Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39150804

RESUMEN

A transcription factor (TF) is a sequence-specific DNA-binding protein, which plays key roles in cell-fate decision by regulating gene expression. Predicting TFs is key for tea plant research community, as they regulate gene expression, influencing plant growth, development, and stress responses. It is a challenging task through wet lab experimental validation, due to their rarity, as well as the high cost and time requirements. As a result, computational methods are increasingly popular to be chosen. The pre-training strategy has been applied to many tasks in natural language processing (NLP) and has achieved impressive performance. In this paper, we present a novel recognition algorithm named TeaTFactor that utilizes pre-training for the model training of TFs prediction. The model is built upon the BERT architecture, initially pre-trained using protein data from UniProt. Subsequently, the model was fine-tuned using the collected TFs data of tea plants. We evaluated four different word segmentation methods and the existing state-of-the-art prediction tools. According to the comprehensive experimental results and a case study, our model is superior to existing models and achieves the goal of accurate identification. In addition, we have developed a web server at http://teatfactor.tlds.cc, which we believe will facilitate future studies on tea transcription factors and advance the field of crop synthetic biology.

2.
Plants (Basel) ; 13(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38999624

RESUMEN

Light, as a critical environmental factor, plays a pivotal role in photosynthesis, ultimately influencing the timing of bud flush in tea plants. However, the synergistic effects of different photoperiods and light qualities on the timing of bud flush in the albino tea cultivar 'HuangKui' (later germination variety) remain unknown. Thus, the objective of this study was to investigate the effects of different photoperiods (12L/12D, 14L/10D, 16L/8D, and 18L/6D, where L = the number of daylight hours and D = the number of hours of darkness) and ratios of red (R) to blue (B) light (R/B 1:1, R/B 1:2, R/B 1:3, and R/B 2:1) on the germination and growth of the albino tea variety 'HuangKui'. In our study, we examined how different photoperiods and red light and blue light affected tea germination and growth by investigating the timing of bud flush, photosynthesis, chlorophyll content, and growth indicators. First, our study showed that 'HuangKui' germinated 4 days, 2 days, and 1 day earlier under the 16L/8D photoperiod at the one bud and one leaf period compared with plants cultivated under the 12L/12D, 14L/10D, and 18L/6D photoperiods under light simulating the solar spectrum. Also, the growth of 'HuangKui' was maximumly promoted under the 16L/8D photoperiod treatment. Additionally, the earliest germination of 'HuangKui' was observed for the 16L/8D photoperiod under the R/B 2:1 (red/blue) treatment compared with the other treatments. Moreover, the greatest plant height, length of the new shoots, and new leaf areas were detected in the albino tea variety 'HuangKui' under R/B 2:1. Moreover, the contents of auxin (indole acetic acid, IAA) and trans-zeatin (tZ) under R/B 2:1 were significantly higher than those under the R/B 1:1 and control treatments with the 16L/8D photoperiod. Additionally, the auxin-related expression levels of CsIAA13, CsGH3.1, CsAUX1, and CsARF2 under the R/B 2:1 treatment were significantly higher than those in the control. The expression of CsARR-B, a positive regulator of cytokinin-related genes, was significantly higher under the R/B 2:1 treatment than under the control treatment, while the opposite result was found for the expression of the negative regulator CsARR-A. Therefore, the R/B 2:1 treatment with the 16L/8D photoperiod was an appropriate means of timing the bud flush for the albino tea variety 'HuangKui', which may be related to IAA or tZ signal transduction. In conclusion, our research offers a novel lighting strategy that promotes the germination and growth of albino tea cultivars.

3.
Int J Biol Macromol ; 277(Pt 2): 134304, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39084443

RESUMEN

Tea plant (Camellia sinensis) is an important economical crop that frequently suffers from various herbicides, especially glyphosate. However, the molecular responses and regulatory mechanisms of glyphosate stress in tea plants remain poorly understood. Here, we reported a transcriptome dataset and identified large number of differentially expressed genes (DEGs) under glyphosate exposure. Next, two glutathione S-transferase genes (CsGSTU8-1 and CsGSTU8-2) that upregulated significantly were screened as candidate genes. Tissue-specific expression patterns showed that both CsGSTU8-1 and CsGSTU8-2 had extremely high expression levels in the roots and were predominantly localized in the nucleus and plasma membrane based on subcellular localization. Both were significantly upregulated at different time points under various stressors, including drought, cold, salt, pathogen infections, and SA treatments. An enzymatic activity assay showed that CsGSTU8-1 catalyzes the conjugation of glutathione with 2,4-dinitrochlorobenzene (CDNB). Functional analysis in yeast verified that the two genes significantly contributed to the detoxification of glyphosate, and CsGSTU8-1 had a stronger role in detoxification than CsGSTU8-2. Taken together, these findings provide insights into the molecular responses of tea plants to glyphosate and the functions of CsGSTU8s in glyphosate detoxification, which can be used as a promising genetic resource for improving herbicide resistance in tea cultivars.


Asunto(s)
Camellia sinensis , Regulación de la Expresión Génica de las Plantas , Glutatión Transferasa , Glicina , Glifosato , Glicina/análogos & derivados , Glicina/metabolismo , Glicina/toxicidad , Camellia sinensis/genética , Camellia sinensis/efectos de los fármacos , Camellia sinensis/metabolismo , Camellia sinensis/enzimología , Glutatión Transferasa/metabolismo , Glutatión Transferasa/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Inactivación Metabólica/genética , Transcriptoma , Herbicidas/farmacología , Herbicidas/metabolismo , Perfilación de la Expresión Génica
4.
Food Chem ; 445: 138620, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38382249

RESUMEN

Gabaron green tea (GAGT) has unique flavor and health benefits through the special anaerobic treatment. However, how this composite processing affects the aroma formation of GAGT and the regulatory mechanism was rarely reported. This study used nontargeted metabolomics and molecular sensory science to overlay screen differential metabolites and key aroma contributors. The potential regulatory mechanism of anaerobic treatment on the aroma formation of GAGT was investigated by transcriptomics and correlation analyses. Five volatiles: benzeneacetaldehyde, nonanal, geraniol, linalool, and linalool oxide III, were screened as target metabolites. Through the transcriptional-level differential genes screening and analysis, some CsERF transcription factors in the ethylene signaling pathway were proposed might participate the response to the anaerobic treatment. They might regulate the expression of related genes in the metabolic pathway of the target metabolites thus affecting the GAGT flavor. The findings of this study provide novel information on the flavor and its formation of GAGT.


Asunto(s)
Camellia sinensis , Compuestos Orgánicos Volátiles , Té/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Multiómica , Compuestos Orgánicos Volátiles/análisis , Cromatografía de Gases y Espectrometría de Masas , Odorantes/análisis
5.
Ecotoxicol Environ Saf ; 265: 115511, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37774542

RESUMEN

Glyphosate is an herbicide extensively used worldwide that can remain in the soil. Phytoremediation to decontaminate polluted water or soil requires a plant that can accumulate the target compound. Vulpia myuros is an annual fescue that can be used as a heavy mental phytoremediation strategy. Recently, it has been used to intercrop with tea plant to prohibit the germination and growth of other weeds in tea garden. In order to know whether it can be used an decontaminating glyphosate' plant in water or soil, in this study, glyphosate degradation behavior was investigated in Vulpia myuros cultivated in a hydroponic system. The results showed that the concentration of glyphosate in the nutrient solution decreased from 43.09 µg mL-1 to 0.45 µg mL-1 in 30 days and that 99% of the glyphosate molecules were absorbed by V. myuros. The contents of glyphosate in the roots reached the maximum (224.33 mg kg-1) on day 1 and then decreased. After 3 days, the content of glyphosate in the leaves reached the highest value (215.64 mg kg-1), while it decreased to 156.26 mg kg-1 in the roots. The dissipation dynamics of glyphosate in the whole hydroponic system fits the first-order kinetic model C = 455.76e-0.21 t, with a half-life of 5.08 days. Over 30 days, 80% of the glyphosate was degraded. The contents of the glyphosate metabolite amino methyl phosphoric acid (AMPA), ranged from 0.103 mg kg-1 on day 1-0.098 mg kg-1 on day 30, not changing significantly over time. The Croot/solution, Cleaf/solution and Cleaf/root were used to express the absorption, transfer, and distribution of glyphosate in V. myuros. These results indicated that glyphosate entered into the root system through free diffusion, which was influenced by both the log Kow and the concentration of glyphosate in the nutrient solution, and that glyphosate was either easily transferred to the leaves through the transpiration stream, accumulated, or degraded. The degradation of glyphosate in V. myuros indicated that it has potential as a remediating plant for environmental restoration.


Asunto(s)
Festuca , Herbicidas , Contaminantes del Suelo , Contaminantes del Suelo/análisis , Biodegradación Ambiental , Festuca/metabolismo , Suelo , Herbicidas/análisis , Agua , , Glifosato
6.
Plants (Basel) ; 12(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37447075

RESUMEN

High labor costs and labor shortages are limiting factors affecting the tea industry in Anhui Province. Thus, exploiting the full mechanization of shoot harvesting is an urgent task in the tea industry. Tea quality is greatly influenced by the integrity rate of tea leaves; therefore, it is important to choose tea cultivars suitable for machine picking. In this study, seven tea cultivars were used to investigate the relationship between internode length and blade angle with respect to newly formed tea shoots and machine harvesting in field experiments (Xuanchen City, Kuiling village) conducted throughout the year (in the autumn of 2021, in the early spring of 2022, and in the summer of 2022). Our results showed that the internode length (L2 or L4) had a significant and positive correlation with the integrity rate of tea buds and leaves in seven tea cultivars over three seasons. However, no significant correlation was found between the blade angle and the integrity rate of tea buds and leaves. In addition, a strong and positive correlation was found between the levels of GA1 (R2 > 0.7), GA3 (R2 > 0.85), and IAA (R2 > 0.6) regarding the internodes and internode lengths of the seven tea cultivars. Moreover, the relative expression levels of CsGA20ox, CsGA3ox1, and CsGA3ox2 in Echa1 (the longer internode) were significantly higher compared with those in Zhenong113 (the shorter internode). Overall, our results show that the internode length is an important factor for the machine harvesting of tea leaves and that the level of GA3 is strongly associated with internode length.

8.
Plants (Basel) ; 12(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36903849

RESUMEN

Light, as an energy source, has been proven to strongly affect photosynthesis and, thus, can regulate the yield and quality of tea leaves (Camellia sinensis L.). However, few comprehensive studies have investigated the synergistic effects of light wavelengths on tea growth and development in green and albino varieties. Thus, the objective of this study was to investigate different ratios of red, blue and yellow light and their effects on tea plants' growth and quality. In this study, Zhongcha108 (green variety) and Zhongbai4 (albino variety) were exposed to lights of different wavelengths for a photoperiod of 5 months under the following seven treatments: white light simulated from the solar spectrum, which served as the control, and L1 (red 75%, blue 15% and yellow 10%), L2 (red 60%, blue 30% and yellow 10%), L3 (red 45%, far-red light 15%, blue 30% and yellow 10%), L4 (red 55%, blue 25% and yellow 20%), L5 (red 45%, blue 45% and yellow 10%) and L6 (red 30%, blue 60% and yellow 10%), respectively. We examined how different ratios of red light, blue light and yellow light affected tea growth by investigating the photosynthesis response curve, chlorophyll content, leaf structure, growth parameters and quality. Our results showed that far-red light interacted with red, blue and yellow light (L3 treatments) and significantly promoted leaf photosynthesis by 48.51% in the green variety, Zhongcha108, compared with the control treatments, and the length of the new shoots, number of new leaves, internode length, new leaf area, new shoots biomass and leaf thickness increased by 70.43%, 32.64%, 25.97%, 15.61%, 76.39% and 13.30%, respectively. Additionally, the polyphenol in the green variety, Zhongcha108, was significantly increased by 15.6% compared to that of the plants subjected to the control treatment. In addition, for the albino variety Zhongbai4, the highest ratio of red light (L1 treatment) remarkably enhanced leaf photosynthesis by 50.48% compared with the plants under the control treatment, resulting in the greatest new shoot length, number of new leaves, internode length, new leaf area, new shoot biomass, leaf thickness and polyphenol in the albino variety, Zhongbai4, compared to those of the control treatments, which increased by 50.48%, 26.11%, 69.29%, 31.61%, 42.86% and 10.09%, respectively. Our study provided these new light modes to serve as a new agricultural method for the production of green and albino varieties.

9.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36768228

RESUMEN

Cold stress is one of the major abiotic stresses limiting tea production. The planting of cold-resistant tea cultivars is one of the most effective measures to prevent chilling injury. However, the differences in cold resistance between tea cultivars remain unclear. In the present study, we perform a transcriptomic and metabolomic profiling of Camellia sinensis var. "Shuchazao" (cold-tolerant, SCZ) and C. sinensis var. assamica "Yinghong 9" (cold-sensitive, YH9) during cold acclimation and analyze the correlation between gene expression and metabolite biosynthesis. Our results show that there were 51 differentially accumulated metabolites only up-regulated in SCZ in cold-acclimation (CA) and de-acclimation (DA) stages, of which amino acids accounted for 18%. The accumulation of L-arginine and lysine in SCZ in the CA stage was higher than that in YH9. A comparative transcriptomic analysis showed an enrichment of the amino acid biosynthesis pathway in SCZ in the CA stage, especially "arginine biosynthesis" pathways. In combining transcriptomic and metabolomic analyses, it was found that genes and metabolites associated with amino acid biosynthesis were significantly enriched in the CA stage of SCZ compared to CA stage of YH9. Under cold stress, arginine may improve the cold resistance of tea plants by activating the polyamine synthesis pathway and CBF (C-repeat-binding factor)-COR (cold-regulated genes) regulation pathway. Our results show that amino acid biosynthesis may play a positive regulatory role in the cold resistance of tea plants and assist in understanding the cold resistance mechanism differences among tea varieties.


Asunto(s)
Camellia sinensis , Transcriptoma , Perfilación de la Expresión Génica , Camellia sinensis/metabolismo , Té/genética , Té/metabolismo , Aminoácidos/metabolismo , Arginina/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
Food Chem X ; 16: 100453, 2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36185102

RESUMEN

The brewing conditions of beverage milk tea determine the taste of milk tea. This study investigated the changes in sensory characteristics and small molecule compounds in milk tea made from large-leaf yellow tea under different brewing conditions by sensory analysis, colorimeter, and LC-MS. The results show that the tea to milk ratio is the most important process affecting the taste, and the color values of b* (+yellow, - blue) can be used to evaluate the taste of milk tea made from large leaf yellow tea. The composition of small molecular compounds is affected by tea to milk ratio, which can change the taste of milk tea. l-cysteine and 8-methylsulfinyloctyl glucosinolate are significantly positively correlated with taste by metabolomics analysis. l-cysteine was used to verify the analysis results by LC-MS. The total acceptance of milk tea is improved by adding l-cysteine at a low level (0.025-0.035 mM).

11.
Life (Basel) ; 12(10)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36295084

RESUMEN

Millions of wastewater treatment plants (WWTPs) based on the activated sludge process have been established worldwide to help to purify wastewater. However, a vast amount of sludge is inevitably generated, and the cost of sludge disposal could reach over half of the total operation cost of a WWTP. Various sludge reduction techniques have been developed, including physicochemical, biological, and combinational methods. Micro-organisms that could reduce sludge by cryptic growth are vital to the biological approach. Currently, only limited functional bacteria have been isolated, and the lack of knowledge on the underlying mechanism hinders the technique development. Therefore, the present study is aimed at isolating sludge-reducing bacteria and optimizing the sludge reduction process through response surface methodology. Nineteen strains were obtained from sludge. The mix-cultures did not show a higher sludge reduction rate than the pure culture, which may be ascribed to the complicated interactions, such as competition and antagonistic effects. In total, 21.2% and 13.9% of total suspended and volatile suspended solids were reduced within 48 h after optimization. The three-dimensional excitation-emission matrix fluorescence spectrum and hydrolases test results revealed that the sludge reduction might be promoted by the strain mainly through hydrolysis via proteinase and amylase. The results obtained from the study demonstrate the potential of using micro-organisms for sludge reduction through cryptic growth.

12.
Plant Sci ; 325: 111463, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36126878

RESUMEN

CBFs play important roles in tea plant cold tolerance. In our study, 16 tea varieties were used to investigate the relationship between the expression level of CsCBFs and cold tolerance in field experiments. A strong and positive correlation was found between cold stress-regulated CsCBF1, CsCBF3 and CsCBF5 expression levels (R2 > 0.8) in tea mesophyll cells and cold tolerance in 16 tea varieties. A previous study reported that CsCBF1 and CsCBF3 were important components associated with cold tolerance in tea plants; thus, the function of CsCBF5 in the CsCBF family was targeted. Our previous study reported that CsCBF5 was localized in the nucleus and exhibited transcriptional activity. In the current study, MDA content in leaves was significantly increased in CsCBF5-silenced leaves, which exhibited poor cold tolerance, compared with WT plants under cold stress. In contrast, increased germination rates and antioxidant enzyme activities under cold conditions compared with WT plants. Furthermore, CsCBF5 overexpression in Arabidopsis promoted the expression levels of the cold-regulated genes AtCOR15a, AtCOR78, AtERD4 and AtRD29B; however, the expression levels of downstream genes, including CsCOR47, CsCOR413, CsERD4 and CsRD29B, were significantly reduced in CsCBF5-silenced tea leaves. Taken together, our results indicated that CsCBF5 could function as a positive regulator in the cold stress response.


Asunto(s)
Arabidopsis , Camellia sinensis , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Camellia sinensis/metabolismo , Arabidopsis/metabolismo , , Frío , Estrés Fisiológico
13.
Tree Physiol ; 42(8): 1613-1627, 2022 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-35271713

RESUMEN

Theanine is an important quality parameter referring to tea quality. Applying nitrogen fertilizers is one strategy to improve the level of theanine; however, the effect of plant growth-promoting rhizobacteria on theanine synthesis in tea roots has been less studied. In this study, the bacteria isolated from Qimen County with the maximum potassium (K) solubilization were identified as Bacillus by biochemical and molecular analyses. We show that tartaric and pyruvic acids produced by Bacillus were important components related to K solubilization in vitro. Pot experiments and enzymatic assays in vitro showed that inoculation with Bacillus-secreted organic acids increased the level of available potassium in the soil. The increased K level activated recombinant CsTSI activity (theanine biosynthesis enzyme) and increased ethylamine content (the synthesis precursor of theanine), resulting in promoted theanine synthesis in tea roots. Therefore, our study indicates that Bacillus can be a potential bioinoculant for biofortification of tea.


Asunto(s)
Bacillus , Camellia sinensis , Bacterias , Glutamatos , Hojas de la Planta/química , Potasio/análisis ,
14.
Funct Plant Biol ; 49(3): 283-294, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35101164

RESUMEN

K+ availability is important for growth and quality of tea (Camellia sine sis L.). K solubilising bacteria convert insoluble K to available K. This study was conducted to screen K solubilising bacteria isolated from tea rhizosphere soil in Qimen county, Anhui province, China. The maximum K solubilisation colony (the ratio of diameter halo/colony was 2.54) was identified as Burkholderia sp. (storage number: M2021105) by biochemistry and molecular analysis. Pot experiments (Laterite) showed that the inoculation of Burkholderia sp. significantly improved tea plant height (Zhongcha108, 1 year old) and total polyphenols content by 21.14% and 21.58% compared with the control, respectively. Higher polyphenol level promoted the formation of theaflavin in the fermentation experiments. Further experiments showed that tartaric acid and pryuvic acid produced by Burkholderia sp. are important components associated with K solubilisation in vitro . Burkholderia sp. significantly increased soil available K by 15.12%; however, there was no significant difference in available N and P, and Cu, Mg, Zn and Ca compared with the control. K content in inoculated tea roots and leaves was significantly higher (50% and 10%, respectively) than the control. Compared with the control, exogenous supply of 60mgkg-1 K significantly increased levels of polyphenol (53.97%), theaflavin (16.31%), theaflavin-3-gallate (20%), theaflavin 3'-gallic acid ester (32.24%) and theaflavin 3,3'-gallic acid ester (40.95%). Due to its ability to enable higher available soil K, ur study indicated that Burkholderia sp. have potential to increase total polyphenols content be a bio-inoculant for biofortification of tea.


Asunto(s)
Burkholderia , Camellia , Hojas de la Planta/química , Polifenoles/análisis , Suelo , Té/química
15.
J Agric Food Chem ; 69(28): 7969-7978, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34232658

RESUMEN

The tea shrub is grown in long-standing orchards, an environment that is suitable for persistent weed growth, which is increasingly controlled by herbicides. Therefore, there is increasing concern that tea consumers may be exposed to herbicide residues. In this study, the levels of glufosinate-ammonium (GLU), glyphosate [N-(phosphonomethyl) glycine; PMG], and its metabolite aminomethyl phosphoric acid (AMPA) were determined in tea samples by HPLC-MS/MS using several current purification methods and a new method that we developed herein. The matrix effect of our proposed method was between -27.3 and 27.7%, which was lower than that in other methods, indicating that this method effectively reduced the interference of tea matrix in the mass spectrometry process. This method was used to determine the levels of PMG, GLU, and AMPA in 780 samples, including six traditional Chinese teas (green tea, black tea, oolong tea, dark tea, white tea, and yellow tea) and a floral tea, from 14 provinces of China. Probability estimates showed that the 95th percentile risk entropy values of the three pesticide residues were far below the acceptable risk level. The risk assessment results showed that exposure to PMG, GLU, and AMPA caused by drinking tea beverages poses no significant risk to human health.


Asunto(s)
Herbicidas , Espectrometría de Masas en Tándem , Aminobutiratos , China , Cromatografía Líquida de Alta Presión , Glicina/análogos & derivados , Herbicidas/análisis , Humanos , Ácidos Fosfóricos , Medición de Riesgo , , Glifosato
16.
Plant J ; 106(5): 1312-1327, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33730390

RESUMEN

The tea plant (Camellia sinensis) is a thermophilic cash crop and contains a highly duplicated and repeat-rich genome. It is still unclear how DNA methylation regulates the evolution of duplicated genes and chilling stress in tea plants. We therefore generated a single-base-resolution DNA methylation map of tea plants under chilling stress. We found that, compared with other plants, the tea plant genome is highly methylated in all three sequence contexts, including CG, CHG and CHH (where H = A, T, or C), which is further proven to be correlated with its repeat content and genome size. We show that DNA methylation in the gene body negatively regulates the gene expression of tea plants, whereas non-CG methylation in the flanking region enables a positive regulation of gene expression. We demonstrate that transposable element-mediated methylation dynamics significantly drives the expression divergence of duplicated genes in tea plants. The DNA methylation and expression divergence of duplicated genes in the tea plant increases with evolutionary age and selective pressure. Moreover, we detect thousands of differentially methylated genes, some of which are functionally associated with chilling stress. We also experimentally reveal that DNA methyltransferase genes of tea plants are significantly downregulated, whereas demethylase genes are upregulated at the initial stage of chilling stress, which is in line with the significant loss of DNA methylation of three well-known cold-responsive genes at their promoter and gene body regions. Overall, our findings underscore the importance of DNA methylation regulation and offer new insights into duplicated gene evolution and chilling tolerance in tea plants.


Asunto(s)
Camellia sinensis/genética , Metilación de ADN , Elementos Transponibles de ADN/genética , Evolución Molecular , Genes Duplicados/genética , Genoma de Planta/genética , Camellia sinensis/fisiología , Frío , Regulación de la Expresión Génica de las Plantas , Tamaño del Genoma , Estrés Fisiológico
17.
Environ Pollut ; 267: 115603, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33254693

RESUMEN

Tea plants (Camellia sinensis (L.) O. Kuntze) can hyperaccumulate fluoride (F). The accumulation of F in tea leaves may induce serious health problems in tea consumers. It has been reported that selenium (Se) could reduce the accumulation of heavy metals in plants. Thus, the aim of this study was to investigate whether exogenous Se could reduce F accumulation in tea plant. The results showed that Se treatment could decrease F content in tea leaves, increase F accumulation in roots, decrease the proportion of water-soluble F in tea leaves and increase the Se content. Low F levels promoted the accumulation of Se in tea plants. Se treatment could modulate F-induced oxidative injury by decreasing malondialdehyde level and increasing the activities of superoxide dismutase, peroxidase and catalase. Moreover, Se inhibited F-induced increase in leaf iron, calcium, aluminum, leaf and root magnesium and lead contents. These results showed that Se application could decrease F content and increase Se content in tea leaves, which may be served as a novel strategy for production of healthy tea.


Asunto(s)
Camellia sinensis , Selenio , Fluoruros , Magnesio , Hojas de la Planta ,
18.
Front Plant Sci ; 11: 921, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849669

RESUMEN

C-repeat (CRT)/dehydration responsive element (DRE)-binding factor CBFs, a small family of genes encoding transcriptional activators, play important roles in plant cold tolerance. In this study, a comprehensive genome-wide analysis was carried out to identify and characterize the functional dynamics of CsCBFs in tea plant (Camellia sinensis). A total of 6 CBF genes were obtained from the tea plant genome and named CBF1-6. All of the CsCBFs had an AP2/ERF DNA-binding domain and nuclear localization signal (NLS) sequence. CsCBF-eGFP fusion and DAPI staining analysis confirmed the nuclear localization of the CsCBFs. Transactivation assays showed that the CsCBFs, except CsCBF1, had transcriptional activity. CsCBF expression was differentially induced by cold, heat, PEG, salinity, ABA, GA, MeJA, and SA stresses. In particular, the CsCBF genes were significantly induced by cold treatments. To further characterize the functions of CsCBF genes, we overexpressed the CsCBF3 gene in Arabidopsis thaliana plants. The resulting transgenic plants showed increased cold tolerance compared with the wild-type Arabidopsis plant. The enhanced cold tolerance of the transgenic plants was potentially achieved through an ABA-independent pathway. This study will help to increase our understanding of CsCBF genes and their contributions to stress tolerance in tea plants.

19.
J Sci Food Agric ; 100(8): 3554-3559, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32124449

RESUMEN

BACKGROUND: Tea (Camellia sinensis (L.) O. Kuntze) is a hyper-accumulator of fluoride (F). To understand F uptake and distribution in living plants, we visually evaluated the real-time transport of F absorbed by roots and leaves using a positron-emitting (18 F) fluoride tracer and a positron-emitting tracer imaging system. RESULTS: F arrived at an aerial plant part about 1.5 h after absorption by roots, suggesting that tea roots had a retention effect on F, and then was transported upward mainly via the xylem and little via the phloem along the tea stem, but no F was observed in the leaves within the initial 8 h. F absorbed via a cut petiole (leaf 4) was mainly transported downward along the stem within the initial 2 h. Although F was first detected in the top and ipsilateral leaves, it was not detected in tea roots by the end of the monitoring. During the monitoring time, F principally accumulated in the node. CONCLUSION: F uptake by the petiole of excised leaf and root system was realized in different ways. The nodes indicated that they may play pivotal roles in the transport of F in tea plants. © 2020 Society of Chemical Industry.


Asunto(s)
Camellia sinensis/metabolismo , Fluoruros/metabolismo , Transporte Biológico , Camellia sinensis/química , Fluoruros/análisis , Floema/química , Floema/metabolismo , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Xilema/química , Xilema/metabolismo
20.
BMC Genomics ; 21(1): 65, 2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-31959105

RESUMEN

BACKGROUND: Alternative splicing (AS) may generate multiple mRNA splicing isoforms from a single mRNA precursor using different splicing sites, leading to enhanced diversity of transcripts and proteins. AS has been implicated in cold acclimation by affecting gene expression in various ways, yet little information is known about how AS influences cold responses in tea plant (Camellia sinensis). RESULTS: In this study, the AS transcriptional landscape was characterized in the tea plant genome using high-throughput RNA-seq during cold acclimation. We found that more than 41% (14,103) of genes underwent AS events. We summarize the possible existence of 11 types of AS events, including the four common types of intron retention (IR), exon skipping (ES), alternative 5' splice site (A5SS), and alternative 3' splice site (A3SS); of these, IR was the major type in all samples. The number of AS events increased rapidly during cold treatment, but decreased significantly following de-acclimation (DA). It is notable that the number of differential AS genes gradually increased during cold acclimation, and these genes were enriched in pathways relating to oxidoreductase activity and sugar metabolism during acclimation and de-acclimation. Remarkably, the AS isoforms of bHLH transcription factors showed higher expression levels than their full-length ones during cold acclimation. Interestingly, the expression pattern of some AS transcripts of raffinose and sucrose synthase genes were significantly correlated with sugar contents. CONCLUSION: Our findings demonstrated that changes in AS numbers and transcript expression may contribute to rapid changes in gene expression and metabolite profile during cold acclimation, suggesting that AS events play an important regulatory role in response to cold acclimation in tea plant.


Asunto(s)
Aclimatación/genética , Empalme Alternativo , Camellia sinensis/genética , Frío , Camellia sinensis/metabolismo , Genes de Plantas , Oxidorreductasas/metabolismo , RNA-Seq , Azúcares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA