-32537964

RESUMEN

Stand age is a key factor affecting carbon stocks and fluxes of forest ecosystem. Quantification of the changes in forest productivity with stand development is critically important for optimizing forest age structure, facilitating maximum utilization of resources, and better realizing the role of forests in regulating the uptake, storage, and emission of CO2. In this study, using space for time substitution approach, we established 12 chronosequence plots in the broadleaf-Korean pine forests of Lushuihe. Using a locally parameterized Biome-BGC model, we simulated the dynamics of net primary productivity (NPP) with stand development and examined the changes with stand development in NPP of broadleaf-Korean pine forests under four developmental scenarios. Results showed that the biomass in broadleaf-Korean pine forests of different age-classes ranked in the order of young stand < mid-age stand < mature stand < over-mature stand, with the average value of (224.35±20.68), (237.23±39.96), (259.16±19.51), and (357.57±84.74) t·hm-2, respectively. Modelled NPP in broadleaf-Korean pine forests of different developmental stages varied in the range of 489.8-588 g C·m-2·a-1, which were consistent with the observed data of MODIS NPP, highlighting the adequacy and accuracy of Biome-BGC model in simulating the carbon flux of broadleaf-Korean pine forests. Simulated NPP displayed a pattern of initial increase and later decrease with stand development, reaching peak in the mid-age stand and being smallest in the over-mature stand. Simulations of NPP in broadleaf-Korean pine forest under four developmental scenarios showed that, for the two scenarios with planted Korean pine forests experiencing either natural development or controlled cutting, NPP was highest in the mature stage; whereas for the two scenarios with initial natural secondary birch forests experiencing either natural development or controlled cutting, NPP was highest in the young stage.


Asunto(s)
Ecosistema , Árboles , China , Bosques , República de Corea
8.
Ying Yong Sheng Tai Xue Bao ; 30(2): 583-592, 2019 Feb 20.
Artículo en Chino | MEDLINE | ID: mdl-30915811

RESUMEN

Soil acidification of large areas of paddy fields in southern China has become an important problem in rice production. Therefore, how to ameliorate or remedy the acidifying paddy soil and to exposit its mechanism has important theoretical and practical significance for rebuilding healthy soils and guaranteeing national food security. Although lime has already been extensively used to remedy acidified soils, long-term application of a large amount of lime would not only cause the soil to harden, but also disturb the balance between calcium, potassium and magnesium in the soil. Given the advantages of lower solubility and comprehensive nutrient supply, fertilizer of calcium silicon magnesium potassium (CSMP) may be used as an alternative. The aim of this study was to clarify the functions of CSMP and its effects on soil acidification in paddy fields. A four-year field experiment was conducted to investigate the dynamics of soil pH, exchangeable acidi-ty, exchangeable base cation and available silicon, as well as 0~30 cm pH buffer capacity (pHBC), net base production under CSMP fertilization in the paddy soil. There were five treatments, i.e. CK (traditional fertilization practice of the local farmers), treatment I (CK plus 750 kg·hm-2 CSMP); treatment II (CK plus 1125 kg·hm-2 CSMP), treatment III (CK plus 1500 kg·hm-2 CSMP), and treatment IV (CK plus 1875 kg·hm-2 CSMP). The results showed that the traditional fertilization practice of the local farmers resulted in a decline of soil pH, soil exchangeable base cation and base saturation year by year, but soil exchangeable acid was increased with year. Conversely, CSPM fertlization significantly raised soil pH, with the magnitude of increases positively depending on the number of application times or application rate. Continuous and repeated application of CSMP effectively promoted the accumulation of exchangeable base cation and the consumption of soil exchangeable acid in paddy soil, especially for the accumulation of soil exchangeable Ca2+, Mg2+ and the consumption of soil exchangeable Al3+. Furthermore, the more amount of CSPM application resulted in the more accumulation or consumption, but with relatively slower rate. The exchangeable base cation and alkali released by CSMP contributed 108.8% to the total reduction of soil exchangeable acid, suggesting that it was the main path to reduce soil exchangeable acid. Meanwhile, CSMP application improved soil acidity in paddy field, with the content of available silicon increased year by year and the increase amplitude became larger with the more amount of CSMP application. The traditional fertilization of local farmers resulted in soil acidification, with a acidification rate was 2.86 kmol H+·hm-2·a-1. CSMP application could effectively control soil acidification, producing a lot of alkalinity with net alkalinity production of 9.93-13.82 kmol OH-·hm-2·a-1. CSPM could release Ca2+, Mg2+ and alkali, which would mitigate soil acidification in paddy fields.


Asunto(s)
Fertilizantes , Suelo , Calcio , Cationes , China , Magnesio , Potasio , Silicio
9.
Huan Jing Ke Xue ; 31(10): 2475-80, 2010 Oct.
Artículo en Chino | MEDLINE | ID: mdl-21229764

RESUMEN

An atrazine-degrading strain HB-5 was used as a bacteria for biodegradation. Treatments of soil with nitrogen single, phosphate single and nitrogen phosphate together with HB-5 were carried out for degradation and eco-toxicity test; then, relationship between atrazine degradation rate and soil available nitrogen, available phosphorus were discussed. Atrazine residues were determined by HPLC; available nitrogen was determined with alkaline hydrolysis diffusion method; available phosphorus was determined with 0.5 mol/L-NaHCO3 extraction and molybdenum stibium anti-color method, and toxicity test was carried out with micronucleus test of Vicia faba root tip cells. The results showed that: After separately or together application, nitrogenous and phosphorous fertilizers could significantly accelerate atrazine degradation than soil with HB-5 only. On day 5, the order of atrazine degradation was ANP > AP > AN > A; 7 days later, no statistically significant differences were found between treatments. The available nitrogen and phosphorus level in soil reduced as the degradation rate increased in the soil. The soil of eco-toxicity test results indicated that the eco-toxicity significantly reduced with the degradation of atrazine by HB-5, and the eco-toxicity on treatments of soil with fertilizer were all below the treatments without fertilizer. On day 5, the order of eco-toxicity was ANP < AP < AN < A; 7 days later, all treatments were decreased in control levels. So, adjusting soil nutrient content could not only promote atrazine degradation in soil but also could reduce the soil eco-toxicity effects that atrazine caused. All these results could be keystone of atrazine pollution remediation in contaminated soil in the future.


Asunto(s)
Arthrobacter/metabolismo , Atrazina/aislamiento & purificación , Herbicidas/aislamiento & purificación , Nitrógeno/química , Fósforo/química , Arthrobacter/aislamiento & purificación , Atrazina/metabolismo , Atrazina/toxicidad , Biodegradación Ambiental , Fertilizantes , Herbicidas/metabolismo , Herbicidas/toxicidad , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...