Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 15(4): 1619-1628, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36602002

RESUMEN

Hematite (α-Fe2O3) is a promising transition metal oxide for various energy conversion and storage applications due to its advantages of low cost, high abundance, and good chemical stability. However, its low carrier mobility and electrical conductivity have hindered the wide application of hematite-based devices. Fundamentally, this is mainly caused by the formation of small polarons, which show conduction through thermally activated hopping. Atomic doping is one of the most promising approaches for improving the electrical conductivity in hematite. However, its impact on the carrier mobility and electrical conductivity of hematite at the atomic level remains to be illusive. In this work, through a kinetic Monte-Carlo sampling approach for diffusion coefficients combined with carrier concentrations computed under charge neutrality conditions, we obtained the electrical conductivity of the doped hematite. We considered the contributions from individual Fe-O layers, given that the in-plane carrier transport dominates. We then studied how different dopants impact the carrier mobility in hematite using Sn, Ti, and Nb as prototypical examples. We found that the carrier mobility change is closely correlated with the local distortion of Fe-Fe pairs, i.e. the more stretched the Fe-Fe pairs are compared to the pristine systems, the lower the carrier mobility will be. Therefore, elements which limit the distortion of Fe-Fe pair distances from pristine are more desired for higher carrier mobility in hematite. The calculated local structure and pair distribution functions of the doped systems have remarkable agreement with the experimental EXAFS measurements on hematite nanowires, which further validates our first-principles predictions. Our work revealed how dopants impact the carrier mobility and electrical conductivity of hematite and provided practical guidelines to experimentalists on the choice of dopants for the optimal electrical conductivity of hematite and the performance of hematite-based devices.

3.
Adv Mater ; 34(23): e2108856, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35119150

RESUMEN

Aqueous rechargeable zinc-iodine batteries (ZIBs), including zinc-iodine redox flow batteries and static ZIBs, are promising candidates for future grid-scale electrochemical energy storage. They are safe with great theoretical capacity, high energy, and power density. Nevertheless, to make aqueous rechargeable ZIBs practically feasible, there are quite a few hurdles that need to be overcome, including self-discharge, sluggish kinetics, low energy density, and instability of Zn metal anodes. This article first reviews the electrochemistry in aqueous rechargeable ZIBs, including the flow and static battery configurations and their electrode reactions. Then the authors discuss the fundamental questions of ZIBs and highlight the key strategies and recent accomplishments in tackling the challenges. Last, they share their thoughts on the future research development in aqueous rechargeable ZIBs.

4.
Nano Lett ; 21(9): 4129-4135, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33939439

RESUMEN

Aqueous rechargeable zinc-iodine batteries (ZIBs) are promising candidates for grid energy storage because they are safe and low-cost and have high energy density. However, the shuttling of highly soluble triiodide ions severely limits the device's Coulombic efficiency. Herein, we demonstrate for the first time a double-layered cathode configuration with a conductive layer (CL) coupled with an adsorptive layer (AL) for ZIBs. This unique cathode structure enables the formation and reduction of adsorbed I3- ions at the CL/AL interface, successfully suppressing triiodide ion shuttling. A prototypical ZIB using a carbon cloth as the CL and a polypyrrole layer as the AL simultaneously achieves outstanding Coulombic efficiency (up to 95.6%) and voltage efficiency (up to 91.3%) in the aqueous ZnI2 electrolyte even at high-rate intermittent charging/discharging, without the need of ion selective membranes. These findings provide new insights to the design and fabrication of ZIBs and other batteries based on conversion reactions.

5.
Nano Lett ; 21(9): 3731-3737, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33719451

RESUMEN

Maintaining fast charging capability at low temperatures represents a significant challenge for supercapacitors. The performance of conventional porous carbon electrodes often deteriorates quickly with the decrease of temperature due to sluggish ion and charge transport. Here we fabricate a 3D-printed multiscale porous carbon aerogel (3D-MCA) via a unique combination of chemical methods and the direct ink writing technique. 3D-MCA has an open porous structure with a large surface area of ∼1750 m2 g-1. At -70 °C, the symmetric device achieves outstanding capacitance of 148.6 F g-1 at 5 mV s-1. Significantly, it retains a capacitance of 71.4 F g-1 at a high scan rate of 200 mV s-1, which is 6.5 times higher than the non-3D printed MCA. These values rank among the best results reported for low temperature supercapacitors. These impressive results highlight the essential role of open porous structures for preserving capacitive performance at ultralow temperatures.

6.
Chem Commun (Camb) ; 56(71): 10378, 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32845946

RESUMEN

Correction for 'Efficient photocatalytic hydrogen evolution over hydrogenated ZnO nanorod arrays' by Xihong Lu et al., Chem. Commun., 2012, 48, 7717-7719, DOI: .

8.
Nat Commun ; 11(1): 590, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-32001713

RESUMEN

Hydrogen evolution reaction (HER) is more sluggish in alkaline than in acidic media because of the additional energy required for water dissociation. Numerous catalysts, including NiO, that offer active sites for water dissociation have been extensively investigated. Yet, the overall HER performance of NiO is still limited by lacking favorable H adsorption sites. Here we show a strategy to activate NiO through carbon doping, which creates under-coordinated Ni sites favorable for H adsorption. DFT calculations reveal that carbon dopant decreases the energy barrier of Heyrovsky step from 1.17 eV to 0.81 eV, suggesting the carbon also serves as a hot-spot for the dissociation of water molecules in water-alkali HER. As a result, the carbon doped NiO catalyst achieves an ultralow overpotential of 27 mV at 10 mA cm-2, and a low Tafel slope of 36 mV dec-1, representing the best performance among the state-of-the-art NiO catalysts.

9.
Adv Mater ; 32(8): e1906652, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31951066

RESUMEN

The performance of pseudocapacitive electrodes at fast charging rates are typically limited by the slow kinetics of Faradaic reactions and sluggish ion diffusion in the bulk structure. This is particularly problematic for thick electrodes and electrodes highly loaded with active materials. Here, a surface-functionalized 3D-printed graphene aerogel (SF-3D GA) is presented that achieves not only a benchmark areal capacitance of 2195 mF cm-2 at a high current density of 100 mA cm-2 but also an ultrahigh intrinsic capacitance of 309.1 µF cm-2 even at a high mass loading of 12.8 mg cm-2 . Importantly, the kinetic analysis reveals that the capacitance of SF-3D GA electrode is primarily (93.3%) contributed from fast kinetic processes. This is because the 3D-printed electrode has an open structure that ensures excellent coverage of functional groups on carbon surface and facilitates the ion accessibility of these surface functional groups even at high current densities and large mass loading/electrode thickness. An asymmetric device assembled with SF-3D GA as anode and 3D-printed GA decorated with MnO2 as cathode achieves a remarkable energy density of 0.65 mWh cm-2 at an ultrahigh power density of 164.5 mW cm-2 , outperforming carbon-based supercapacitors operated at the same power density.

10.
Environ Sci Technol ; 53(13): 7714-7723, 2019 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-31198021

RESUMEN

The increasing demand for rare earth elements (REEs) in the modern economy motivates the development of novel strategies for cost-effective REE recovery from nontraditional feedstocks. We previously engineered E. coli to express lanthanide binding tags on the cell surface, which increased the REE biosorption capacity and selectivity. Here we examined how REE adsorption by the engineered E. coli is affected by various geochemical factors relevant to geothermal fluids, including total dissolved solids (TDS), temperature, pH, and the presence of specific competing metals. REE biosorption is robust to TDS, with high REE recovery efficiency and selectivity observed with TDS as high as 165,000 ppm. Among several metals tested, U, Al, and Pb were found to be the most competitive, causing >25% reduction in REE biosorption when present at concentrations ∼3- to 11-fold higher than the REEs. Optimal REE biosorption occurred between pH 5-6, and sorption capacity was reduced by ∼65% at pH 2. REE recovery efficiency and selectivity increased as a function of temperature up to ∼70 °C due to the thermodynamic properties of metal complexation on the bacterial surface. Together, these data define the optimal and boundary conditions for biosorption and demonstrate its potential utility for selective REE recovery from geofluids.


Asunto(s)
Elementos de la Serie de los Lantanoides , Metales de Tierras Raras , Adsorción , Bacterias , Escherichia coli
11.
Nanomicro Lett ; 12(1): 3, 2019 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34138084

RESUMEN

Ultrafast-charging energy storage devices are attractive for powering personal electronics and electric vehicles. Most ultrafast-charging devices are made of carbonaceous materials such as chemically converted graphene and carbon nanotubes. Yet, their relatively low electrical conductivity may restrict their performance at ultrahigh charging rate. Here, we report the fabrication of a porous titanium nitride (TiN) paper as an alternative electrode material for ultrafast-charging devices. The TiN paper shows an excellent conductivity of 3.67 × 104 S m-1, which is considerably higher than most carbon-based electrodes. The paper-like structure also contains a combination of large pores between interconnected nanobelts and mesopores within the nanobelts. This unique electrode enables fast charging by simultaneously providing efficient ion diffusion and electron transport. The supercapacitors (SCs) made of TiN paper enable charging/discharging at an ultrahigh scan rate of 100 V s-1 in a wide voltage window of 1.5 V in Na2SO4 neutral electrolyte. It has an outstanding response time with a characteristic time constant of 4 ms. Significantly, the TiN paper-based SCs also show zero capacitance loss after 200,000 cycles, which is much better than the stability performance reported for other metal nitride SCs. Furthermore, the device shows great promise in scalability. The filtration method enables good control of the thickness and mass loading of TiN electrodes and devices.

12.
Small ; 15(1): e1803746, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30411486

RESUMEN

Photo-electrochemical water splitting represents a green and environmentally friendly method for producing solar hydrogen. Semiconductor nanomaterials with a highly accessible surface area, reduced charge migration distance, and tunable optical and electronic property are regarded as promising electrode materials to carry out this solar-to-hydrogen process. Since most of the photo-electrochemical reactions take place on the electrode surface or near-surface region, rational engineering of the surface structures, physical properties, and chemical nature of photoelectrode materials could fundamentally change their performance. Here, the recent advances in surface engineering methods, including the modification of the nanomaterial surface morphology, crystal facet, defect and doping concentrations, as well as the deposition of a functional overlayer of sensitizers, plasmonic metallic structures, and protective and catalytic materials are highlighted. Each surface engineering method and how it affects the structural features and photo-electrochemical performance of nanomaterials are reviewed and compared. Finally, the current challenges and the opportunities in the field are discussed.

13.
J Colloid Interface Sci ; 509: 529-545, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28756854

RESUMEN

Three-dimensional (3D) carbon-based materials are emerging as promising electrode candidates for energy storage devices. In comparison to the 1D and 2D structures, 3D morphology offers new opportunities in rational design and synthesis of novel architectures tailor-made for promoting electrochemical performance. The capability of building hierarchical porous structures with 3D configuration can significantly advance the performance of energy storage devices by simultaneously enhancing the ion-accessible surface area and ion diffusion. This feature article presents an overview of recent progress in design, synthesis and implementation of 3D carbon-based materials as electrodes for electrochemical capacitors. Synthesis methodologies of four types of 3D carbon-based electrodes: 3D exfoliated carbon structures, 3D graphene scaffolds, 3D hierarchical porous carbon foams, as well as 3D architectures with periodic pores derived from direct ink writing, are thoroughly discussed and highlighted with selected experimental works. Finally, key opportunities and challenges in which different 3D carbons can significantly impact the energy storage and conversion communities will be provided.

14.
Nanoscale ; 9(35): 13119-13127, 2017 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-28849857

RESUMEN

Heteroatom-doped carbonaceous materials derived from polymers are emerging as a new class of promising supercapacitor electrodes. These electrodes have both electrical double layer capacitance (from carbon matrices) and pseudo-capacitance (from hetero-atoms). Balancing the electrical double layer capacitance and pseudo-capacitance is a key to achieve large capacitance at ultrafast current densities. Here we investigate the influence of pyrolysis temperature on capacitive performance of hetero-atom (oxygen and nitrogen) doped carbons derived from polypyrrole nanowire arrays. Structural and electrochemical characterization reveal that the concentration of hetero-atoms as well as the ratio of electrical double layer capacitance and pseudo-capacitance can be tuned by varying the pyrolysis temperature. In fact the hetero-atom doped carbon sample obtained at a relatively lower pyrolysis temperature (500 °C) exhibits the optimal capacitive performance. It yields an outstanding areal capacitance of 324 mF cm-2 at 1 mA cm-2 (141 F g-1@0.43 A g-1), and more importantly, retains an areal capacitance of 184.7 mF cm-2 (80.3 F g-1@43.5 A g-1) at an ultrahigh current density of 100 mA cm-2. An asymmetric supercapacitor consisting of hetero-atom doped carbon as an anode delivers a maximum volumetric energy density of 1.7 mW h cm-3 at a volumetric power density of 0.014 W cm-3, which is among the best values reported for asymmetric supercapacitors.

15.
Adv Sci (Weinh) ; 4(7): 1700107, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28725532

RESUMEN

Paper-based materials are emerging as a new category of advanced electrodes for flexible energy storage devices, including supercapacitors, Li-ion batteries, Li-S batteries, Li-oxygen batteries. This review summarizes recent advances in the synthesis of paper-based electrodes, including paper-supported electrodes and paper-like electrodes. Their structural features, electrochemical performances and implementation as electrodes for flexible energy storage devices including supercapacitors and batteries are highlighted and compared. Finally, we also discuss the challenges and opportunity of paper-based electrodes and energy storage devices.

16.
Nano Lett ; 17(5): 3097-3104, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28394622

RESUMEN

Increasing charge storage capability during fast charging (at ultrahigh current densities) has been a long-standing challenge for supercapacitors. In this work, a novel porous carbon foam electrode with multiscale pore network is reported that achieves a remarkable gravimetric capacitance of 374.7 ± 7.7 F g-1 at a current density of 1 A g-1. More importantly, it retains 235.9 ± 7.5 F g-1 (60% of its capacitance at 1 A g-1) at an ultrahigh current density of 500 A g-1. Electron microscopy studies reveal that this carbon structure contains multiscale pores assembled in a hierarchical pattern. The outstanding capacitive performance benefits from its extremely large surface area of 2905 m2 g-1, as around 88% of the electric charges are stored via electrical double layer. Significantly, electrochemical analyses show that the hierarchical porous structure containing macro-, meso-, and micropores allows efficient ion diffusion and charge transfer, resulting in the excellent rate capability. The findings pave the way for improving rate capability of supercapacitors and enhancing their capacitances at ultrahigh current densities.

17.
Nano Lett ; 17(4): 2490-2495, 2017 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-28334530

RESUMEN

High-temperature activation has been commonly used to boost the photoelectrochemical (PEC) performance of hematite nanowires for water oxidation, by inducing Sn diffusion from fluorine-doped tin oxide (FTO) substrate into hematite. Yet, hematite nanowires thermally annealed at high temperature suffer from two major drawbacks that negatively affect their performance. First, the structural deformation reduces light absorption capability of nanowire. Second, this "passive" doping method leads to nonuniform distribution of Sn dopant in nanowire and limits the Sn doping concentration. Both factors impair the electrochemical properties of hematite nanowire. Here we demonstrate a silica encapsulation method that is able to simultaneously retain the hematite nanowire morphology even after high-temperature calcination at 800 °C and improve the concentration and uniformity of dopant distribution along the nanowire growth axis. The capability of retaining nanowire morphology allows tuning the nanowire length for optimal light absorption. Uniform distribution of Sn doping enhances the donor density and charge transport of hematite nanowire. The morphology and doping engineered hematite nanowire photoanode decorated with a cobalt oxide-based oxygen evolution reaction (OER) catalyst achieves an outstanding photocurrent density of 2.2 mA cm-2 at 0.23 V vs Ag/AgCl. This work provides important insights on how the morphology and doping uniformity of hematite photoanodes affect their PEC performance.

18.
Small ; 13(16)2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28160416

RESUMEN

Previous studies show that vanadium oxides suffer from severe capacity loss during cycling in the liquid electrolyte, which has hindered their applications in electrochemical energy storage. The electrochemical instability is mainly due to chemical dissolution and structural pulverization of vanadium oxides during charge/discharge cyclings. In this study the authors demonstrate that amorphous mixed-valence vanadium oxide deposited on exfoliated carbon cloth (CC) can address these two limitations simultaneously. The results suggest that tuning the V4+ /V5+ ratio of vanadium oxide can efficiently suppress the dissolution of the active materials. The oxygen-functionalized carbon shell on exfoliated CC can bind strongly with VO x via the formation of COV bonding, which retains the electrode integrity and suppresses the structural degradation of the oxide during charging/discharging. The uptake of structural water during charging and discharging processes also plays an important role in activating the electrode material. The amorphous mixed-valence vanadium oxide without any protective coating exhibits record-high cycling stability in the aqueous electrolyte with no capacitive decay in 100 000 cycles. This work provides new insights on stabilizing vanadium oxide, which is critical for the development of vanadium oxide based energy storage devices.

19.
Adv Sci (Weinh) ; 3(8): 1600097, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27818911

RESUMEN

A 3D nitrogen-doped graphene aerogel (N-GA) as an anode material for microbial fuel cells (MFCs) is reported. Electron microscopy images reveal that the N-GA possesses hierarchical porous structure that allows efficient diffusion of both bacterial cells and electron mediators in the interior space of 3D electrode, and thus, the colonization of bacterial communities. Electrochemical impedance spectroscopic measurements further show that nitrogen doping considerably reduces the charge transfer resistance and internal resistance of GA, which helps to enhance the MFC power density. Importantly, the dual-chamber milliliter-scale MFC with N-GA anode yields an outstanding volumetric power density of 225 ± 12 W m-3 normalized to the total volume of the anodic chamber (750 ± 40 W m-3 normalized to the volume of the anode). These power densities are the highest values report for milliliter-scale MFCs with similar chamber size (25 mL) under the similar measurement conditions. The 3D N-GA electrode shows great promise for improving the power generation of MFC devices.

20.
Angew Chem Int Ed Engl ; 55(31): 8864-8, 2016 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-27294890

RESUMEN

CH3 NH3 PbBr3 perovskite nanocrystals (PNCs) of different sizes (ca. 2.5-100 nm) with high photoluminescence (PL) quantum yield (QY; ca. 15-55 %) and product yield have been synthesized using the branched molecules, APTES and NH2 -POSS, as capping ligands. These ligands are sterically hindered, resulting in a uniform size of PNCs. The different capping effects resulting from branched versus straight-chain capping ligands were compared and a possible mechanism proposed to explain the dissolution-precipitation process, which affects the growth and aggregation of PNCs, and thereby their overall stability. Unlike conventional PNCs capped with straight-chain ligands, APTES-capped PNCs show high stability in protic solvents as a result of the strong steric hindrance and propensity for hydrolysis of APTES, which prevent such molecules from reaching and reacting with the core of PNCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...