Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 676
1.
Angew Chem Int Ed Engl ; : e202405408, 2024 May 10.
Article En | MEDLINE | ID: mdl-38728168

Ring-opening polymerization (ROP) offers a striking solution to solve problems encountered in step-growth condensation polymerization, including precise control over molecular weight, molecular weight distribution, and topology. This has inspired our interest in ROP of cycloalkanes with an ultimate goal to rethink polyolefins, which clearly poses a number of challenges. Practicality of ROP of cycloalkanes is actually limited by their low polymerizability and elusive mechanisms which arise from significantly varied ring size and non-polar C-C bonds in monomers. In this work, by using Lewis acid/Brønsted base/C(sp3)-H initiator system previously developed in our laboratory, we focus on cyclobutanes and explore the positional and electronic effects of substituents on the ring, namely electron push-pull effect, in promoting controlled polymerization to afford densely functionalized poly(cyclobutanes), as well as catalytic degradation of obtained polymers for upcycling. More importantly, experiments and DFT calculations unveil considerable population of Lewis-acid-induced thermostabilized 1,4-zwitterions, which distinguish cyclobutanes from cyclopropanes and others. All these findings would shed light on catalytic synthesis and degradation of saturated all-carbon main-chain polymers, as well as small molecule transformations of cyclobutanes.

2.
Transl Oncol ; 45: 101980, 2024 May 02.
Article En | MEDLINE | ID: mdl-38701649

BACKGROUND: Male breast cancer (MBC) is a rare malignancy with a worse prognosis than female breast cancer (FBC). Current MBC treatment strategies are based on those for FBC. However, molecular differences between MBC and FBC with respect to prognosis and drug responses remain unclear. METHODS: After controlling for confounding factors with propensity score matching (PSM), differences between MBC and FBC were comprehensively analyzed using many types of data: survival, immune microenvironments, sex hormone responses, drug sensitivity, transcriptomes, genomes, epigenomes, and proteomes. RESULTS: Overall survival (OS) and cancer-specific survival (CSS) were both worse for MBC than for FBC. Differentially expressed mRNAs were enriched in numerous cancer-related functions and pathways, with SPAG16 and STOX1 being as the most important prognosis-related mRNAs for MBC. Competing endogenous RNA (ceRNA) and transcription factor (TF)-mRNA regulatory networks contain potential prognostic genes. Nine genes had higher mutation frequencies in MBC than in FBC. MBC shows a comparatively poor response to immunotherapy, with five proteins that promote breast cancer progression being highly expressed in MBC. MBC may be more responsive than FBC to estrogen. We detected six United States Food and Drug Administration (FDA)-approved therapeutic target genes as being differentially expressed between MBC and FBC. CONCLUSION: The poor prognosis of MBC compared to FBC is due to numerous molecular differences and resulting drug responses.

3.
J Agric Food Chem ; 72(20): 11652-11662, 2024 May 22.
Article En | MEDLINE | ID: mdl-38738910

Pectin lyases (PNLs) can enhance juice clarity and flavor by degrading pectin in highly esterified fruits, but their inadequate acid resistance leads to rapid activity loss in juice. This study aimed to improve the acid resistance of Aspergillus niger PNL pelA through surface charge design. A modification platform was established by fusing pelA with a protein tag and expressing the fusion enzyme in Escherichia coli. Four single-point mutants were identified to increase the surface charge using computational tools. Moreover, the combined mutant M6 (S514D/S538E) exhibited 99.8% residual activity at pH 3.0. The M6 gene was then integrated into the A. niger genome using a multigene integration system to obtain the recombinant PNL AM6. Notably, AM6 improved the light transmittance of orange juice to 45.3%, which was 8.39 times higher than that of pelA. In conclusion, AM6 demonstrated the best-reported acid resistance, making it a promising candidate for industrial juice clarification.


Aspergillus niger , Fruit and Vegetable Juices , Fungal Proteins , Polysaccharide-Lyases , Aspergillus niger/enzymology , Aspergillus niger/genetics , Fruit and Vegetable Juices/analysis , Polysaccharide-Lyases/genetics , Polysaccharide-Lyases/metabolism , Polysaccharide-Lyases/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Hydrogen-Ion Concentration , Food Handling , Acids/chemistry , Acids/metabolism , Acids/pharmacology , Citrus sinensis/chemistry , Pectins/chemistry , Pectins/metabolism , Enzyme Stability
4.
Food Chem ; 452: 139529, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38703740

This study evaluated the effects of varying levels of malondialdehyde (MDA) on the structural and foaming properties of the egg yolk proteins (EYPs), and the interaction between them was explored by molecular docking. The results showed that oxidative modification due to MDA increased the carbonyl content of EYPs by 4.49 times. Simultaneously, the total sulfhydryl content was reduced by 21.47%, and the solubility of EYPs was significantly decreased (p < 0.05). Continuous oxidation disorders the previously ordered structure of EYPs. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that some proteins underwent crosslinking and aggregation with increased MDA oxidation, aligning with changes in particle size and zeta-potential. Moderate oxidation (<1 mmol/L) enhanced the foaming capacity and foam stability of EYPs. Additionally, molecular docking results uncovered favorable interactions between MDA and specific EYPs, primarily through hydrogen bonding. This research offers valuable insights into managing the functional and quality changes of yolk products during processing.

5.
PLoS One ; 19(5): e0300769, 2024.
Article En | MEDLINE | ID: mdl-38709750

BACKGROUND: Post-stroke depression is a common complication of stroke, with a high incidence rate and low recognition rate. Many patients do not receive effective intervention at the onset, which affects subsequent treatment outcomes. Post-stroke depression not only impacts the patient's mental well-being but also increases the risk of stroke recurrence and poor prognosis. Therefore, it has become a significant public health concern. Acupuncture has gained significant popularity in the treatment of post-stroke depression. However, there are inconsistent clinical research results regarding its efficacy and safety. This systematic review aims to gather and critically assess all available evidence regarding the effectiveness and safety of acupuncture in the treatment of post-stroke depression in patients. METHODS: We will conduct thorough searches for relevant studies in multiple electronic databases (PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure, VIP Database, Wan-fang Data and China Biomedical Database). Our search scope will encompass studies published from the inception of each database until September 2023. To evaluate the potential bias in all the included studies, we will adhere to the guidelines offered in the Cochrane Handbook. The total effective rate will be the primary outcome. To conduct a systematic review, we will employ RevMan 5.4 software. RESULTS: This study will obtain efficacy and safety of acupuncture for the treatment of post-stroke depression. CONCLUSIONS: The conclusions of this study will provide evidence-based perspectives that can guide clinical decision-making regarding the practicality and recommended timing of using acupuncture to treat post-stroke depression. Furthermore, this study will help advance the clinical application of acupuncture treatment for post-stroke depression and enhance its efficacy while ensuring patient safety.


Acupuncture Therapy , Depression , Meta-Analysis as Topic , Stroke , Systematic Reviews as Topic , Humans , Stroke/complications , Stroke/therapy , Acupuncture Therapy/methods , Depression/therapy , Depression/etiology , Treatment Outcome
6.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 378-382, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38710522

One of the most prevalent malignancies in women is cervical cancer. Cervical cancer is mostly brought on by chronic high-risk human papillomavirus 16 (HPV16) and HPV18 infection. Currently, the widely used HPV vaccines are the bivalent Cervarix, the tetravalent Gardasil, and the 9-valent Gardasil-9.There are differences in T cell effector molecule changes, B cell antibody level, duration, age and the injection after vaccination of the three vaccines.


B-Lymphocytes , Papillomavirus Vaccines , T-Lymphocytes , Humans , Papillomavirus Vaccines/immunology , Papillomavirus Vaccines/administration & dosage , Female , T-Lymphocytes/immunology , B-Lymphocytes/immunology , Papillomavirus Infections/prevention & control , Papillomavirus Infections/immunology , Papillomavirus Infections/virology , Vaccination , Uterine Cervical Neoplasms/prevention & control , Uterine Cervical Neoplasms/immunology , Uterine Cervical Neoplasms/virology , Human Papillomavirus Recombinant Vaccine Quadrivalent, Types 6, 11, 16, 18/immunology , Human Papillomavirus Recombinant Vaccine Quadrivalent, Types 6, 11, 16, 18/administration & dosage , Human Papillomavirus Viruses
7.
Hepatol Int ; 2024 May 08.
Article En | MEDLINE | ID: mdl-38717693

BACKGROUND: Portal vein tumor thrombosis (PVTT) signifies late-stage hepatocellular carcinoma (HCC) with high-risk progression and poor prognosis. As a standard treatment, sorafenib monotherapy has limited the efficacy in managing HCC with PVTT. Currently, both hepatic arterial infusion chemotherapy (HAIC) and the combination of camrelizumab and rivoceranib have shown favorable survival benefits for advanced HCC, surpassing the standard sorafenib treatment. In this study, we investigate the safety and efficacy of HAIC combined with camrelizumab and rivoceranib in treating HCC patients with PVTT. METHODS: From January 2020 to December 2021, HCC patients with PVTT, who received either a triple regime of HAIC combined with camrelizumab and rivoceranib or a dual regime of camrelizumab and rivoceranib as their first-line treatment, were reviewed for eligibility at four hospital centers in China. To balance any intergroup differences, propensity score matching (PSM) was applied. The aim of this study is to compare the efficacy of the dual and triple combination treatment regimens based on survival prognosis and tumor response and evaluate the safety based on the occurrence of adverse reactions. RESULT: In this study, a total of 411 patients who received either the triple treatment regime (HAIC combined with camrelizumab plus rivoceranib, referred to as the HAICCR group, n = 292) or the dual treatment regime (camrelizumab combined with rivoceranib, referred to as the CR group, n = 119) between January 2020 and December 2021 were included. The results showed that the HAICCR group exhibited significantly better overall survival (mOS: 19.60 months vs. 11.50 months, p < 0.0001) and progression-free survival (mPFS: 10.0 months vs. 5.6 months, p < 0.0001) compared to the CR group in the overall cohort. Moreover, the HAICCR group also had a significantly higher ORR (objective response rate, 55.5% vs. 42.0%, p = 0.013) and DCR (disease control rate, 89.0% vs. 79.0%) compared to the CR group. After PSM, a final matched cohort of 83 pairs was obtained, and the survival benefits were consistent in this cohort as well (mOS: 18.70 months vs. 11.0 months, p < 0.0001; mPFS: 10.0 months vs. 5.6 months, p < 0.0001). However, there was no significant difference in the ORR between the triple and dual combination regimes. Univariate and multivariate analysis showed that CTP (Child-Turcotte-Pugh) stage, ALBI (albumin-bilirubin index) grade, tumor number, and treatment regime were significant risk factors affecting overall survival, while AFP (α-fetoprotein) level, tumor number, metastasis, and treatment regime were significant risk factors affecting progression-free survival. As for safety, hypertension and hand-foot syndrome were the two most common adverse reactions in both groups, with no significant difference in the occurrence of adverse reactions between the two groups (p < 0.05). CONCLUSION: In the context of advanced HCC patients with PVTT, the combination regime of HAIC and camrelizumab plus rivoceranib demonstrates more excellent capacity for prolonging survival and offers a well-tolerated safety compared to the CR dual therapy approach. This triple regime represents a therapeutic modality of broad prospects and vast potential for HCC patients with PVTT.

8.
Adv Healthc Mater ; : e2400545, 2024 May 06.
Article En | MEDLINE | ID: mdl-38706444

Early reconstruction of the vascular network is a prerequisite to the effective treatment of substantial bone defects. Traditional 3D printed tissue engineering scaffolds designed to repair large bone defects do not effectively regenerate the vascular network, and rely only on the porous structure within the scaffold for nutrient transfer and metabolic waste removal. This leads to delayed bone restoration and hence functional recovery. Therefore, strategies for generation scaffolds with the capacity to efficiently regenerate vascularization should be developed. This study loads roxarestat (RD), which can stabilize HIF-1α expression in a normoxic environment, onto the mesopore polydopamine nanoparticles (MPDA@RD) to enhance the reconstruction of vascular network in large bone defects. Subsequently, MPDA@RD is mixed with GelMA/HA hydrogel bioink to fabricate a multifunctional hydrogel scaffold (GHM@RD) through 3D printing. In vitro results show that the GHM@RD scaffolds achieve good angiogenic-osteogenic coupling by activating the PI3K/AKT/HSP90 pathway in BMSCs and the PI3K/AKT/HIF-1α pathway in HUVECs under mild thermotherapy. In vivo experiments reveal that RD and mild hyperthermia synergistically induce early vascularization and bone regeneration of critical bone defects. In conclusion, the designed GHM@RD drug delivery scaffold with mild hyperthermia holds great therapeutic value for future treatment of large bone defects.

9.
Front Pharmacol ; 15: 1363441, 2024.
Article En | MEDLINE | ID: mdl-38576480

Background: The rapid spread of bacteria with plasmid-mediated resistance to antibiotics poses a serious threat to public health. The search for potential compounds that can increase the antibacterial activity of existing antibiotics is a promising strategy for addressing this issue. Methods: Synergistic activity of the FDA-approved agent oxethazine combined with colistin was investigated in vitro using checkerboard assays and time-kill curves. The synergistic mechanisms of their combination of oxethazine and colistin was explored by fluorescent dye, scanning electron microscopy (SEM) and LC-MS/MS. The synergistic efficacy was evaluated in vivo by the Galleria mellonella and mouse sepsis models. Results: In this study, we found that oxethazine could effectively enhance the antibacterial activity of colistin against both mcr-positive and -negative pathogens, and mechanistic assays revealed that oxethazine could improve the ability of colistin to destruct bacterial outer membrane and cytoplasmic membrane permeability. In addition, their combination triggered the accumulation of reactive oxygen species causing additional damage to the membrane structure resulting in cell death. Furthermore, oxethazine significantly enhanced the therapeutic efficacy of colistin in two animal models. Conclusion: These results suggested that oxethazine, as a promising antibiotic adjuvant, can effectively enhance colistin activity, providing a potential strategy for treating multidrug-resistant bacteria.

10.
World J Clin Oncol ; 15(3): 419-433, 2024 Mar 24.
Article En | MEDLINE | ID: mdl-38576593

BACKGROUND: Accurate preoperative prediction of lymph node metastasis (LNM) in esophageal cancer (EC) patients is of crucial clinical significance for treatment planning and prognosis. AIM: To develop a clinical radiomics nomogram that can predict the preoperative lymph node (LN) status in EC patients. METHODS: A total of 32 EC patients confirmed by clinical pathology (who underwent surgical treatment) were included. Real-time fluorescent quantitative reverse transcription-polymerase chain reaction was used to detect the expression of B7-H3 mRNA in EC tissue obtained during preoperative gastroscopy, and its correlation with LNM was analyzed. Radiomics features were extracted from multi-modal magnetic resonance imaging of EC using Pyradiomics in Python. Feature extraction, data dimensionality reduction, and feature selection were performed using XGBoost model and leave-one-out cross-validation. Multivariable logistic regression analysis was used to establish the prediction model, which included radiomics features, LN status from computed tomography (CT) reports, and B7-H3 mRNA expression, represented by a radiomics nomogram. Receiver operating characteristic area under the curve (AUC) and decision curve analysis (DCA) were used to evaluate the predictive performance and clinical application value of the model. RESULTS: The relative expression of B7-H3 mRNA in EC patients with LNM was higher than in those without metastasis, and the difference was statistically significant (P < 0.05). The AUC value in the receiver operating characteristic (ROC) curve was 0.718 (95%CI: 0.528-0.907), with a sensitivity of 0.733 and specificity of 0.706, indicating good diagnostic performance. The individualized clinical prediction nomogram included radiomics features, LN status from CT reports, and B7-H3 mRNA expression. The ROC curve demonstrated good diagnostic value, with an AUC value of 0.765 (95%CI: 0.598-0.931), sensitivity of 0.800, and specificity of 0.706. DCA indicated the practical value of the radiomics nomogram in clinical practice. CONCLUSION: This study developed a radiomics nomogram that includes radiomics features, LN status from CT reports, and B7-H3 mRNA expression, enabling convenient preoperative individualized prediction of LNM in EC patients.

11.
Natl Sci Rev ; 11(5): nwae027, 2024 May.
Article En | MEDLINE | ID: mdl-38577662

Flexible sensors have been developed for the perception of various stimuli. However, complex deformation, usually resulting from forces or strains from multi-axes, can be challenging to measure due to the lack of independent perception of multiaxial stimuli. Herein, flexible sensors based on the metamaterial membrane with zero Poisson's ratio (ZPR) are proposed to achieve independent detection of biaxial stimuli. By deliberately designing the geometric dimensions and arrangement parameters of elements, the Poisson's ratio of an elastomer membrane can be modulated from negative to positive, and the ZPR membrane can maintain a constant transverse dimension under longitudinal stimuli. Due to the accurate monitoring of grasping force by ZPR sensors that are insensitive to curvatures of contact surfaces, rigid robotic manipulators can be guided to safely grasp deformable objects. Meanwhile, the ZPR sensor can also precisely distinguish different states of manipulators. When ZPR sensors are attached to a thermal-actuation soft robot, they can accurately detect the moving distance and direction. This work presents a new strategy for independent biaxial stimuli perception through the design of mechanical metamaterials, and may inspire the future development of advanced flexible sensors for healthcare, human-machine interfaces and robotic tactile sensing.

12.
J Xray Sci Technol ; 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38578874

BACKGROUND: The main metastatic route for lung cancer is lymph node metastasis, and studies have shown that non-small cell lung cancer (NSCLC) has a high risk of lymph node infiltration. OBJECTIVE: This study aimed to compare the performance of handcrafted radiomics (HR) features and deep transfer learning (DTL) features in Computed Tomography (CT) of intratumoral and peritumoral regions in predicting the metastatic status of NSCLC lymph nodes in different machine learning classifier models. METHODS: We retrospectively collected data of 199 patients with pathologically confirmed NSCLC. All patients were divided into training (n = 159) and validation (n = 40) cohorts, respectively. The best HR and DTL features in the intratumoral and peritumoral regions were extracted and selected, respectively. Support Vector Machine (SVM), k-Nearest Neighbors (KNN), Light Gradient Boosting Machine (Light GBM), Multilayer Perceptron (MLP), and Logistic Regression (LR) models were constructed, and the performance of the models was evaluated. RESULTS: Among the five models in the training and validation cohorts, the LR classifier model performed best in terms of HR and DTL features. The AUCs of the training cohort were 0.841 (95% CI: 0.776-0.907) and 0.955 (95% CI: 0.926-0.983), and the AUCs of the validation cohort were 0.812 (95% CI: 0.677-0.948) and 0.893 (95% CI: 0.795-0.991), respectively. The DTL signature was superior to the handcrafted radiomics signature. CONCLUSIONS: Compared with the radiomics signature, the DTL signature constructed based on intratumoral and peritumoral areas in CT can better predict NSCLC lymph node metastasis.

13.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(3): 262-268, 2024 Mar 15.
Article Zh | MEDLINE | ID: mdl-38557378

OBJECTIVES: To investigate the factors influencing the occurrence of small for gestational age (SGA) at different degrees and provide a basis for early identification of severe SGA cases. METHODS: Neonatal and maternal prenatal information were retrospectively collected from January 2018 to December 2022 at Peking University People's Hospital. The neonates were divided into three groups: severe SGA group (birth weight below the 3rd percentile for gestational age and sex), mild SGA group (birth weight ≥3rd percentile and <10th percentile), and non-SGA group (birth weight ≥10th percentile). An ordered multinomial logistic regression model was used to analyze the factors influencing the occurrence of SGA at different degrees. RESULTS: A total of 14 821 neonates were included, including 258 cases (1.74%) in the severe SGA group, 902 cases (6.09%) in the mild SGA group, and 13 661 cases (92.17%) in the non-SGA group. The proportions of preterm births and stillbirths were higher in the severe SGA group compared to the mild SGA and non-SGA groups (P<0.0125). The proportion of neonatal asphyxia was higher in both the severe SGA and mild SGA groups compared to the non-SGA group (P<0.0125). Ordered multinomial logistic regression analysis showed that maternal pre-pregnancy underweight (OR=1.838), maternal pre-pregnancy obesity (OR=3.024), in vitro fertilization-embryo transfer (OR=2.649), preeclampsia (OR=1.743), connective tissue disease during pregnancy (OR=1.795), nuchal cord (OR=1.213), oligohydramnios (OR=1.848), and intrauterine growth restriction (OR=27.691) were all associated with a higher risk of severe SGA (P<0.05). Maternal parity as a multipara (OR=0.457) was associated with a lower likelihood of severe SGA (P<0.05). CONCLUSIONS: Maternal pre-pregnancy underweight, maternal pre-pregnancy obesity, in vitro fertilization-embryo transfer, preeclampsia, connective tissue disease during pregnancy, oligohydramnios, nuchal cord, and intrauterine growth restriction are closely related to the occurrence of more severe SGA. Maternal parity as a multipara acts as a protective factor against the occurrence of severe SGA.


Connective Tissue Diseases , Nuchal Cord , Oligohydramnios , Pre-Eclampsia , Pregnancy , Infant, Newborn , Female , Humans , Fetal Growth Retardation , Birth Weight , Gestational Age , Retrospective Studies , Thinness , Infant, Small for Gestational Age , Obesity
14.
Front Bioeng Biotechnol ; 12: 1332113, 2024.
Article En | MEDLINE | ID: mdl-38567082

Tobacco, a vital economic crop, had its quality post-curing significantly influenced by starch content. Nonetheless, the existing process parameters during curing were inadequate to satisfy the starch degradation requirements. Microorganisms exhibit inherent advantages in starch degradation, offering significant potential in the tobacco curing process. Our study concentrated on the microbial populations on the surface of tobacco leaves and in the rhizosphere soil. A strain capable of starch degradation, designated as BS3, was successfully isolated and identified as Bacillus subtilis by phylogenetic tree analysis based on 16SrDNA sequence. The application of BS3 on tobacco significantly enhanced enzyme activity and accelerated starch degradation during the curing process. Furthermore, analyses of the metagenome, transcriptome, and metabolome indicated that the BS3 strain facilitated starch degradation by regulating surface microbiota composition and affecting genes related to starch hydrolyzed protein and key metabolites in tobacco leaves. This study offered new strategies for efficiently improving the quality of tobacco leaves.

15.
Opt Express ; 32(7): 11447-11462, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38570992

Imaging aliasing is a common problem in the imaging domain. The aliasing of micro-scanning imaging is difficult to characterize accurately, and the matching relationship between the optical system and micro-scanning sampling is unclear. In this paper, a micro-scanning aliasing analysis model is proposed based on the property of sampling squeeze, in which the transfer functions of the optical system, detector, and digital filter are coupled with the micro-scanning sampling process. First, the imaging aliasing under different micro-scanning sampling modes is evaluated based on the constraint relationship of the transfer functions for each part. The stretch factor of the transfer function under micro-scanning sampling is calculated by utilizing the amount of aliasing. Second, the micro-scanning imaging transfer function under different optical parameters is predicted by the stretch factor, and the results indicate the existence of an optimal F-number that maximizes the micro-scanning performance improvement. Furthermore, the optimal micro-scanning imaging F-numbers for different fill factors are given, and the matching relationship between optical parameters, fill factors and micro-scanning mode is analyzed. Finally, a micro-scanning imaging simulation is performed based on the actual imaging transfer and micro-scanning sampling process. The simulation experiment verifies the accuracy of the micro-scanning aliasing model and gives the consistent test results of the optimal F-number. This paper can provide theoretical support for the matching relationship among micro-scanning imaging parameters, which is of great significance for the refined optimal design of micro-scanning imaging systems.

16.
Small ; : e2400875, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38558285

"Spin" has been recently reported as an important degree of electronic freedom to promote catalysis, yet how it influences electronic structure remains unexplored. This work reports the spin-induced orbital hybridization in Ir─Fe bimetallic aerogels, where the electronic structure of Ir sites is effectively regulated by tuning the spin property of Fe atoms. The spin-optimized electronic structure boosts oxygen evolution reaction (OER) electrocatalysis in acidic media, resulting in a largely improved catalytic performance with an overpotential of as low as 236 mV at 10 mA cm-2. Furthermore, the gelation kinetics for the aerogel synthesis is improved by an order of magnitude based on the introduction of a magnetic field. Density functional theory calculation reveals that the increased magnetic moment of Fe (3d orbital) changes the d-band structure (i.e., the d-band center and bandwidth) of Ir (5d orbital) via orbital hybridization, resulting in optimized binding of reaction intermediates. This strategy builds the bridge between the electron spin theory with the d-band theory and provides a new way for the design of high-performance electrocatalysts by using spin-induced orbital interaction.

17.
Food Chem ; 450: 139352, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38640532

Gelatin (GL) and carboxymethyl cellulose (CMC) are common natural components for edible films, but their water barrier performance are finite as hydrophilic polymers. In this study, a GL/CMC water barrier film was prepared, characterized and applied. The microstructure results showed that complex coacervation at pH 2.0 and cross-linking effect of sodium benzoate resulted in strong interaction forces and dense structure of this film. Compared with pure GL or CMC film, this novel composite film decreased water vapor permeability by approximately 90%, and possessed applicable water solubility (51.5%) and stronger barrier to oxygen and UV light. Acidic environment and sodium benzoate endowed antibacterial activity. Furthermore, the water barrier coating film decreased water loss by 47.8% and improved overall quality of fresh strawberries stored at 25 °C for 6 d. Therefore, the novel water barrier film based on complex coacervation and cross-linking is promising to control the postharvest quality of perishable berries.

18.
Small ; : e2310837, 2024 Apr 21.
Article En | MEDLINE | ID: mdl-38644345

Gallium Nitride (GaN), as the representative of wide bandgap semiconductors, has great prospects in accomplishing rapid charge delivery under high-temperature environments thanks to excellent structural stability and electron mobility. However, there is still a gap in wafer-scale GaN single-crystal integrated electrodes applied in the energy storage field. Herein, Si-doped GaN nanochannel with gallium oxynitride (GaON) layer on a centimeter scale (denoted by GaN NC) is reported. The Si atoms modulate electronic redistribution to improve conductivity and drive nanochannel formation. Apart from that, the distinctive nanochannel configuration with a GaON layer provides adequate active sites and extraordinary structural stability. The GaN-based supercapacitors are assembled and deliver outstanding charge storage capabilities at 140 °C. Surprisingly, 90% retention is maintained after 50 000 cycles. This study opens the pathway toward wafer-scale GaN single-crystal integrated electrodes with self-powered characteristics that are compatible with various (opto)-electronic devices.

19.
Waste Manag ; 182: 237-249, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38677141

The effectiveness of dehydration and utilization processes for citric acid dewatered sludge is hampered by its high concentrations of polysaccharides, proteins, and water-binding properties of microbial extracellular polymers (EPS). This research explores the efficacy and mechanisms involved in extracting water from this type of sludge using biological drying technology, with varying rates of ventilation. Especially pertinent was the use of low ventilation rates as control variables. Our results suggest that a scheduled intermittent ventilation at lower rates allows for the most efficient removal of water, achieving a rate of 41.71 % within eight days, according to the zero-order kinetic model. Remarkably, the peak temperature registered was 60 °C, reaching this threshold in just 0.1 days and maintaining high temperatures for approximately 5.9 days. Component analysis of organic matter illustrated a preferential degradation process for lipids under these ventilation conditions which is pivotal for releasing and transforming bound water for efficient extraction, as well as facilitating the breakdown of easily hydrolysable materials. Further, polysaccharide/protein (EPS) decomposition contributed to water removal, though less significantly. The periodic ventilation strategy allowed for the maximum cumulative temperature to be sustained, demonstrating superior efficiency in harnessing bio-generated heat (82.77 % for water evaporation), resulting in dry sludge suitable for self-sustained combustion at relatively low cost ($26.61/t). Highlighted by this study is the considerable potential of energy-efficient ventilation methods in the biological drying treatment of citric acid fermented sludge and similar industrial waste materials.


Citric Acid , Desiccation , Sewage , Desiccation/methods , Waste Disposal, Fluid/methods , Water
20.
Article En | MEDLINE | ID: mdl-38656846

Multilabel feature selection solves the dimension distress of high-dimensional multilabel data by selecting the optimal subset of features. Noisy and incomplete labels of raw multilabel data hinder the acquisition of label-guided information. In existing approaches, mapping the label space to a low-dimensional latent space by semantic decomposition to mitigate label noise is considered an effective strategy. However, the decomposed latent label space contains redundant label information, which misleads the capture of potential label relevance. To eliminate the effect of redundant information on the extraction of latent label correlations, a novel method named SLOFS via shared latent sublabel structure and simultaneous orthogonal basis clustering for multilabel feature selection is proposed. First, a latent orthogonal base structure shared (LOBSS) term is engineered to guide the construction of a redundancy-free latent sublabel space via the separated latent clustering center structure. The LOBSS term simultaneously retains latent sublabel information and latent clustering center structure. Moreover, the structure and relevance information of nonredundant latent sublabels are fully explored. The introduction of graph regularization ensures structural consistency in the data space and latent sublabels, thus helping the feature selection process. SLOFS employs a dynamic sublabel graph to obtain a high-quality sublabel space and uses regularization to constrain label correlations on dynamic sublabel projections. Finally, an effective convergence provable optimization scheme is proposed to solve the SLOFS method. The experimental studies on the 18 datasets demonstrate that the presented method performs consistently better than previous feature selection methods.

...